
Determining Motion Axes of Robot
from 3D Point Measurements

Description

In this task, we study the axis of motion. Our task will be to find axes of motion for a
4 DoF robot with 4 revolute joints. This is one of the ways to calibrate a robot, i.e. compute
its DH parameters, since from knowing joint axes we may assign coordinate frames to them
and computing DH parameters becomes then trivial. In order to compute joint axes, we rigidly
attach three markers to the end-effector. Next, we move one joint at a time and measure the
starting positions of the markers ~x1β, ~x2β, ~x3β and the positions after the motion ~y1β, ~y2β, ~y3β.
From these measurements we can estimate rotation R and translation ~o ′β of a motion caused
by moving one of the joints. Finally, from R and ~o ′β we can recover the axis of motion for this
joint.

Formulation

Suppose we have a point X attached to the rigid body that moves in R3. After the motion
the point is denoted by Y . Suppose we have an orthonormal coordinate system (O, β) with

β = (~b1,~b2,~b3) in which we measure the coordinates of X and Y . Let’s denote by (O ′, β ′) the
new coordinate system that was obtained by moving (O, β) altogether with the moving object
(see Figure 1). Notice that the setting is exactly the same as in [1, Figure 5.1 (b)] and [1,
Chapter 5.1, §2] (we just attach a point to the rigid body, not the coordinate system). Thus,
we may apply [1, Equation (5.5)]:

~yβ = R~xβ + ~o ′β

where R is a rotation matrix and ~o ′β =
−−→
OO ′β. By measuring coordinates of 3 points attached

to the end-effector before and after the motion we obtain 3 equations (in the noiseless case):

~y1β = R~x1β + ~o ′β, ~y2β = R~x2β + ~o ′β, ~y3β = R~x3β + ~o ′β
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Figure 1: Alibi representation of rigid motion

from which we can determine unknown R and ~o ′β and then the axis of motion according
to [1, Chapter 9]. In the presence of noise in the measurements ~xiβ and ~yiβ, we solve the
optimization problem:

R∗, ~o ′β
∗ = arg min

R∈SO(3,R)
~o ′
β∈R

3

3∑
i=1

∥∥~yiβ −R~xiβ − ~o ′β
∥∥2
2︸ ︷︷ ︸

f(R,~o ′
β)

(1)

where ‖·‖2 denotes the Euclidean norm.

Solution

According to Appendix, the solution to (1) is given by

R∗ = U

1
1

detUV>

V>, ~o ′β
∗ = ỹ −R∗x̃,

where

x̃ =
1

3

3∑
i=1

~xiβ, ỹ =
1

3

3∑
i=1

~yiβ

and UDV> is the singular value decomposition of ỸX̃> for

X̃ =
[
~x1β ~x2β ~x3β

]
− x̃h>, Ỹ =

[
~y1β ~y2β ~y3β

]
− ỹh>, h =

[
1 1 1

]>
Next, we can use the material from [1, Chapter 9] to find the axis of motion from R∗ and ~o ′β

∗.
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Appendix

We will describe the solution to (1) for the general case, namely, when the number of measured
points is n. For the sake of simplicity we denote

X =
[
~x1β . . . ~xnβ

]
, Y =

[
~y1β . . . ~ynβ

]
, t = ~o ′β

h =
[
1 1 . . . 1

]>︸ ︷︷ ︸
n times

, x̃ =
1

n

n∑
i=1

~xiβ =
1

n
Xh, ỹ =

1

n

n∑
i=1

~yiβ =
1

n
Yh (2)

H = I− 1

n
hh>, X̃ = X− x̃h> = XH, Ỹ = Y − ỹh> = YH (3)

We first remind that the Frobenius norm of a real matrix is defined by

‖A‖F
def
=
√

tr (A>A) (4)

and one of its properties is:

‖A + B‖2F = ‖A‖2F + ‖B‖2F + 2 · tr
(
A>B

)
(5)

Also suppose A ∈ Rn×m and B ∈ Rm×n. Then

tr (AB) = tr (BA) (6)

We now get back to solving (1). We rewrite the criterion function f(R, ~o ′β) in (1) as follows:

f(R, ~o ′β) =
n∑
i=1

∥∥~yiβ −R~xiβ − ~o ′β
∥∥2
2

(1)
=

n∑
i=1

(yi −Rxi − t)> (yi −Rxi − t)

(2)
= tr

((
Y −RX− th>

)> (
Y −RX− th>

))
(3)
=
∥∥Y −RX− th>

∥∥2
F

(4)
=
∥∥∥Ỹ + ỹh> −RX̃−Rx̃h> − th>

∥∥∥2
F

=

∥∥∥∥∥∥∥Ỹ −RX̃ +
(
ỹ −Rx̃− t

)
︸ ︷︷ ︸

t ′

h>

∥∥∥∥∥∥∥
2

F

=
∥∥∥Ỹ −RX̃ + t ′h>

∥∥∥2
F

(5)
=
∥∥∥Ỹ −RX̃

∥∥∥2
F

+
∥∥t ′h>∥∥2

F
+ 2 · tr

((
Ỹ −RX̃

)>
t ′h>

)
(6)
=
∥∥∥Ỹ −RX̃

∥∥∥2
F

+
∥∥t ′h>∥∥2

F
+ 2 · tr

(
h>
(
Ỹ −RX̃

)>
t ′
)

(7)
=
∥∥∥Ỹ −RX̃

∥∥∥2
F

+
∥∥t ′h>∥∥2

F
+ 2 · tr

(
h>H> (Y −RX)> t ′

)
(8)
=
∥∥∥Ỹ −RX̃

∥∥∥2
F

+
∥∥t ′h>∥∥2

F

where

4



(i)
(1)
= holds by the definition of Euclidean norm ‖·‖2

(ii)
(2)
= holds since

∑n
i=1 a

>
i ai = tr

(
A>A

)
, where ai is the i-th column of A

(iii)
(3)
= holds according to (4)

(iv)
(4)
= holds according to (3)

(v)
(5)
= holds according to (5)

(vi)
(6)
= holds according to (6)

(vii)
(7)
= holds according to (3)

(viii)
(8)
= holds since h>H> = h>

(
I− 1

n
hh>

)>
= h>

(
I− 1

n
hh>

)
= h> − 1

n
· nh> = 0> and

tr
(
0>a

)
= 0 for every a ∈ Rn.

Now, optimization problem (1) can be reformulated as

R∗, t ′∗ = arg min
R∈SO(3,R)

t ′∈R3

∥∥∥Ỹ −RX̃
∥∥∥2
F

+
∥∥t ′h>∥∥2

F

t∗ = ỹ −R∗x̃− t ′∗

since there are no constraints on t ′. Since

min
R∈SO(3,R)

t ′∈R3

∥∥∥Ỹ −RX̃
∥∥∥2
F

+
∥∥t ′h>∥∥2

F
= min

R∈SO(3,R)

∥∥∥Ỹ −RX̃
∥∥∥2
F

+ min
t ′∈R3

∥∥t ′h>∥∥2
F

then

R∗ = arg min
R∈SO(3,R)

∥∥∥Ỹ −RX̃
∥∥∥2
F

(7)

t ′∗ = arg min
t ′∈R3

∥∥t ′h>∥∥2
F

Obviously,
∥∥t ′h>∥∥2

F
≥ 0 attains its minimum for

t ′∗ = 0 ⇐⇒ t∗ = ỹ −R∗x̃

It remains to determine R∗. Problem (7) is a modified well-known orthogonal Procrustes
problem (we are just optimizing over specific orthogonal matrices, namely, rotations). We can
deduce that ∥∥∥Ỹ −RX̃

∥∥∥2
F

(1)
=
∥∥∥Ỹ∥∥∥2

F
+
∥∥∥RX̃

∥∥∥2
F
− 2 · tr

(
Ỹ>RX̃

)
(2)
=
∥∥∥Ỹ∥∥∥2

F
+
∥∥∥X̃∥∥∥2

F
− 2 · tr

(
Ỹ>RX̃

)
(3)
=
∥∥∥Ỹ∥∥∥2

F
+
∥∥∥X̃∥∥∥2

F
− 2 · tr

(
X̃>R>Ỹ

)
(4)
=
∥∥∥Ỹ∥∥∥2

F
+
∥∥∥X̃∥∥∥2

F
− 2 · tr

(
R>ỸX̃>

)
where
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(i)
(1)
= holds according to (5)

(ii)
(2)
= holds since∥∥∥RX̃

∥∥∥2
F

= tr

((
RX̃

)>
RX̃

)
= tr

(
X̃>R>R︸ ︷︷ ︸

I

X̃

)
= tr

(
X̃>X̃

)
=
∥∥∥X̃∥∥∥2

F

(iii)
(3)
= holds since tr (A) = tr

(
A>
)

(iv)
(4)
= holds according to (6)

Now, the optimization problem (7) is equivalent to

R∗ = arg max
R∈SO(3,R)

tr
(
R>ỸX̃>

)
(8)

since
∥∥∥X̃∥∥∥

F
and

∥∥∥Ỹ∥∥∥
F

don’t depend on R.

Remark. The optimization problem in (8) is known in the literature as the problem of finding
the closest rotation to a given matrix in the sense of Frobenius norm since (8) can we rewritten
as

R∗ = arg max
R∈SO(3,R)

tr
(
R>ỸX̃>

)
= arg min

R∈SO(3,R)
− 2 · tr

(
R>ỸX̃>

)
= arg min

R∈SO(3,R)
tr (I) +

∥∥∥ỸX̃>
∥∥∥2
F
− 2 · tr

(
R>ỸX̃>

)
= arg min

R∈SO(3,R)
‖R‖2F +

∥∥∥ỸX̃>
∥∥∥2
F
− 2 · tr

(
R>ỸX̃>

)
= arg min

R∈SO(3,R)

∥∥∥R− ỸX̃>
∥∥∥2
F

Let UDV> be the singular value decomposition of ỸX̃>, where D is diagonal with entries
d1 ≥ d2 ≥ d3 ≥ 0. Then

tr
(
R>ỸX̃>

)
= tr

(
R>UDV>

)
(1)
= tr

(
V>R>UD

)
=

3∑
i=1

qiidi

where
(1)
= follows from (6) and qii are diagonal entries of Q = V>R>U. Since R, U and V are

all orthogonal, then so is Q. There may happen 2 cases:

1. detUV> = 1, i.e. Q is a rotation. Then, obviously, since every entry of a real rotation
matrix is between −1 and 1, then

∑3
i=1 qiidi is maximized when q11 = q22 = q33 = 1 (since

all di are non-negative), i.e. when

Q∗ = I ⇐⇒ V>R∗>U = I ⇐⇒ R∗ = UV>

6



2. detUV> = −1, i.e. Q is a reflection. (Remember that every reflection can be written as

Q = I− 2vv> for v =
[
v1 v2 v3

]>
and v>v = 1). We can see that we are maximizing

3∑
i=1

qiidi = f(v) =
3∑
i=1

(1− 2v2i ) · di

subject to v>v − 1 = 0. We define the Lagrangian function

L(v, λ) = f(v) + λ · (v>v − 1)

Maximizing f(v) subject to v>v = 1 means solving the system of polynomial equations

∂L
∂v

= 0>,
∂L
∂λ

= 0

2v1λ− 4v1d1 = 0, 2v2λ− 4v2d2 = 0, 2v3λ− 4v3d3 = 0, v21 + v22 + v23 = 1

v1(λ− 2d1) = 0, v2(λ− 2d2) = 0, v3(λ− 2d3) = 0, v21 + v22 + v23 = 1

There may happen 4 different cases (since d1 ≥ d2 ≥ d3):

(a) d1 = d2 = d3. Then all the solutions to the above 4 equations are λ = 2d1 and v is
any unit vector. In that case the value of the criterion function for every unit v is

f(v) =
3∑
i=1

(1− 2v2i ) · di = d1 ·
3∑
i=1

(1− 2v2i ) = d1 ·
(

3− 2 · (v21 + v22 + v23)
)

= d1

Thus, it doesn’t matter which v (or, equivalently, Q) to take. We take, e.g. v =[
0 0 1

]
, i.e.

Q∗ =

1
1
−1

 ⇐⇒ R∗ = U

1
1
−1

V>

(b) d1 = d2 > d3. All the solutions are λ = 2d1, v3 = 0, v21 + v22 = 1 or v1 = v2 = 0, v3 =
1, λ = 2d3. In the first case the value of f(v) is

f(v) =
3∑
i=1

(1− 2v2i ) · di = d1 ·
(

2− 2 · (v21 + v22)
)

+ d3 = d3

In the second case the value is

f(v) =
3∑
i=1

(1− 2v2i ) · di = d1 + d2 − d3

Since in the second case the value d1 + d2 − d3 is greater than the value d3 from the
first case, then the solution is v =

[
0 0 1

]
, i.e.

Q∗ =

1
1
−1

 ⇐⇒ R∗ = U

1
1
−1

V>

7



(c) d1 > d2 = d3. All the solutions are λ = 2d1, v2 = v3 = 0, v1 = 1 or λ = 2d2, v1 =
0, v22 + v23 = 1. In the first case the value of f(v) is

f(v) =
3∑
i=1

(1− 2v2i ) · di = −d1 + d2 + d3

In the second case the value is

f(v) =
3∑
i=1

(1− 2v2i ) · di = d1

Since in the second case the value d1 is greater that the value −d1 + d2 + d3 from
the first case, then v1 = 0 and we take, e.g. v2 = 0, v3 = 1, i.e.

Q∗ =

1
1
−1

 ⇐⇒ R∗ = U

1
1
−1

V>

(d) d1 > d2 > d3. All the solutions to the 4 polynomial equations are λ = 2d1, v2 = v3 =
0, v1 = 1, or = 2d2, v1 = v3 = 0, v2 = 1, or λ = 2d3, v1 = v2 = 0, v3 = 1. In all the 3
cases the values of f(vi) are

f(v1) = −d1 + d2 + d3

f(v2) = d1 − d2 + d3

f(v3) = d1 + d2 − d3
Obviously the value in the last case is the largest one, thus the solution is v3 =[
0 0 1

]
, i.e.

Q∗ =

1
1
−1

 ⇐⇒ R∗ = U

1
1
−1

V>

We can see that in all the cases (a)− (d) we obtain the same answer

R∗ = U

1
1
−1

V>

Answers from both cases 1. and 2. can be written as

R∗ = U

1
1

detUV>

V>
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