
Parallel programming

Python Numba - 2



2 / 18 2 / 18 

Automatic Parallelization in Numba

● Performance Boost:
– Harness the full potential of your CPU cores
– Speed up computationally intensive tasks

● Simplicity and Readability:
– No need for complex parallel programming 

constructs
– Write code in Python as usual and let @njit handle 

the parallel magic



3 / 18 3 / 18 

How it works

● @jit's parallel option automates parallelization and 
optimizations

● Identification of operations with parallel semantics
● Fusion of adjacent operations to form parallel kernels
● Fully automated process without user program 

modifications



4 / 18 4 / 18 

Automatic Parallelization

● Setting the parallel option @jit(parallel = True) allows 
to automatically parallelize a function or its part and 
perform other optimizations

● Numba attempts to identify such operations in a user 
program, and fuse adjacent ones together, to form one 
or more kernels that are automatically run in parallel



5 / 18 5 / 18 

Supported operations

● All the operations which include common arithmetic 
functions between arrays and scalars:
– Unary operations (+, -, ~) 
– Binary operations (+, -, *, /, %, >>, <<, ….)
– Comparison operators (==, !=, <, >, <=, >=)

● Additionally Numba provides support for Numba ufunc 
(only in nopython mode) and user-defined DUFunc 
through vectorize()



6 / 18 6 / 18 

Supported numpy functions

● numpy reduction functions (sum, prod, min, 
max, argmin, argmax)

● numpy math functions (mean, var, std)
● numpy array creation functions (zeros, ones, 

array, linspace)
● numpy dot() function
● Reduce operator for 1D numpy arrays



7 / 18 7 / 18 

Explicit Parallel Loops

● Another feature of the code is the support for explicit 
parallel loops (again, add “parallel=True” into @jit) 

● One can use numba’s prange() instead of range() to 
specify that a loop can be parallelized

● Warning: the loop must not have cross iteration 
dependencies except for supported reductions



8 / 18 8 / 18 

Example 1: Automatic Parallelization

● See the example of automatic parallelization 
in the provided .ipynb notebook with example 
codes



9 / 18 9 / 18 

Beware race condition!

● Care should be taken, however, when reducing 
into slices or elements of an array 

● If the specified elements are written to 
simultaneously by multiple parallel threads, a 
race condition would occur



10 / 18 10 / 18 

Example 2: Race Condition

● See the example of race condition in the 
provided .ipynb notebook with example codes



11 / 18 11 / 18 

Scheduling of parallel task

● By default, Numba divides the iterations of a 
parallel region into chunks

● Approximately equally sized chunk is given to 
each configured thread

● This scheduling approach is equivalent to static 
scheduling in OpenMP



12 / 18 12 / 18 

Scheduling of parallel task

● Conversely, if the work per iteration varies 
significantly, static scheduling approach leads to 
load imbalances

● Numba provides a mechanism to control how 
many iterations of a parallel region (i.e., the 
chunk size) go into each chunk



13 / 18 13 / 18 

Example 3: setting the chunk size

● See the example of setting the chunk size in 
the provided .ipynb notebook with example 
codes



14 / 18 14 / 18 

Parallel diagnostics report

● The parallel option in @njit provides diagnostic 
information

● Two ways to access diagnostics: 
– Environment Variable:

● Set NUMBA_PARALLEL_DIAGNOSTICS to enable 
diagnostics

● Convenient for controlling diagnostics globally

– Function Call:
● Use parallel_diagnostics() to access the same 

information
● Enables fine-grained control and flexibility



15 / 18 15 / 18 

Parallel diagnostics report

● Level of Verbosity:
– Set an integer argument (1 to 4) to control verbosity 
– 1: Least verbose, 4: Most verbose

● Leverage @njit diagnostics: empower your 
parallelized code with insights!



16 / 18 16 / 18 

Example 4: diagnostic report

● See the example of calling the diagnostic in 
the provided .ipynb notebook with example 
codes



17 / 18 17 / 18 

Coding exercise: π Calculation

● Implement the Monte-Carlo calculation of π 
using Numba automated parallelization:
– access the provided skeletons
– accelerate the process by automating the 

parallelization
– accelerate the process by setting an explicit chunk 

size
– call the diagnostic report



18 / 18 18 / 18 

References

● Fundamental tutorial on numba:
https://numba.readthedocs.io/en/stable/cuda/index.html

● Selected pages:
https://numba.readthedocs.io/en/stable/user/parallel.html

https://numba.readthedocs.io/en/stable/user/performance-t
ips.html

https://numba.readthedocs.io/en/stable/cuda/index.html
https://numba.readthedocs.io/en/stable/user/parallel.html
https://numba.readthedocs.io/en/stable/user/performance-tips.htmlttps:/numba.readthedocs.io/en/stable/cuda/memory.html
https://numba.readthedocs.io/en/stable/user/performance-tips.htmlttps:/numba.readthedocs.io/en/stable/cuda/memory.html

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18

