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Abstractions: informally Introduction

Coming up with heuristics in a principled way

General procedure for obtaining a heuristic

Solve an easier version of the problem.

Two common methods:

I relaxation: consider less constrained version of the problem

I abstraction: consider smaller version of real problem

We start with abstraction, which is one of the most prominent techniques
for optimal planning.

Carmel Domshlak Automated Action Planning 3 / 129



Abstractions: informally Introduction

Outline

1. Abstractions informally

2. Abstractions formally

3. Projection abstractions (PDBs)

4. Merge-and-shrink abstractions

5. Generalized additive heuristics

6. Structural-pattern abstractions
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Abstractions: informally Introduction

Abstracting a transition system

Abstracting a transition system means dropping some distinctions between
states, while preserving the transition behaviour as much as possible.

I An abstraction of a transition system T is defined by an abstraction
mapping α that defines which states of T should be distinguished and
which ones should not.

I From T and α, we compute an abstract transition system T ′ which is
“similar” to T , but smaller.

I The abstract goal distances (goal distances in T ′) are used as
heuristic estimates for goal distances in T .
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Abstractions: informally Introduction

Abstracting a transition system: example

Example (15-puzzle)

A 15-puzzle state is given by a permutation 〈b, t1, . . . , t15〉 of {1, . . . , 16},
where b denotes the blank position and the other components denote the
positions of the 15 tiles.

One possible abstraction mapping ignores the precise location of tiles
8–15, i. e., two states are distinguished iff they differ in the position of the
blank or one of the tiles 1–7:

α(〈b, t1, . . . , t15〉) = 〈b, t1, . . . , t7〉

The heuristic values for this abstraction correspond to the cost of moving
tiles 1–7 to their goal positions.
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Abstractions: informally Introduction

Abstraction example: 15-puzzle

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

real state space

I 16! = 20922789888000 ≈ 2 · 1013 states

I 16!
2 = 10461394944000 ≈ 1013 reachable states
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Abstractions: informally Introduction

Abstraction example: 15-puzzle

2 6

5 7

3 4 1

1 2 3 4

5 6 7

abstract state space

I 16 · 15 · . . . · 9 = 518918400 ≈ 5 · 108 states

I 16 · 15 · . . . · 9 = 518918400 ≈ 5 · 108 reachable states
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Abstractions: informally Introduction

Computing the abstract transition system

Given T and α, how do we compute T ′?

Requirement

We want to obtain an admissible heuristic.
Hence, h∗(α(s)) (in the abstract state space T ′) should never
overestimate h∗(s) (in the concrete state space T ).

An easy way to achieve this is to ensure that
all solutions in T also exist in T ′:

I If s is the init state in T , then α(s) is the init state in T ′.
I If s is a goal state in T , then α(s) is a goal state in T ′.
I If T has a transition from s to t, then T ′ has a transition from α(s)

to α(t).
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Abstractions: informally Practical requirements

Practical requirements for abstractions

To be useful in practice, an abstraction heuristic must be efficiently
computable. This gives us two requirements for α:

I For a given state s, the abstract state α(s) must be efficiently
computable.

I For a given abstract state α(s), the abstract goal distance h∗(α(s))
must be efficiently computable.

There are different ways of achieving these requirements:

I pattern database heuristics (Culberson & Schaeffer, 1996)

I merge-and-shrink abstractions (Dräger, Finkbeiner & Podelski, 2006)

I implicit abstractions (Katz & Domshlak, 2008)
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Abstractions: informally Practical requirements

Practical requirements for abstractions: example

Example (15-puzzle)

In our running example, α can be very efficiently computed:
just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search, most
common algorithms precompute all abstract goal distances prior to search
by performing a backward breadth-first search from the goal state(s). The
distances are then stored in a table (requires about 495 MB of RAM).
During search, computing h∗(α(s)) is just a table lookup.

This heuristic is an example of a pattern database heuristic.
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Abstractions: informally Multiple abstractions

Multiple abstractions

I One important practical question is how to come up with a good
abstraction mapping α.

I Indeed, there is usually a huge number of possibilities, and it is
important to pick good abstractions (i. e., ones that lead to
informative heuristics).

I However, it is generally not necessary to commit to a single
abstraction.
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Abstractions: informally Multiple abstractions

Combining multiple abstractions

Maximizing several abstractions

I Each abstraction mapping gives rise to an admissible heuristic.

I By computing the maximum of several admissible heuristics, we
obtain another admissible heuristic which dominates the component
heuristics.

I Thus, we can always compute several abstractions and maximize over
the individual abstract goal distances.

Adding several abstractions

I In some cases, we can even compute the sum of individual estimates
and still stay admissible.

I Summation often leads to much higher estimates than maximization,
so it is important to understand when it is admissible.

Carmel Domshlak Automated Action Planning 13 / 129



Abstractions: informally Multiple abstractions

Maximizing several abstractions: example

Example (15-puzzle)

I mapping to tiles 1–7 was arbitrary
; can use any subset of tiles

I with the same amount of memory required for the tables for the
mapping to tiles 1–7, we could store the tables for nine different
abstractions to six tiles and the blank

I use maximum of individual estimates
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Abstractions: informally Multiple abstractions

Adding several abstractions: example

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

I 1st abstraction: ignore precise location of 8–15

I 2nd abstraction: ignore precise location of 1–7

; Is the sum of the abstraction heuristics admissible?
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Abstractions: informally Multiple abstractions

Adding several abstractions: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

I 1st abstraction: ignore precise location of 8–15

I 2nd abstraction: ignore precise location of 1–7

; The sum of the abstraction heuristics is not admissible.
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Abstractions: informally Multiple abstractions

Adding several abstractions: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

I 1st abstraction: ignore precise location of 8–15 and blank

I 2nd abstraction: ignore precise location of 1–7 and blank

; The sum of the abstraction heuristics is admissible.
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Abstractions: informally Outlook

Our plan for the lecture

In the following, we take a deeper look at abstractions and their use for
admissible heuristics.

I In the rest of this chapter, we formally introduce abstractions and
abstraction heuristics and study some of their most important
properties.

I In the following chapters, we discuss some particular classes of
abstraction heuristics in detail, namely pattern database heuristics,
merge-and-shrink abstractions, and structural patterns.
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Abstractions: informally Outlook

Outline

1. Abstractions informally

2. Abstractions formally

3. Projection abstractions (PDBs)

4. Merge-and-shrink abstractions

5. Generalized additive heuristics

6. Structural-pattern abstractions
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Abstractions: formally Transition systems

Transition systems

Definition (transition system)

A transition system is a 5-tuple T = 〈S , L,T , s0,SG 〉 where

I S is a finite set of states (the state space),

I L is a finite set of (transition) labels,

I T ⊆ S × L× S is the transition relation,

I s0 ⊆ S is the set of initial states, and

I SG ⊆ S is the set of goal states.

We say that T has the transition 〈s, l , s ′〉 if 〈s, l , s ′〉 ∈ T .

Note: For technical reasons, the definition slightly differs from our earlier
one. (It includes explicit labels.)
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Abstractions: formally Transition systems

Transition systems: example

Note: To reduce clutter, our figures usually omit arc labels and collapse
transitions between identical states. However, these are important for the
formal definition of the transition system.
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Abstractions: formally Transition systems

Example task: one package, two trucks

Example (one package, two trucks)

Consider the following FDR planning task 〈V ,A, I ,G 〉:
I V = {p, tdA, tdB} with

I Dp = {dL, dR, dA, dB}
I DtdA

= DtdB
= {dL, dR}

I I = {p 7→ dL, tdA 7→ dR, tdB 7→ dR}
I A = {pickupi ,j | i ∈ {dA, dB}, j ∈ {dL, dR}}

∪ {dropi ,j | i ∈ {dA, dB}, j ∈ {dL, dR}}
∪ {movei ,j ,j ′ | i ∈ {dA, dB}, j , j ′ ∈ {dL, dR}, j 6= j ′}, where

I pickupi,j = 〈ti = j ∧ p = j , p := i〉
I dropi,j = 〈ti = j ∧ p = i , p := j〉
I movei,j,j′ = 〈ti = j , ti := j ′〉

I G = (p = dR)
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Abstractions: formally Transition systems

Transition system of example task

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

I State {p 7→ i , tdA 7→ j , tdB 7→ k} is depicted as ijk.

I Transition labels are again not shown. For example, the transition
from LLL to ALL has the label pickupdA,dL.
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Abstractions: formally Abstractions

Abstractions

Definition (abstraction, abstraction mapping)

Let T = 〈〈S , L,T , s0, SG 〉〉 and T ′ = 〈〈S ′, L′,T ′, s ′0, S ′G 〉〉
be transition systems with the same label set L = L′,
and let α : S → S ′.

We say that T ′ is an abstraction of T with abstraction mapping α (or:
abstraction function α) if

I we have α(s0) = s ′0,

I for all s ∈ SG , we have α(s) ∈ S ′G , and

I for all 〈s, l , t〉 ∈ T , we have 〈α(s), l , α(t)〉 ∈ T ′.
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Abstractions: formally Abstraction heuristics

Abstraction heuristics

Definition (abstraction heuristic)

Let Π be an FDR planning task with state space S , and let A be an
abstraction of T (Π) with abstraction mapping α.

The abstraction heuristic induced by A and α, hA,α, is the heuristic
function hA,α : S → N0 ∪ {∞} which maps each state s ∈ S to h∗A(α(s))
(the goal distance of α(s) in A).

Note: hA,α(s) =∞ if no goal state of A is reachable from α(s)
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Abstractions: formally Abstraction heuristics

Abstraction heuristics: example

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

hA,α({p 7→ dL, tdA 7→ dR, tdB 7→ dR}) = 3
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Abstractions: formally Abstraction heuristics

Consistency of abstraction heuristics

Theorem (consistency and admissibility of hA,α)

Let Π be an FDR planning task, and let A be an abstraction of T (Π) with
abstraction mapping α.
Then hA,α is safe, goal-aware, admissible and consistent.
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Abstractions: formally Additivity

Orthogonality of abstraction mappings

Definition (orthogonal abstraction mappings)

Let α1, . . . , αk be abstraction mappings on T .

We say that {α1, . . . , αk} are orthogonal if for all transitions 〈s, l , t〉 of T ,
we have αi (s) 6= αi (t) for at most one i ∈ [k].
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Abstractions: formally Additivity

Affecting transition labels

Definition (affecting transition labels)

Let T be a transition system, and let l be one of its labels.
We say that l affects T if T has a transition 〈s, l , t〉 with s 6= t.

Theorem (affecting labels vs. orthogonality)

For i ∈ [k], let Ai be an abstraction of T with abstraction mapping αi .

If no label of T affects more than one Ai , then {α1, . . . , αk} are
orthogonal.

(Easy proof omitted.)
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Abstractions: formally Additivity

Orthogonal abstraction mappings: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

Are the abstraction mappings orthogonal?
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Abstractions: formally Additivity

Orthogonal abstraction mappings: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

Are the abstraction mappings orthogonal?
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Abstractions: formally Additivity

Orthogonality and additivity

Theorem (additivity for orthogonal abstraction mappings)

Let hA1,α1 , . . . , hAn,αn be abstraction heuristics for the same planning task
Π such that {α1, . . . , αk} are orthogonal.
Then

∑n
i=1 hAi ,αi is a safe, goal-aware, admissible and consistent heuristic

for Π.
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Abstractions: formally Additivity

Orthogonality and additivity: example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

transition system T
state variables: first package, second package, truck
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Abstractions: formally Additivity

Orthogonality and additivity: example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

LLR LLL

LIL

LIR
LRR LRL

ILR

ILL

IIL IIR

IRR

IRL

RLR RLL
RIL

RIR

RRR RRL

abstraction A1

mapping: only consider state of first package
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Abstractions: formally Additivity

Orthogonality and additivity: example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

LLR LLL

ILL

ILR
RLR RLL

LIR

LIL

IIL IIR

RIR

RIL

LRR LRL
IRL

IRR

RRR RRL

abstraction A2 (orthogonal to A1)
mapping: only consider state of second package
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Abstractions: formally Refinements

Abstractions of abstractions

Theorem (transitivity of abstractions)

Let T , T ′ and T ′′ be transition systems.

I If T ′ is an abstraction of T
and T ′′ is an abstraction of T ′,
then T ′′ is an abstraction of T .

I If T ′ is a homomorphic abstraction of T
and T ′′ is a homomorphic abstraction of T ′,
then T ′′ is a homomorphic abstraction of T .

Carmel Domshlak Automated Action Planning 36 / 129



Abstractions: formally Refinements

Abstractions of abstractions: example

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

transition system T
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Abstractions: formally Refinements

Abstractions of abstractions: example

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

Transition system T ′ as an abstraction of T
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Abstractions: formally Refinements

Abstractions of abstractions: example

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BLR

BRR

BLL BLR

BRRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Transition system T ′′ as an abstraction of T ′
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Abstractions: formally Refinements

Abstractions of abstractions: example

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Transition system T ′′ as an abstraction of T
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Abstractions: formally Refinements

Coarsenings and refinements

Terminology: Let T be a transition system,
let T ′ be an abstraction of T with abstraction mapping α, and
let T ′′ be an abstraction of T ′ with abstraction mapping α′.

Then:

I 〈T ′′, α′ ◦ α〉 is called a coarsening of 〈T ′, α〉, and

I 〈T ′, α〉 is called a refinement of 〈T ′′, α′ ◦ α〉.

Theorem (heuristic quality of refinements)

Let hA,α and hB,β be abstraction heuristics for the same planning task Π
such that 〈A, α〉 is a refinement of 〈B, β〉.
Then hA,α dominates hB,β.

In other words, hA,α(s) ≥ hB,β(s) for all states s of Π.
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Abstractions: formally Practice

Using abstraction heuristics in practice

In practice, there are conflicting goals for abstractions:

I we want to obtain an informative heuristic, but

I want to keep its representation small.

Abstractions have small representations if they have

I few abstract states and

I a succinct encoding for α.
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Abstractions: formally Practice

Counterexample: one-state abstraction

LRR

LLR

LLL

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLLLRR

LLR

LLL

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

One-state abstraction: α(s) := const.

+ very few abstract states and succinct encoding for α

− completely uninformative heuristic
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Abstractions: formally Practice

Counterexample: identity abstraction

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Identity abstraction: α(s) := s.

+ perfect heuristic and succinct encoding for α

− too many abstract states
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Abstractions: formally Practice

Counterexample: perfect abstraction

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR

ALL

BLL

BRL

ALR

BRL

ALL

BLL

ARL

ARR

BRR

BLR

ARL

BLR

ARR

BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Perfect abstraction: α(s) := h∗(s).

+ perfect heuristic and usually few abstract states

− usually no succinct encoding for α
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Abstractions: formally Practice

Automatically deriving good abstraction heuristics

Abstraction heuristics for planning: main research problem

Automatically derive effective abstraction heuristics
for planning tasks.

Next we

; study three state-of-the-art approaches
to exploiting abstractions in practice

I one of them will be postponed for a bit later

; consider more closely the issue of additivity
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Abstractions: formally Practice

Outline

1. Abstractions informally

2. Abstractions formally

3. Projection abstractions (PDBs)

4. Merge-and-shrink abstractions

5. Generalized additive heuristics

6. Structural-pattern abstractions
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PDB heuristics Projections

Pattern database heuristics

I The most commonly used abstraction heuristics in search and
planning are pattern database (PDB) heuristics.

I PDB heuristics were originally introduced
for the 15-puzzle (Culberson & Schaeffer, 1996)
and for Rubik’s cube (Korf, 1997).

I The first use for domain-independent planning
is due to Edelkamp (2001).
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PDB heuristics Projections

Pattern database heuristics informally

Pattern databases: informally

A pattern database heuristic for a planning task is an abstraction heuristic
where

I some aspects of the task are represented in the abstraction with
perfect precision, while

I all other aspects of the task are not represented at all.

Example (15-puzzle)

I Choose a subset T of tiles (the pattern).

I Faithfully represent the locations of T in the abstraction.

I Assume that all other tiles and the blank can be anywhere in the
abstraction.
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PDB heuristics Projections

Projections

Formally, pattern database heuristics are induced abstractions of a
particular class of homomorphisms called projections.

Definition (projections)

Let Π be an FDR planning task with variable set V and state set S . Let
P ⊆ V , and let S ′ be the set of states over P.

The projection πP : S → S ′ is defined as πP(s) := s|P
(with s|P(v) := s(v) for all v ∈ P).

We call P the pattern of the projection πP .

In other words, πP maps two states s1 and s2 to the same abstract state iff
they agree on all variables in P.
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PDB heuristics Projections

Pattern database heuristics

Abstraction heuristics for projections are called
pattern database (PDB) heuristics.

Definition (pattern database heuristic)

The abstraction heuristic induced by πP is called a
pattern database heuristic or PDB heuristic.
We write hP as a short-hand for hπP .

Why are they called pattern database heuristics?

I Heuristic values for PDB heuristics are traditionally stored in a
1-dimensional table (array) called a pattern database (PDB). Hence
the name “PDB heuristic”.
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PDB heuristics Examples

Example: transition system

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Logistics problem with one package, two trucks, two locations:

I state variable package: {L,R,A,B}
I state variable truck A: {L,R}
I state variable truck B: {L,R}
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PDB heuristics Examples

Example: projection

Abstraction induced by π{package}:

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

h{package}(LRR) = 2
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PDB heuristics Examples

Example: projection (2)

Abstraction induced by π{package,truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

h{package,truck A}(LRR) = 2
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PDB heuristics Canonical heuristic function

Pattern collections

I The space requirements for a pattern database grow exponentially
with the number of state variables in the pattern.

I This places severe limits on the usefulness of single PDB heuristics hP

for larger planning task.

I To overcome this limitation, planners using pattern databases work
with collections of multiple patterns.

I When using two patterns P1 and P2, it is always possible to use the
maximum of hP1 and hP2 as an admissible and consistent heuristic
estimate.

I However, when possible, it is much preferable to use the sum of hP1

and hP2 as a heuristic estimate, since hP1 + hP2 ≥ max{hP1 , hP2}.
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PDB heuristics Canonical heuristic function

Criterion for additive patterns

Theorem (additive pattern sets)

Let P1, . . . ,Pk be patterns for an FDR planning task Π.

If there exists no operator that has an effect on a variable vi ∈ Pi and on a
variable vj ∈ Pj for some i 6= j , then

∑k
i=1 hPi is an admissible and

consistent heuristic for Π.

A pattern set {P1, . . . ,Pk} which satisfies the criterion of the theorem is
called an additive pattern set or additive set.
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PDB heuristics Canonical heuristic function

Finding additive pattern sets

The theorem on additive pattern sets gives us a simple criterion to decide
which pattern heuristics can be admissibly added.

Given a pattern collection C (i. e., a set of patterns),
we can use this information as follows:

1. Build the compatibility graph for C.
I Vertices correspond to patterns P ∈ C.
I There is an edge between two vertices iff no operator affects both

incident patterns.

2. Compute all maximal cliques of the graph.
These correspond to maximal additive subsets of C.

I Computing large cliques is an NP-hard problem, and a graph can have
exponentially many maximal cliques.

I However, there are output-polynomial algorithms for finding all
maximal cliques (Tomita, Tanaka & Takahashi, 2004) which have led
to good results in practice.
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PDB heuristics Canonical heuristic function

The canonical heuristic function

Definition (canonical heuristic function)

Let Π be an FDR planning task, and let C be a pattern collection for Π.

The canonical heuristic hC for pattern collection C is defined as

hC(s) = max
D∈cliques(C)

∑
P∈D

hP(s),

where cliques(C) is the set of all maximal cliques
in the compatibility graph for C.

For all choices of C, heuristic hC is admissible and consistent.
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PDB heuristics Canonical heuristic function

Canonical heuristic function: example

Example

Consider a planning task with state variables V = {v1, v2, v3}
and the pattern collection C = {P1, . . . ,P4} with P1 = {v1, v2},
P2 = {v1}, P3 = {v2} and P4 = {v3}.
There are operators affecting each individual variable, and the only
operators affecting several variables affect v1 and v3.

What are the maximal cliques in the compatibility graph for C?

Answer: {P1}, {P2,P3}, {P3,P4}

What is the canonical heuristic function hC?

Answer: hC = max {hP1 , hP2 + hP3 , hP3 + hP4}
= max {h{v1,v2}, h{v1} + h{v2}, h{v2} + h{v3}}
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PDB heuristics Canonical heuristic function

How good is the canonical heuristic function?

I The canonical heuristic function is the best possible admissible
heuristic we can derive from C using the
additivity criterion of orthogonality.

I However, even better heuristic estimates can be obtained from
projection heuristics using a more general additivity criterion based on
an idea called cost partitioning.
; more on that later.
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PDB heuristics Canonical heuristic function

Outline

1. Abstractions informally

2. Abstractions formally

3. Projection abstractions (PDBs)

4. Merge-and-shrink abstractions

5. Generalized additive heuristics

6. Structural-pattern abstractions
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Merge & Shrink Abstractions PDB limitations

Beyond pattern databases

I Despite their popularity, pattern databases have some fundamental
limitations (; example on next slides).

I In this chapter, we study a recently introduced class of abstractions
called merge-and-shrink abstractions.

I Merge-and-shrink abstractions can be seen as a
proper generalization of pattern databases.

I They can do everything that pattern databases can do (modulo
polynomial extra effort).

I They can do some things that pattern databases cannot.
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Merge & Shrink Abstractions PDB limitations

Back to the running example

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Logistics problem with one package, two trucks, two locations:

I state variable package: {L,R,A,B}
I state variable truck A: {L,R}
I state variable truck B: {L,R}
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Merge & Shrink Abstractions PDB limitations

Example: projection

Project to {package}:

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR
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Merge & Shrink Abstractions PDB limitations

Example: projection (2)

Project to {package, truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR
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Merge & Shrink Abstractions PDB limitations

Limitations of projections

How accurate is the PDB heuristic?

I consider generalization of the example:
N trucks, M locations (fully connected), still one package

I consider any pattern that is proper subset of variable set V

I h(s0) ≤ 2 ; no better than atomic projection to package

These values cannot be improved by maximizing over several patterns or
using additive patterns.

Merge-and-shrink abstractions can represent heuristics with h(s0) ≥ 3 for
tasks of this kind of any size.
Time and space requirements are polynomial in N and M.
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Merge & Shrink Abstractions Main ideas

Merge-and-shrink abstractions: main idea

Main idea of merge-and-shrink abstractions

(due to Dräger, Finkbeiner & Podelski, 2006):

Instead of perfectly reflecting a few state variables,
reflect all state variables, but in a potentially lossy way.
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Merge & Shrink Abstractions Main ideas

The need for succinct abstraction mappings

I One major difficulty for non-PDB abstractions is to succinctly
represent the abstraction mapping.

I For pattern databases, this is easy because the abstraction mappings
– projections – are very structured.

I For less rigidly structured abstraction mappings, we need another idea.
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Merge & Shrink Abstractions Main ideas

Merge-and-shrink abstractions: idea

Idea I: Merge

Given two abstractions A and A′, we can merge them into a new product
abstraction.

I The product abstraction captures all information of both abstractions
and can be better informed than either.

I It can even be better informed than their sum.

I Theory: By merging a set of very simple abstractions, we can
represent arbitrary abstractions of an FDR task.

I Practice: Due to memory limitations, such abstractions can become
too large.
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Merge & Shrink Abstractions Main ideas

The need for succinct abstraction mappings

I One major difficulty for non-PDB abstractions is to succinctly
represent the abstraction mapping.

I For pattern databases, this is easy because the abstraction mappings
– projections – are very structured.

I For less rigidly structured abstraction mappings, we need another idea.
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Merge & Shrink Abstractions Main ideas

Merge-and-shrink abstractions: idea

Idea I: Merge

Given two abstractions A and A′, we can merge them into a new product
abstraction.

I The product abstraction captures all information of both abstractions
and can be better informed than either.

I It can even be better informed than their sum.

Idea II: Shrink
We can shrink product abstractions by abstracting them further using any
abstraction on an intermediate result, then continue the merging process.
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Merge & Shrink Abstractions Running example

Running example: explanations

I Atomic projections – projections to a single state variable – play an
important role in this chapter.

I Unlike previous chapters, transition labels are critically important in
this chapter.

I We abbreviate operator names as in these examples:
I MALR: move truck A from left to right
I DAR: drop package from truck A at right location
I PBL: pick up package with truck B at left location

I We abbreviate parallel arcs with commas and wildcards (?) in the
labels as in these examples:

I PAL, DAL: two parallel arcs labeled PAL and DAL
I MA??: two parallel arcs labeled MALR and MARL
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Merge & Shrink Abstractions Running example

Running example: atomic projection for package

T π{package} :

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL
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Merge & Shrink Abstractions Running example

Running example: atomic projection for truck A

T π{truck A} :

L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?
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Merge & Shrink Abstractions Running example

Running example: atomic projection for truck B

T π{truck B} :

L R

PBL,DBL,MA??,
PA?,DA?

MBLR

MBRL

PBR,DBR,MA??,
PA?,DA?
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Merge & Shrink Abstractions Definition

Synchronized product of transition systems

Definition (synchronized product of transition systems)

For i ∈ {1, 2}, let Ti = 〈Si , L,Ti , Ii ,Gi 〉 be transition systems with
identical label set.

The synchronized product of T1 and T2, in symbols T1 ⊗ T2, is the
transition system T⊗ = 〈S⊗, L,T⊗, I⊗,G⊗〉 with

I S⊗ := S1 × S2

I T⊗ := {〈〈s1, s2〉, l , 〈t1, t2〉〉 | 〈s1, l , t1〉 ∈ T1 and 〈s2, l , t2〉 ∈ T2}
I I⊗ := 〈I1, I2〉
I G⊗ := G1 × G2
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Merge & Shrink Abstractions Definition

Synchronized product of functions

Definition (synchronized product of functions)

Let α1 : S → S1 and α2 : S → S2 be functions with identical domain.

The synchronized product of α1 and α2, in symbols α1 ⊗ α2, is the
function α⊗ : S → S1 × S2 defined as

α⊗(s) = 〈α1(s), α2(s)〉.
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Merge & Shrink Abstractions Example

Example: synchronized product

T π{package} ⊗ T π{truck A} :

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??
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Merge & Shrink Abstractions Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} :

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL
⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??
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Merge & Shrink Abstractions Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} : S⊗ = S1 × S2

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

A

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

L

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

AL
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Merge & Shrink Abstractions Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} : I⊗ = 〈I1, I2〉

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

L ⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

R

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

LR
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Merge & Shrink Abstractions Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} : G⊗ = G1 × G2

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

R ⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

L

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

RL
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Merge & Shrink Abstractions Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} : T⊗ := {〈〈s1, s2〉, l , 〈t1, t2〉〉 | . . . }

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

PAL

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

PAL,DAL,MB??,
PB?,DB?

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

PAL
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Merge & Shrink Abstractions Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} : T⊗ := {〈〈s1, s2〉, l , 〈t1, t2〉〉 | . . . }

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

M???

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

MALR

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

MALR

Carmel Domshlak Automated Action Planning 84 / 129



Merge & Shrink Abstractions Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} : T⊗ := {〈〈s1, s2〉, l , 〈t1, t2〉〉 | . . . }

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL
PBL

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?
PAR,DAR,MB??,
PB?,DB?

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

PBL
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Merge & Shrink Abstractions Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} : T⊗ := {〈〈s1, s2〉, l , 〈t1, t2〉〉 | . . . }

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

M???

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

PAL,DAL,MB??,
PB?,DB?

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

MB??
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Merge & Shrink Abstractions Properties

Synchronized products are abstractions

Theorem (synchronized products are abstractions)

For i ∈ {1, 2}, let Ti be an abstraction of transition system T with
abstraction mapping αi .

Then T⊗ := T1 ⊗ T2 is an abstraction of T with abstraction mapping
α⊗ := α1 ⊗ α2, and 〈T⊗, α⊗〉 is a refinement of 〈T1, α1〉 and of 〈T2, α2〉.
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Merge & Shrink Abstractions Properties

Synchronized products of projections

Corollary (Synchronized products of projections)

Let Π be an FDR planning task with variable set V , and let V1 and V2 be
disjoint subsets of V .
Then T πV1 ⊗ T πV2 = T πV1∪V2 .
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Merge & Shrink Abstractions Properties

Recovering T (Π) from the atomic projections

I By repeated application of the corollary, we can recover all pattern
database abstractions of an FDR planning task from the abstractions
for atomic projections.

I In particular, by computing the product of all atomic projections, we
can recover the abstraction for the identity abstraction id = πV .

Corollary (Recovering T (Π) from the atomic projections)

Let Π be an FDR planning task with variable set V .
Then T (Π) =

⊗
v∈V T

π{v} .

I This is an important result because it shows that the abstractions for
atomic projections contain all information of an FDR task.
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M&S Algorithm Merge steps and shrink steps

Generic merge-and-shrink abstractions: outline

Using the results from the previous section, we can develop the ideas of a
generic abstraction computation procedure that takes all state variables
into account:

I Initialization step: Compute all abstract transition systems for atomic
projections to form the initial abstraction collection.

I Merge steps: Combine two abstractions in the collection by replacing
them with their synchronized product.
(Stop once only one abstraction is left.)

I Shrink steps: If the abstractions in the collection are too large to
compute their synchronized product, make them smaller by
abstracting them further (applying an arbitrary homomorphism to
them).

We explain these steps with our running example.
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M&S Algorithm Merge steps and shrink steps

Initialization step: atomic projection for package

T π{package} :

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL
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M&S Algorithm Merge steps and shrink steps

Initialization step: atomic projection for truck A

T π{truck A} :

L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?
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M&S Algorithm Merge steps and shrink steps

Initialization step: atomic projection for truck B

T π{truck B} :

L R

PBL,DBL,MA??,
PA?,DA?

MBLR

MBRL

PBR,DBR,MA??,
PA?,DA?

current collection: {T π{package} , T π{truck A} , T π{truck B}}
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M&S Algorithm Merge steps and shrink steps

First merge step
T1 := T π{package} ⊗ T π{truck A} :

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

current collection: {T1, T π{truck B}}
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M&S Algorithm Merge steps and shrink steps

Need to simplify?

I If we have sufficient memory available, we can now compute
T1 ⊗T π{truck B} , which would recover the complete transition system of
the task.

I However, to illustrate the general idea, let us assume that we do not
have sufficient memory for this product.

I More specifically, we will assume that after each product operation we
need to reduce the result abstraction to four states to obey memory
constraints.

I So we need to reduce T1 to four states. We have a lot of leeway in
deciding how exactly to abstract T1.

I In this example, we simply use an abstraction that leads to a good
result in the end.
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M&S Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??
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M&S Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??
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M&S Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

AL AR

BL BR

R
MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL
D

ARPAR

PBRD
BR

DBL

PBL

PBL

DBL

DBR

PBR

MB??

MB?? MB??

MB??

MB??

M???

MB??
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M&S Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

AL ARAL AR

BL BR

R
MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL
D

ARPAR

PBRD
BR

DBL

PBL

PBL

DBL

DBR

PBR

MB??

MB?? MB??

MB??

MB??

M???

MB??
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M&S Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

A

BL BR

R
MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRD
BR

DBL

PBL

PBL

DBL

DBR

PBR

MB??

M???

MB??

MB??

M???

MB??
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M&S Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

A

BL BRBL BR

R
MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRD
BR

DBL

PBL

PBL

DBL

DBR

PBR

MB??

M???

MB??

MB??

M???

MB??
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M&S Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

A

B

R
MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL
DBL

MB??

M???

MB??

M???

M???

Carmel Domshlak Automated Action Planning 102 / 129



M&S Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

AA

BB

R
MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL
DBL

MB??

M???

MB??

M???

M???
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M&S Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR I R
MALR

MARL

MB??

MB??

M???D?R

P?R

M???

PBL

DBL

P?L

D?L
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M&S Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR I R
MALR

MARL

MB??

MB??

M???D?R

P?R

M???

PBL

DBL

P?L

D?L

current collection: {T2, T π{truck B}}
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M&S Algorithm Merge steps and shrink steps

Second merge step

T3 := T2 ⊗ T π{truck B} :

LRL

LRR

LLL

LLR

IL

IR

RL

RR

M
BLRM

BRL

M
BLRM

BRL

M
BLRM

BRL

M
BLRM

BRL

DAR

PAR

D?R

P?R

P?L

D?
L

PAL

DAL

M
A

L
R

M
A

R
L

M
A

L
R

M
A

R
L

PBLDBL

MA??

MA?? MA??

MA??

current collection: {T3}
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M&S Algorithm Merge steps and shrink steps

Another shrink step?

I Normally we could stop now and use the distances in the final
abstraction as our heuristic function.

I However, if there were further state variables to integrate, we would
simplify further, e. g. leading to the following abstraction (again with
four states):

LRR
LLL
LRL
LLR

I R

M??? M???M???

M?RL

M?LR

P?L

D?L

D?R

P?R

I We get a heuristic value of 3 for the initial state, better than any
PDB heuristic that is a proper abstraction.

I The example generalizes to more locations and trucks, even if we
stick to the size limit of 4 (after merging).
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M&S Algorithm Abstraction mapping

How to represent the abstraction mapping?

Idea: the computation of the abstraction mapping follows the sequence of
product computations

I For the atomic abstractions for π{v}, we generate a one-dimensional
table that denotes which value in Dv corresponds to which abstract
state.

I During the merge (product) step A := A1 ⊗A2, we generate a
two-dimensional table that denotes which pair of states of A1 and A2

corresponds to which state of A.

I During the shrink (abstraction) steps, we make sure that the
simplified table stays in sync with each individual merge step.
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M&S Algorithm Abstraction mapping

How to represent the abstraction mapping? (ctd.)

Idea: the computation of the abstraction mapping follows the sequence of
product computations

I Once we have computed the final abstraction, we compute all
abstract goal distances and store them in a one-dimensional table.

I At this point, we can throw away all the abstractions
– we just need to keep the tables.

I During search, we do a sequence of table lookups to navigate from
the atomic abstraction states to the final abstraction state and
heuristic value
; 2|V | lookups, O(|V |) time

Again, we illustrate the process with our running example.
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M&S Algorithm Abstraction mapping

Abstraction mapping example: atomic abstractions
Computing abstraction mappings for the atomic abstractions is simple.
Just number the states (domain values) consecutively and generate a table
of references to the states:

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL
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M&S Algorithm Abstraction mapping

Abstraction mapping example: atomic abstractions
Computing abstraction mappings for the atomic abstractions is simple.
Just number the states (domain values) consecutively and generate a table
of references to the states:

0

2

3

1

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

L R A B

0 1 2 3
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M&S Algorithm Abstraction mapping

Abstraction mapping example: merge step

For product abstractions A1 ⊗A2, we again number the product states
consecutively and generate a table that links state pairs of A1 and A2 to
states of A:

LL LR

AL AR

BL BR

RL RR
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M&S Algorithm Abstraction mapping

Abstraction mapping example: merge step

For product abstractions A1 ⊗A2, we again number the product states
consecutively and generate a table that links state pairs of A1 and A2 to
states of A:

0 1

4 5

6 7

2 3

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 3
s1 = 2 4 5
s1 = 3 6 7
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M&S Algorithm Abstraction mapping

Maintaining the mapping when shrinking

I The hard part in representing the abstraction mapping is to keep it
consistent when shrinking.

I In theory, this is easy to do:
I When combining states i and j , arbitrarily use one of them (say i) as

the number of the new state.
I Find all table entries in the table for this abstraction which map to the

other state j and change them to i .

I However, doing a table scan each time two states are combined is
very inefficient.

I Fortunately, there also is an efficient implementation which takes
constant time per combination.
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M&S Algorithm Concrete algorithm

Towards a concrete algorithm

I We have now described how merge-and-shrink abstractions work in
general.

I However, we have not said how exactly to decide
I which abstractions to combine in a merge step and
I when and how to further abstract in a shrink step.

I There are many possibilities here (just like there are many possible
PDB heuristics).

I Only one concrete method, called hHHH, has been explored so far in
planning, which we will now discuss briefly.
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M&S Algorithm Concrete algorithm

Generic algorithm template

Generic abstraction computation algorithm
abs := {T π{v} | v ∈ V }
while abs contains more than one abstraction:

select A1, A2 from abs
shrink A1 and/or A2 until size(A1) · size(A2) ≤ N
abs := abs \ {A1,A2} ∪ {A1 ⊗A2}

return the remaining abstraction in abs

N: parameter bounding number of abstract states

Questions for practical implementation:

I Which abstractions to select? ; merging strategy

I How to shrink an abstraction? ; shrinking strategy

I How to choose N? ; usually: as high as memory allows
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M&S Algorithm Concrete algorithm

Merging strategy

Which abstractions to select?

hHHH: Linear merging strategy

In each iteration after the first, choose the abstraction computed in the
previous iteration as A1.
; fully defined by an ordering of atomic projections

Rationale: only maintains one “complex” abstraction at a time

hHHH: Ordering of atomic projections

I Start with a goal variable.

I Add variables that appear in preconditions of operators affecting
previous variables.

I If that is not possible, add a goal variable.

Rationale: increases h quickly
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M&S Algorithm Concrete algorithm

Shrinking strategy

Which abstractions to shrink?

hHHH: only shrink the product

If at all possible, don’t shrink atomic abstractions, but only product
abstractions.

Rationale: Product abstractions are more likely to contain significant
redundancies and symmetries.

Carmel Domshlak Automated Action Planning 118 / 129



M&S Algorithm Concrete algorithm

Shrinking strategy (ctd.)

How to shrink an abstraction?

hHHH: f -preserving shrinking strategy

Repeatedly combine abstract states with
identical abstract goal distances (h values) and
identical abstract initial state distances (g values).

Rationale: preserves heuristic value and overall graph shape

hHHH: Tie-breaking criterion

Prefer combining states where g + h is high.
In case of ties, combine states where h is high.

Rationale: states with high g + h values are less likely to be explored by
A∗, so inaccuracies there matter less
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M&S Algorithm Concrete algorithm

Outline

1. Abstractions informally

2. Abstractions formally

3. Projection abstractions (PDBs)

4. Merge-and-shrink abstractions

5. Generalized additive heuristics

6. Structural-pattern abstractions
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Additive heuristics

Transition systems of FDR planning tasks
Extension

Definition (transition system of an FDR planning task)

Let Π = 〈V ,A, I ,G , cost〉 be an FDR planning task with
cost : A→ R0+ ∪ {∞}.
The transition system of Π, in symbols T (Π), is the transition system
T (Π) = 〈S , L,T , s0,SG 〉, where

I S is the set of states over V ,

I L = A,

I T = {〈s, a, t〉 ∈ S × L× S | appa(s) = t},
I s0 = I , and

I SG = {s ∈ S | s |= G}.

In short: labels of T (Π) are getting annotated with operator costs in Π.
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Additive heuristics Orthogonal action counting

Orthogonality of action counting
Reminder

Definition (orthogonal abstraction mappings)

Let α1, . . . , αk be abstraction mappings on T .

We say that {α1, . . . , αk} are orthogonal if for all transitions 〈s, l , t〉 of T ,
we have αi (s) 6= αi (t) for at most one i ∈ [k].

What if α1 and α2 are non-orthogonal?

Definition (orthogonal action counting)

Let Π = 〈V ,A, I ,G , cost〉 be an FDR planning task,
and {T1, . . . , Tk} be abstractions of T (Π).

We say that action counting in {T1, . . . , Tk} is orthogonal if for all actions
a ∈ A, we have costi (a) 6= 0 for at most one i ∈ [k].
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Additive heuristics Orthogonal action counting

Action counting orthogonality and additivity

Theorem (additivity for orthogonal abstraction mappings)

Let hT1,α1 , . . . , hTn,αn be abstraction heuristics for the same planning task
Π such that action counting in {T1, . . . , Tk}.
Then

∑n
i=1 hTi ,αi is a safe, goal-aware, admissible and consistent heuristic

for Π.

What next?

1. Can we further generalize this (sufficient) condition for additivity?

2. If so, can it be practical?
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Additive heuristics Action cost partitioning

Additive sets of heuristics

Theorem (action cost partitioning)

Let Π,Π1, . . . ,Πk be planning tasks, identical except for the operator costs
cost, cost1, . . . , costk . Let {hi}ki=1 be a set of arbitrary admissible heuristic
functions for {Πi}ki=1, respectively.

If holds cost(a) ≥
∑k

i=1 costi (a) for all actions a, then
∑k

i=1 hi is an
admissible heuristic for Π.

Observations

I Generalizes action counting orthogonality

I No idea what partition is better? ; Uniform partition?

I Still, how to choose among the alternative cost partitions?
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Additive heuristics Additive Abstractions

Optimal action cost partitioning

Problem statement
Given

1. a (costs attached) transition system T ,

2. a set of (costs attached) abstractions {Ti}ki=1 of T with abstraction
mappings {αi}ki=1, respectively, and

3. a state s in T ,

determine optimal additive heuristic for T on the basis of {Ti}ki=1, that is

hopt(s) = max
{costi}

k∑
i=1

h∗i (αi (s)).
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Additive heuristics Additive Abstractions

Problems on the way

Optimal additive heuristic for T on the basis of {Ti}ki=1

hopt(s) = max
{costi}

k∑
i=1

h∗i (αi (s)).

Challenges

1. Infinite space of alternative choices {costi}ki=1

2. The optimal choice is state-dependent

3. The process is fully unsupervised
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Additive heuristics Additive Abstractions

The LP trick

Main Idea
Instead of, given an action cost partition {costi}ki=1, independently
searching each abstraction Ti using
dynamic programming

1. compile SSSP problem over each Ti into a linear program Li with
action costs being free variables

2. combine L1, . . . ,Lk with additivity constraints
cost(a) ≥

∑k
i=1 costi (a)

3. solution of the joint LP ; hopt(s)
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Additive heuristics Additive Abstractions

Single-Source Shortest Paths: LP Formulation

LP formulation
Given: digraph G = (N,E ), source node v ∈ N
LP variables: d(v ′) ; shortest-path length from v to v ′

LP:

max
~d(·)

∑
v ′

d(v ′)

s.t. d(v) = 0

d(v ′) ≤ d(v ′′) + w(v ′′, v ′), ∀(v ′′, v ′) ∈ E
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Additive heuristics Additive Abstractions

Step 2: Properly combine {Li}k
i=1

LP formulation
Given: abstraction Ti , abstractions {Ti}ki=1 state s of concrete system T
LP variables:

⋃k
i=1{d(s ′) | s ′ ∈ Si} ∪ {d(Gi )} ∪ {cost(a, i)}

LP:

max
k∑

i=1

d(Gi )

s.t. ∀i


d(s ′) ≤ d(s ′′) + cost(a, i), ∀〈s ′′, a, s ′〉 ∈ Ti
d(s ′) = 0, s ′ = αi (s)

d(Gi ) ≤ d(s ′), s ′ ∈ G (i)

∀a ∈ A : cost(a) ≥
k∑

i=1

cost(a, i)
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