Parallel programming
Python Numba - 2

ny
"
gy, *
Thny
by [0l
" 4 s
|am e S SRy, LT
e

Wy,
Ly

Wy
; ey R T
"Mhngyy, *

FAKULTA
ELEKTROTE

Automatic Parallelization in Numba

* Performance Boost.
- Harness the full potential of your CPU cores
- Speed up computationally intensive tasks
 Simplicity and Readability:.

- No need for complex parallel programming
constructs

- Write code in Python as usual and let @njit handle
the parallel magic

How It works

@jit's parallel option automates parallelization and
optimizations

Identification of operations with parallel semantics
Fusion of adjacent operations to form parallel kernels

Fully automated process without user program
modifications

Automatic Parallelization

e Setting the parallel option @jit(parallel = True) allows
to automatically parallelize a function or its part and
perform other optimizations

 Numba attempts to identify such operations in a user
program, and fuse adjacent ones together, to form one
or more kernels that are automatically run in parallel

{‘\
s
e

Supported operations

* All the operations which include common arithmetic
functions between arrays and scalars:

- Unary operations (+, -, ~
- Binary operations (+, -, *, /, %, >>, <<,)
— Comparison operators (==, I=, <, >, <=, >=)

* Additionally Numba provides support for Numba ufunc
(only In nopython mode) and user-defined DUFunc
through vectorize()

Supported numpy functions

numpy reduction functions (sum, prod, min,
max, argmin, argmax)

numpy math functions (mean, var, std)

numpy array creation functions (zeros, ones,
array, linspace)

numpy dot() function
Reduce operator for 1D numpy arrays

Explicit Parallel Loops

* Another feature of the code iIs the support for explicit
parallel loops (again, add “parallel=True” into @jit)

 One can use numba’s prange() instead of range() to
specify that a loop can be parallelized

* Warning: the loop must not have cross iteration
dependencies except for supported reductions

Q)

Example 1: Automatic Parallelization

* See the example of automatic parallelization
In the provided .ipynb notebook with example
codes

Beware race condition!

* Care should be taken, however, when reducing
iInto slices or elements of an array

* If the specified elements are written to
simultaneously by multiple parallel threads, a
race condition would occur

Race condition

read
change
read
change
write

write |

Example 2: Race Condition

e See the example of race condition in the
provided .ipynb notebook with example codes

Scheduling of parallel task

* By default, Numba divides the iterations of a
parallel region into chunks

* Approximately equally sized chunk is given to
each configured thread

* This scheduling approach is equivalent to static

scheduling in OpenMP

Scheduling of parallel task

* Conversely, If the work per Iteration varies
significantly, static scheduling approach leads to
load imbalances

 Numba provides a mechanism to control how
many Iiterations of a parallel region (i.e., the

chunk size) go into each chunk

Example 3: setting the chunk size

* See the example of setting the chunk size In
the provided .ipynb notebook with example
codes

Parallel diagnostics report

* The parallel option in @njit provides diagnostic
iInformation

* Two ways to access diagnostics:

- Environment Variable:

« Set NUMBA PARALLEL DIAGNOSTICS to enable
diagnostics

* Convenient for controlling diagnostics globally

- Function Call:

* Use parallel_diagnostics() to access the same
Information

* Enables fine-grained control and flexibility

Parallel diagnostics report

* Level of Verbosity:
— Set an integer argument (1 to 4) to control verbosity
- 1: Least verbose, 4: Most verbose

* Leverage @njit diagnostics: empower your
parallelized code with insights!

Example 4: diagnostic report

* See the example of calling the diagnostic In
the provided .ipynb notebook with example
codes

Coding exercise: 1t Calculation

* Implement the Monte-Carlo calculation of 1t
using Numba automated parallelization:

— access the provided skeletons

— accelerate the process by automating the
parallelization

— accelerate the process by setting an explicit chunk
size

- call the diagnostic report

no. of points generated inside the circle
no. of points generated inside the square

References

* Fundamental tutorial on numba:

https://numba.readthedocs.io/en/stable/cuda/index.html

* Selected pages:

https://numba.readthedocs.io/en/stable/user/parallel.html

httprs]://rllumba.readthedocs.io/en/stabIe/user/performance-t
IpS.htm

18 /18

https://numba.readthedocs.io/en/stable/cuda/index.html
https://numba.readthedocs.io/en/stable/user/parallel.html
https://numba.readthedocs.io/en/stable/user/performance-tips.htmlttps:/numba.readthedocs.io/en/stable/cuda/memory.html
https://numba.readthedocs.io/en/stable/user/performance-tips.htmlttps:/numba.readthedocs.io/en/stable/cuda/memory.html

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18

