
Prefix Sums Algorithm on a Hypercube

Architecture

Introduction

The prefix sum algorithm enables each processor to compute the cumulative
sum of elements up to its rank:

prefixi = x0 + x1 + · · ·+ xi

where x = [x0, x1, . . . , xn−1].
For this example, we consider n = 8, working in a 3-dimensional hypercube

architecture. Each processor has a unique 3-bit id (rank) and is connected to
processors differing by exactly one bit. This connection pattern provides each
processor with d = log2 8 = 3 neighbors. Each processor p, with p = 0, . . . , 7,
initially holds a value xp from the input array x.

Algorithm Steps

The algorithm proceeds in log2 n steps, where at each step, processors exchange
messages representing partial sums with specific neighboring processors. Each
processor also updates its local sum, but only if it receives a message from a
processor with a lower rank.

1. Initialization: Each processor p stores its respective element xp and
initializes its current sum as sump = xp.

Initial locally stored messages:

Processor 0 : x0 Processor 1 : x1

Processor 2 : x2 Processor 3 : x3

Processor 4 : x4 Processor 5 : x5

Processor 6 : x6 Processor 7 : x7

Initial cumulative sums:

sum0 = x0 sum1 = x1

sum2 = x2 sum3 = x3

sum4 = x4 sum5 = x5

sum6 = x6 sum7 = x7

1



2. Step 1 (Neighbor distance of 1): Each processor p sends its cur-
rent message to the processor differing by 1 in the least significant bit
(exchanges between processors 0-1, 2-3, 4-5, 6-7). Upon receiving the
message, each processor updates its stored message to prepare for the
next step. Processors with a lower-ranked neighbor also add the received
message to their local sum.

Locally stored messages after Step 1 :

Processor 0 : x0 + x1 Processor 1 : x0 + x1

Processor 2 : x2 + x3 Processor 3 : x2 + x3

Processor 4 : x4 + x5 Processor 5 : x4 + x5

Processor 6 : x6 + x7 Processor 7 : x6 + x7

Cumulative sums after Step 1 :

sum0 = x0

sum1 = x0 + x1

sum2 = x2

sum3 = x2 + x3

sum4 = x4

sum5 = x4 + x5

sum6 = x6

sum7 = x6 + x7

3. Step 2 (Neighbor distance of 2): Each processor p sends its message
to the processor differing by 1 in the second least significant bit (exchanges
between processors 0-2, 1-3, 4-6, 5-7). After receiving the message, each
processor updates its stored message to prepare for the next step. Proces-
sors with lower-ranked neighbors also add the received message to their
local sum.

Locally stored messages after Step 2 :

Processor 0 : x0 + x1 + x2 + x3 Processor 1 : x0 + x1 + x2 + x3

Processor 2 : x0 + x1 + x2 + x3 Processor 3 : x0 + x1 + x2 + x3

Processor 4 : x4 + x5 + x6 + x7 Processor 5 : x4 + x5 + x6 + x7

Processor 6 : x4 + x5 + x6 + x7 Processor 7 : x4 + x5 + x6 + x7

2



Cumulative sums after Step 2 :

sum0 = x0

sum1 = x0 + x1

sum2 = x0 + x1 + x2

sum3 = x0 + x1 + x2 + x3

sum4 = x4

sum5 = x4 + x5

sum6 = x4 + x5 + x6

sum7 = x4 + x5 + x6 + x7

4. Step 3 (Neighbor distance of 4): Each processor p sends its message to
the processor differing by 1 in the most significant bit (exchanges between
processors 0-4, 1-5, 2-6, 3-7). Upon receiving the message, each processor
updates its stored message to prepare for the next step. Processors with
a lower-ranked neighbor also add the received message to their local sum.

Locally stored messages after Step 3 :

Processor 0 :

7∑
i=0

xi Processor 1 :

7∑
i=0

xi

Processor 2 :

7∑
i=0

xi Processor 3 :

7∑
i=0

xi

Processor 4 :

7∑
i=0

xi Processor 5 :

7∑
i=0

xi

Processor 6 :

7∑
i=0

xi Processor 7 :

7∑
i=0

xi

Cumulative sums after Step 3 — Prefix sums:

sum0 = x0

sum1 = x0 + x1

sum2 = x0 + x1 + x2

sum3 = x0 + x1 + x2 + x3

sum4 = x0 + x1 + x2 + x3 + x4

sum5 = x0 + x1 + x2 + x3 + x4 + x5

sum6 = x0 + x1 + x2 + x3 + x4 + x5 + x6

sum7 = x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7

3


