
RDF stores
and

data persistence
Petr Křemen

Ontologies and Semantic Web
Winter 2025

Outline

● RDF stores (overview)

● Storing/Indexing approaches

● Inferencing

● Access Control

● Programmatic Access to Ontologies

RDF Store Overview

RDF stores

● RDF4J
● GraphDB
● Virtuoso
● Fuseki
● Stardog
● AllegroGraph
● Amazon Neptune
● BlazeGraph
● Fluree

RDF stores

RDF Store Communication protocols Inferencing

AllegroGraph SPARQL, custom API - query-time (rule-based) RDFS++ reasoner

Amazon Neptune SPARQL, Gremlin, GraphQL - no symbolic inference support (can be achieved by integrating with RDFox, e.g.)

AnzoGraph DB SPARQL, OpenCypher, REST - materialized RDFS+ and OWL2-RL reasoner

Fuseki SPARQL - materialized reasoning through custom rules

GraphDB SPARQL, (SQL), (REST) - materialized custom rulesets

RDF4J Server/Workbench SPARQL
- materialized custom rulesets

RDFox SPARQL, REST - materialized datalog reasoning

Stardog SPARQL, SQL, GraphQL - query-time reasoning using predefined and custom rules

Virtuoso SPARQL,SQL
- v7 open-source: materializing just rdfs:subClassOf and rdfs:subPropertyOf transitivity
- v8 commercial: custom rules

https://allegrograph.com/
https://aws.amazon.com/neptune/
https://cambridgesemantics.com/anzograph/
https://jena.apache.org/documentation/fuseki2/
https://graphdb.ontotext.com/
https://rdf4j.org/documentation/tools/server-workbench/
https://docs.oxfordsemantic.tech/
https://www.stardog.com/
https://vos.openlinksw.com/owiki/wiki/VOS

Storing / Indexing Approaches

RDF store

● SPARQL API
● often REST API
● indexing crucial, e.g.

○ SPOC
○ POSC

● more indexes
○ faster queries,
○ slower updates,
○ bigger disk footprint

subject predicate object

:John :loves :Peggy

:Peggy rdf:type :Person

… … …

Triple store

subject predicate object context

:John :loves :Peggy :people

:Peggy rdf:type :Person :people

… … … …

Quad store

Triple Table

subject predicate object

:John :loves :Peggy

:Peggy rdf:type :Person

:Mary :loves :George

:John rdf:type :Man

… … …

● + simple implementation
● - eliminates self-joins

Property Table

subject :loves rdf:type

:John :Peggy :Man

:Peggy :Person

:Mary :George

… … …

● + eliminates self-joins
● - null values
● - single-valued properties

Vertical partioning table

● + eliminates self-joins
● - null values
● - single-valued properties

subject object

:John :Peggy

:Mary :George

… …

:loves

subject object

:Peggy :Person

:John :Man

… …

rdf:type

Mapping dictionary

● + removes
redundance

● - saving space

subject predicate object

3 1 4

4 2 5

6 1 7

3 2 8

… … …

id node

:1 :loves

:2 rdf:type

:3 :John

:4 :Peggy

… …

RDF4J-based triple store
(triple table)

● Memory Store (speed)
○ transactional RDF database using

main memory with optional
persistent sync to disk.

● Native Store (scalability, consistency)
○ transactional RDF database using

direct disk IO for persistence.
○ B-Trees

● Elasticsearch Store (fast for read-only
scenarios)
○ RDF database that uses

Elasticsearch for storage.
○ Elastic indexing

taken from https://graphdb.ontotext.com/documentation/free/architecture-components.html

Inferencing

RDF4j Inferencing

● Full materialization
○ upon save data

inference rules are run
and new triples inferred
which are then stored
together with original
triples

● non-complete for OWL
entailment regimes

subject predicate object context

:John :loves :Peggy :people

:loves rdf:type owl:Symmetric
Property

:people

Id: prp_symp

 a <rdf:type> <owl:SymmetricProperty>
 b a c

 c a b [Constraint a != <blank:node>]

subject predicate object context

:Peggy :loves :John explicit

Jena + Fuseki

● RDF API for processing RDF
data in various notations

● Ontology API for OWL and RDFS
● Rule-based inference engine

and Inference API
● TDB – a native triple store
● SPARQL query processor (ARQ).
● Fuseki – a SPARQL end-point

accessible over HTTP

public example:
https://ec.europa.eu/esco/sparql/

https://ec.europa.eu/esco/sparql/

StarDog inferencing

● Runtime Query Execution
○ upon query execution

new data are inferred
● slower for queries
● faster for updates

subject predicate object context

:John :loves :Peggy :people

:loves <rdf:type> <owl:SymmetricProperty>

subject predicate object context

:Peggy :loves :John implicit

Access Control

Access Control

● generally difficult, most systems offer RBAC only
● full data security is not solved, but approximations exist:

○ Fluree - distributed cloud triplestore -
https://github.com/fluree/db

○ StarDog - property-based security -
https://docs.stardog.com/operating-stardog/security/fi
ne-grained-security

https://github.com/fluree/db
https://docs.stardog.com/operating-stardog/security/fine-grained-security
https://docs.stardog.com/operating-stardog/security/fine-grained-security

StarDog - property-based security

● Defining sensitive predicates P
○ users with R permission to P
○ users without R permission to P

● Dor users without R permission to P, each SPARQL query is first prepended with the following one:

INSERT { ?subject ?property ?masked }
DELETE { ?subject ?property ?object }
WHERE {
 ?subject ?property ?object .
 FILTER (?property in { P }) # i.e., P is sensitive
 BIND(mask(?object) AS ?masked)
}

● This masks the value. As a side-effect it also disconnects the graph on ?object not allowing to follow the obfuscated
link.

Application access to
ontologies
(Java/Kotlin)

Low-level vs. High-level APIs

● Low-level APIs
○ OWLAPI
○ JENA
○ RDF4J-API
○

● High-level APIs
○ JOPA
○ JAOB
○ ….

work with individual statements

work with objects

OWLAPI

● Reference implementation of OWL 2
○ complete
○ pluggable architecture for reasoners

OWLOntologyManager m = create();

OWLOntology o = m.loadOntologyFromOntologyDocument(pizza_iri);

for (OWLClass cls : o.getClassesInSignature()) {

System.out.println(cls);

}

JENA

● Long-history implementation of RDF
○ complete
○ extended towards OWL (but incomplete support)
○ wide use

static String personURI = "http://somewhere/JohnSmith";

static String fullName = "John Smith";

Model model = ModelFactory.createDefaultModel();

Resource johnSmith = model.createResource(personURI);

johnSmith.addProperty(VCARD.FN, fullName);

Java OWL persistence API (JOPA)

● Annotation-based object-ontological
mapping

● Inheritance, inferred knowledge access
● Query API with automatic mapping to

entities
○ JPQL-like query language also available

● Access to unmapped types and
properties

● Transactions, second-level cache
● Integrity constraints

○ Mapping definition, validation of participation
constraints at runtime

● Object model generator (OWL2Java)

https://github.com/kbss-cvut/jopa

https://github.com/kbss-cvut/jopa

