Prefix Sums Algorithm on a Hypercube
Architecture

Introduction

The prefix sum algorithm enables each processor to compute the cumulative
sum of elements up to its rank:

prefix, = xo + 21+ -+ ;

where © = [zo, 21, ..., Zn_1]

For this example, we consider n = 8, working in a 3-dimensional hypercube
architecture. Each processor has a unique 3-bit id (rank) and is connected to
processors differing by exactly one bit. This connection pattern provides each
processor with d = log, 8 = 3 neighbors. Each processor p, with p = 0,...,7,
initially holds a value x,, from the input array x.

Algorithm Steps

The algorithm proceeds in logy n steps, where at each step, processors exchange
messages representing partial sums with specific neighboring processors. Each
processor also updates its local sum, but only if it receives a message from a
processor with a lower rank.

1. Initialization: Each processor p stores its respective element x, and
initializes its current sum as sum, = z,.

Initial locally stored messages:

Processor 0 : xp Processor 1 : x
Processor 2 : x5 Processor 3 : x3
Processor 4 : x4 Processor 5 : x5
Processor 6 : ¢ Processor 7 : x7

Initial cumulative sums:

sumgp = g Sum; =1
Sulng = o Sulmlg = T3
sumy = r4 Sulms =I5
Sumg = Tg Sumy; = Ty



2. Step 1 (Neighbor distance of 1): Each processor p sends its cur-
rent message to the processor differing by 1 in the least significant bit
(exchanges between processors 0-1, 2-3, 4-5, 6-7). Upon receiving the
message, each processor updates its stored message to prepare for the
next step. Processors with a lower-ranked neighbor also add the received
message to their local sum.

Locally stored messages after Step 1:

Processor 0 : g + 1 Processor 1: zg + a1
Processor 2 : x5 + 3 Processor 3 : x5 + 23
Processor 4 : x4 + x5 Processor 5 : x4 + x5
Processor 6 : xg + x7 Processor 7 : x¢ + 27

Cumulative sums after Step 1:

sumgp = Io
sum; = xg + T
Sumg = T2
sums = T + I3
sumy = T4
sums = T4 + T5
Sumeg = Tg

sumy = Tg + 7

3. Step 2 (Neighbor distance of 2): Each processor p sends its message
to the processor differing by 1 in the second least significant bit (exchanges
between processors 0-2, 1-3, 4-6, 5-7). After receiving the message, each
processor updates its stored message to prepare for the next step. Proces-
sors with lower-ranked neighbors also add the received message to their
local sum.

Locally stored messages after Step 2:

Processor 0 : xg + x1 + 22 + 23 Processor 1: xg + x1 + 22 + 23
Processor 2 : zg + 21 + 29 + 23 Processor 3 : zg + 21 + 29 + 23
Processor 4 : x4 + x5 + 6 + 7 Processor 5 : x4 + x5 + 6 + 7
Processor 6 : x4 + x5 + 6 + X7 Processor 7: x4 + x5 + ¢ + 27



Cumulative sums after Step 2:

sumgp = g

sum; = xg + T

sumsg = xg + 1 + T2

sums = xg + X1 + T2 + I3

Sumy = T4

sums = T4 + T

Sulng = T4 + 5 + Tg

sumy = x4 + 5 + T + Ty

Locally stored messages after Step 3:

7
Processor 0 : in
i=0
7
Processor 2 : Zzi
i=0

7
Processor 4 : in
i=0
7
Processor 6 : Zzi
i=0

sumgp = Io
sum; = xg + T

Sumeo = g + 1 + T2

4. Step 3 (Neighbor distance of 4): Each processor p sends its message to
the processor differing by 1 in the most significant bit (exchanges between
processors 0-4, 1-5, 2-6, 3-7). Upon receiving the message, each processor
updates its stored message to prepare for the next step. Processors with
a lower-ranked neighbor also add the received message to their local sum.

7

Processor 1 : sz
i=0
7

Processor 3 : Z T;
i=0

7
Processor 5 : sz
i=0
7
Processor 7 : Z T;
i=0

Cumulative sums after Step 8 — Prefiz sums:

sumsg = xg + X1 + T2 + T3

sumy = g+ X1 + T + T3 + T4

Sums = xg + 21 + 22 + 23+ T4+ T

Sumg = g+ X1 + Lo +x3 + x4 + T5 + x4

sumy = xg +x1 + 22 +x3 + x4 + x5 + 26 + 27



