RDF stores
and
data persistence

Petr Kiemen

Ontologies and Semantic Web
Winter 2025

Outline

e RDF stores (overview)

e Storing/Indexing approaches
e Inferencing

e Access Control

e Programmatic Access to Ontologies

RDF Store Overview

feRs)... RDF stores
RDF4J
GraphDB
Virtuoso
Fuseki
Stardog

AllegroGraph
Amazon Neptune
BlazeGraph
Fluree

CvuT

RDF stores

UCENI TECHNICKE
V PRAZE

AllegroGraph SPARQL, custom API - query-time (rule-based) RDFS++ reasoner

Amazon Neptune SPARQL, Gremlin, GraphQL - no symbolic inference support (can be achieved by integrating with RDFox, e.g.)
AnzoGraph DB SPARQL, OpenCypher, REST - materialized RDFS+ and OWL2-RL reasoner

Euseki SPARQL - materialized reasoning through custom rules

GraphDB SPARAQL, (SQL), (REST) - materialized custom rulesets

RDE4J ServerMorkbench SPARQL - materialized custom rulesets

RDFox SPARQL, REST - materialized datalog reasoning

Stardog SPARQL, SQL, GraphQL - query-time reasoning using predefined and custom rules

- V7 open-source: materializing just rdfs:subClassOf and rdfs:subPropertyOf transitivity
Virtuoso SPARQL,SQL - v8 commercial: custom rules

https://allegrograph.com/
https://aws.amazon.com/neptune/
https://cambridgesemantics.com/anzograph/
https://jena.apache.org/documentation/fuseki2/
https://graphdb.ontotext.com/
https://rdf4j.org/documentation/tools/server-workbench/
https://docs.oxfordsemantic.tech/
https://www.stardog.com/
https://vos.openlinksw.com/owiki/wiki/VOS

Storing / Indexing Approaches

CvuT

! RDF store

CESKE VYSOKE
UCENI TECHNICKE

V PRAZE

SPARQL API
often REST API
indexing crucial, e.g.
o SPOC
o POSC
more indexes
o faster queries,
o slower updates,
o bigger disk footprint

Triple store

subject predicate object
:John ‘loves ‘Peggy
‘Peggy rdf:type :Person
Quad store

subject predicate object context
:John ‘loves ‘Peggy ‘people
:Peggy rdf:type :Person ‘people

CvuT

R '
L P Triple Table

UCENI TECHNICKE
V PRAZE

subject predicate object e + simple implementation
e - eliminates self-joins
:John ‘loves :Peggy
‘Peggy rdf:type :Person
:Mary ‘loves :George

:John rdf:type ‘Man

CvuT

\ UCENI TECHNICKE
V PRAZE

subject

:John

:Peggy

‘Mary

Property Table

:loves

:Peggy

:George

rdf:type

:Man

:Person

+ eliminates self-joins

- null values

- single-valued properties

CvuT

UCENI TECHNICKE
V PRAZE

/‘f{q%g» s Vertical partioning table

subject = object subject object e + eliminates self-joins
e -null values

-John ‘Peggy ‘Peggy -Person e - single-valued properties

‘Mary :George :John :Man

:loves rdf:type

CvuT

Mapping dictionary

id

node

loves

rdf:type

:John

\ vomnze et
subject predicate object
3 1
4 2
6 1
3 2

:Peggy

+ removes
redundance
- saving space

RDF4J-based triple store
(triple table)

e Memory Store (speed) application Il

o transactional RDF database using
main memory with optional
persistent sync to disk. SailRepository HTTPRepository

e Native Store (scalability, consistency)
o transactional RDF database using
direct disk 10 for persistence.

O B'TreeS taken from https://graphdb.ontotext.com/documentation/free/architecture-components.html
e Elasticsearch Store (fast for read-only

scenarios)
o RDF database that uses
Elasticsearch for storage.
o Elastic indexing

Inferencing

e Full materialization
o upon save data
inference rules are run
and new triples inferred
which are then stored
together with original
triples
e non-complete for OWL
entailment regimes

RDF4j Inferencing

subject predicate object context
:John ‘loves :Peggy ‘people
:loves rdf:type owl:Symmetric | :people
Property
Id: prp_symp

a <rdf:type> <owl:SymmetricProperty>
bac

¢ a b [Constraint a |= <blank:node>]

subject predicate object context

‘loves :John explicit

:Peggy

Jena + Fuseki

application code

HTTP

[J RDF API fOI‘ prOCESSing RDF application code

data in various notations
e Ontology API for OWL and RDFS $5;;XM oy |ontoloay API | saRaL AP
e Rule-based inference engine e [
and Inference API —
e TDB - a native triple store B EInE=
e SPARQL query processor (ARQ). Store AP
e Fuseki— a SPARQL end-point
accessible over HTTP g
= =
public example:

https://ec.europa.eu/esco/sparql/

https://ec.europa.eu/esco/sparql/

e Runtime Query Execution
o upon query execution
new data are inferred
e slower for queries
e faster for updates

StarDog inferencing

subject predicate object context
:John ‘loves :Peggy ‘people
‘loves <rdf:type> <owl:SymmetricProperty>

subject predicate object context
‘Peggy ‘loves :John implicit

Access Control

Access Control

e generally difficult, most systems offer RBAC only
e full data security is not solved, but approximations exist:
o Fluree - distributed cloud triplestore -
https://qithub.com/fluree/db
o StarDog - property-based security -
https://docs.stardog.com/operating-stardog/security/fi
ne-grained-security

https://github.com/fluree/db
https://docs.stardog.com/operating-stardog/security/fine-grained-security
https://docs.stardog.com/operating-stardog/security/fine-grained-security

CvuT

e StarDog - property-based security

UCENI TECHNICKE
V PRAZE

e Defining sensitive predicates P
o users with R permissionto P
o users without R permission to P
e Dor users without R permission to P, each SPARQL query is first prepended with the following one:

INSERT { ?subject ?property ?masked }

DELETE { ?subject ?property ?object }

WHERE {
?subject ?property ?object
FILTER (?property in { P }) # i.e., P is sensitive
BIND (mask (?object) AS ?masked)

e This masks the value. As a side-effect it also disconnects the graph on ?object not allowing to follow the obfuscated
link.

Application access to
ontologies

(Java/Kotlin)

Low-level vs. High-level APIs

e Low-level APIs
o OWLAPI
o JENA
o RDF4J-API

work with individual statements }

O

e High-level APIs §

o JOPA
o JAOB

O

work with objects J

OWLAPI

e Reference implementation of OWL 2
o complete

o pluggable architecture for reasoners

OWLOntologyManager m = create();

OWLOntology o = m.loadOntologyFromOntologyDocument (pizza iri);
for (OWLClass cls : o.getClassesInSignature()) {

System.out.println(cls);

e Long-history implementation of RDF

o complete
o extended towards OWL (but incomplete support)
o wide use

static String personURI = "http://somewhere/JohnSmith";

static String fullName = "John Smith";

Model model = ModelFactory.createDefaultModel () ;
Resource johnSmith = model.createResource (personURI) ;

JohnSmith.addProperty (VCARD.FN, fullName) ;

veard FIN

John Smith

CvuT

w Java OWL persistence API (JOPA)

UCENI TECHNICKE
V PRAZE

Annotation-based object-ontological
mapping
Inheritance, inferred knowledge access
Query APl with automatic mapping to
entities

o JPQL-like query language also available
Access to unmapped types and
properties
Transactions, second-level cache
Integrity constraints

o Mapping definition, validation of participation
constraints at runtime

Object model generator (OWL2Java)

aNamespace(prefix = "foaf”, namespace = "http://xmlns.com/foaf/0.1/")

a0WLClass(iri = "foaf:person”)
public class Person implements Serializable {

dld(generated = true)
private URI uri;

dParticipationConstraints(nonEmpty = true)
@OwWLDataProperty(iri = "foaf:firstName")
private String firstName;

dParticipationConstraints(nonEmpty = true)
a0WLDataProperty(iri = "foaf:lastName")
private String lasthame;

d0WLObjectProperty(iri = "foaf:knows")
private Set<Person> acquaintances;

aInferred
aTypes
private Set<String> types;

aProperties

private Map<String, Set<String>> properties;

https://github.com/kbss-cvut/jopa

