Knowledge Organization Systems

Petr Křemen

petr.kremen@cvut.cz

Winter 2025

Outline

- MOS Overview
- SKOS
- Ontology
 - Basics
 - Using ontology in the most correct way
 - Classification of ontologies

- 1 KOS Overview
- 2 skos
- Ontology
 - Basics
 - Using ontology in the most correct way
 - Classification of ontologies

KOS Overview

Why do we need to organize knowledge?

- Indexing
- Retrieval
- Organization and navigation

About KOS

KOS = Knowledge Organization Systems

- a generic term used to cover all types of schemes for organizing information and promoting knowledge management
- according to [hodge2000systems] :
 - Term lists (authority files, glossaries, dictionaries, gazetteers)
 - Classification and categories (subject headings, classification schemes, taxonomies, categorization schemes)
 - Relationship lists (thesauri, semantic networks, ontologies)
- another classification [hedden2010accidental] defines Controlled vocabularies which include all types of KOS except of highly structured semantic networks and ontologies

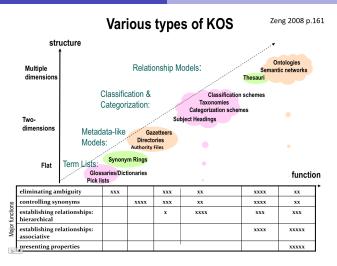


Figure taken from [lei2008knowledge] visualize types of KOS, arranged according to the degree of controls introduced (from natural language to controlled language) and the strength of their semantic structure (from weakly structured to strongly structured), corresponding to the major functions of KOS.

What is Controlled vocabulary?

- Controlled vocabulary in its simplest form is a restricted list of words or terms for some specialized purpose
- it is mostly used for descriptive cataloging, tagging or indexing
- "controlled" is used because
 - only terms from the list may be used for the subject area covered
 - only under certain specific conditions may controlled vocabulary change and grow which is responsibility of controlled vocabulary editor, not user

Authority files

- Authority file is a list of terms that are used to control the variant names for an entity or the domain value for a particular field (names for countries, individuals, and organizations)
- properties
 - might include non/preferred terms
 - generally does not include deep organization or complex structure

Example

 Library of Congress Name Authority File https://id.loc.gov/authorities/names.html

Glossaries

- **Glossary** is a list of terms, usually with definitions
- properties
 - the terms may be from a specific subject field or from a particular work
 - the terms are defined within a specific environment and rarely include variant meanings

examples

Environmental Protection Agency (EPA) Terms of the Environment https://www.epa.gov/report-environment/roe-glossary

Dictionaries

- Dictionary is an alphabetical list of words and their definitions
- properties
 - might include variant senses where applicable
 - more general in scope than glossary
 - might provide synonyms and related words (through the definitions)
 but it is not explicitly structured or grouped by concept

examples

Oxford Learner's Dictionaries

https://www.oxfordlearnersdictionaries.com/us/
definition/english/person?q=person

Gazetteer

- Gazetteer is a list of place names
- properties
 - each entry may also be identified by feature type (e.g. river, city, or school)
 - geospatially referenced gazetteer provides coordinates for locating the place

examples

Antarctic Names (U.S.Board on Geographic Names)

https://www.usgs.gov/core-science-systems/ngp/
board-on-geographic-names/antarctic-names

Subject Heading

- **Subject Heading** is a scheme type providing a list of controlled terms to represent the subjects of items in a collection
- properties
 - the list of terms can be extensive and cover a broad range of subjects
 - the list's structure is generally very shallow
- examples
 - the Medical Subject Headings (MeSH)
 - the Library of Congress Subject Headings (LCSH)

Example of LCSH for performance enhancing drugs (see "Athletes-Drug" and "Doping in sports") taken from http://http://madcat.library.wisc.edu/

Taxonomy

- Taxonomy is collection of terms organized into a hierarchical structure
- properties
 - each term in a taxonomy is in one or more parent-child relationships to other terms in the taxonomy
 - parent-child relationship in a taxonomy can have different parent-child relationships in a taxonomy (e.g., whole-part, genus-species, type-instance)
 - generally each parent-child relationships have a single parent of the same type (otherwise it is called poly-hierarchy)
 - traditional taxonomies use "is a kind of" relationship

Examples

ECCAIRS Adrep taxonomies for safety incidents reporting

https://aviationsafetywiki.org/index.php/ICAO_ADREP (But a meaning shift of the word 'taxonomy' is common:

https://aviationreporting.eu/en/taxonomy-browser

Thesaurus (1)

- **Thesaurus** is a list of controlled terms and relationships among them. The terms are organized in groups of synonyms representing concepts.
- properties
 - relationships include hierarchy (broader/narrower term), equivalence (synonym), and association or relatedness (related term).
 - dictionary-thesaurus includes all the associated terms that can be potentially used in place of term entry in various contexts
 - *information retrieval thesaurus* is used in all contexts within covered domain of interest

Thesaurus (2)

Example

- Getty http://www.getty.edu/research/tools/ vocabularies/tgn/index.html
- DTIC Thesaurus:

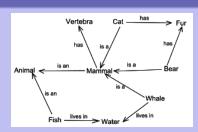
https://vocabularyserver.com/dtic/index.php?tema=23&/absorption

ABSORPTION

The retention and conversion into another form of energy of rays, waves, or particles by a substance.

- UF ABSORPTIVE PROPERTIES
- BT SORPTION
- NT BIOLOGICAL ABSORPTION

RESONANCE ABSORPTION
TWO PHOTON ABSORPTION


X RAY ABSORPTION ANALYSIS

Semantic network

- Semantic network is organization of terms and concepts in a network structure (rather than hierarchy)
- properties
 - concepts are represented as nodes of the network while relationships are edges that connects them
 - richer relationships than in thesaurus, including specific whole-part, cause-efect, or parent-child relationships.

Example

from http://en.wikipedia.org/wiki/Semantic_network

Ontology

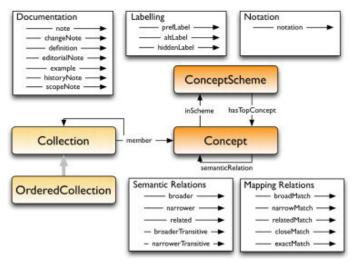
- Ontology is structural framework for organizing knowledge that uses controlled vocabulary expressed in an ontology representation language
- properties
 - the language has a grammar for using vocabulary terms to express something meaningful within a specified domain of interest
 - the grammar specifies formal constraints on how terms in the ontology's controlled vocabulary can be used together
 - concepts and relations are organized into "is kind of" hierarchies
 - compared to semantic network it can have axioms and rules

Examples

- Descriptive Ontology for Linguistic and Cognitive Engineering
- Basic Formal Ontology

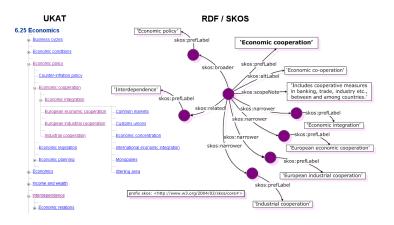
- 1 KOS Overview
- 2 skos
- Ontology
 - Basics
 - Using ontology in the most correct way
 - Classification of ontologies

SKOS


What is SKOS?

SKOS = Simple Knowledge Organization Systems

- W3C recommendation in August 2009
- RDF representation of a knowledge organization system that become official
- to express thesauri, classification systems, subject headings, lists .
- formally defined as an OWL ontology


Partial SKOS Model – Axiomatic Triples

Taken from [BAKER201335].

Example of SKOS representing thesaurus

Portion of UK Archival Thesaurus (UKAT) and its relevant representation in SKOS taken from

http://www.mkbergman.com/374/an-intrepid-guide-to-ontologies/.

SKOS-XL

SKOS Simple Knowledge Organization System eXtension for Labels (SKOS-XL)

https://www.w3.org/TR/skos-reference/skos-xl.html

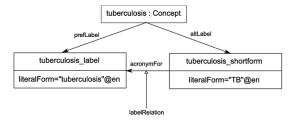


Figure: Taken from McCrae, John, et al. (2012). Interchanging lexical resources on the Semantic Web. Language Resources and Evaluation. 46. 701-719. 10.1007/s10579-012-9182-3.

SKOS-XL - extension for labels

https://www.w3.org/TR/skos-reference/skos-x1.html

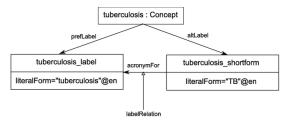


Figure: Taken from McCrae, John, et al. (2012). Interchanging lexical resources on the Semantic Web. Language Resources and Evaluation. 46. 701-719. 10.1007/s10579-012-9182-3.

XKOS - extension for statistical information

https://rdf-vocabulary.ddialliance.org/xkos.html

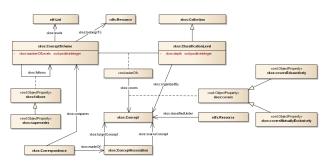
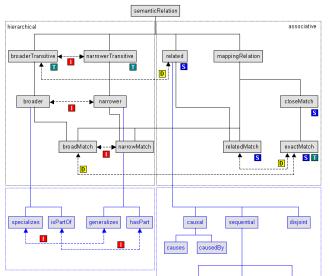



Figure: Classes

XKOS - extension for statistical

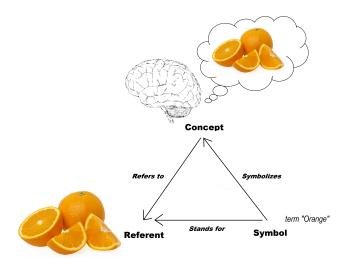
SKOS and XKOS properties relating concepts

EuroVoc

- thesaurus of activities of the EU
- Available at https://op.europa.eu/cs/web/eu-vocabularies

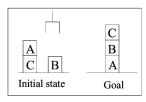
- 1 KOS Overview
- 2 SKOS
- 3 Ontology
 - Basics
 - Using ontology in the most correct way
 - Classification of ontologies

Ontology


Basics

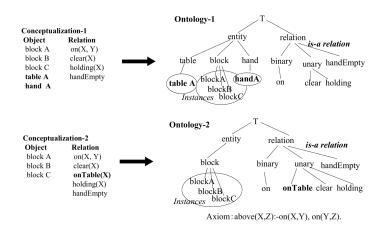
- 1 KOS Overviev
- 2 skos
 - Ontology

 Basics
 - Using ontology in the most correct way
 - Classification of ontologies


What is concept?

The meaning triangle according to Ogden&Richards, 1969

What is conceptualization?



Conceptualization-1		Conceptualization-2	
Object	Relation	Object	Relation
block A	on(X, Y)	block A	on(X, Y)
block B	clear(X)	block B	clear(X)
block C	holding(X)	block C	onTable(X)
table A	handEmpty		holding(X)
hand A			handEmpty

The block world problem and its two different conceptualizations taken from [mizoguchi2003part]. Objects table A and hand A does not exist in Conceptualization-2 as they are substituted by onTable relation.

Ontology based on conceptualization

Ontologies created based on Conceptualization-1 and Conceptualization-2 taken from [mizoguchi2003part].

Definitions

- Conceptualization is set of objects which an observer thinks that
 they exist in target world (world of interest). It provides backbone of
 the conceptual structure of such world.
- Ontology is "explicit specification of conceptualization" [gruberOntology].
 - It contains hierarchically organized structure of concepts and relations between them. Such structure defines meaning of objects appearing in the target world.
 - It is type of KOS where each term from controlled vocabulary is put into some specific place within its complex structure.
 - It is declarative description of fundamental understanding of the target world.

Note

In case when OWL2 is used to represent an ontology – OWL classes represents concepts, OWL individuals represent concrete objects, and combination of OWL classes and OWL properties represent relations of the target world. From now on we will use OWL2 terminology whenever it is possible.

Using ontology in the most correct way

- 1 KOS Overviev
- 2 skos
- 3 Ontology
 - Using ontology in the most correct way
 - Classification of ontologies

But what conceptualizations are the best to use with ontology ?

- There aren't the best conceptualizations! There are only conceptualization that fit the best for the given use of the ontology and its formal language capabilities.
- On the other hand, ontological engineering is currently viewed as a challenge to enabling knowledge sharing and reuse which other fields of Al failed to realize. In this sense we will call ontology more "ontological" or more "ontologically correct" if it suits better for this purpose.
- To create correct ontologies first we need to understand fundamental issues of building ontologies such as distinction between is-a and part-of relations, distinction between classes, instances and is-a relation etc.

- Is-a hierarchy of classes allows us to use terms with different specificity. But can we count or identify objects using hierarchy properly? Consider query that we want to ask an ontology:
- How many blue things are in this room ?

- Is-a hierarchy of classes allows us to use terms with different specificity. But can we count or identify objects using hierarchy properly? Consider query that we want to ask an ontology:
- How many blue things are in this room ?
 - Blue table has many blue things on it.
 - Property "blue" does not allows us to count objects.
 - To answer this query we need proper categorization of things.
 - We need to understand what are object wholes and what are object parts.

- Is-a hierarchy of classes allows us to use terms with different specificity. But can we count or identify objects using hierarchy properly? Consider query that we want to ask an ontology:
- How many blue things are in this room ?
 - Blue table has many blue things on it.
 - Property "blue" does not allows us to count objects.
 - To answer this query we need proper categorization of things.
 - We need to understand what are object wholes and what are object parts.
- How many tables are in this room? How many furniture are in this room?

- Is-a hierarchy of classes allows us to use terms with different specificity. But can we count or identify objects using hierarchy properly? Consider query that we want to ask an ontology:
- How many blue things are in this room ?
 - Blue table has many blue things on it.
 - Property "blue" does not allows us to count objects.
 - To answer this query we need proper categorization of things.
 - We need to understand what are object wholes and what are object parts.
- How many tables are in this room? How many furniture are in this room?
 - Classes can be organized into hierarchies according to different properties.
 - To answer this query we need proper way of class organization.
 - We need to understand how is *identity* of an object propagated through the use of *is-a* links.

Proper representation of is-a hierarchy

- *is-a hierarchy* should not be simple classification of classes, but rather represent inheritance of *essential property* of each class.
- correct is-a hierarchy reveals the intrinsic structure of the target world which help people to understand in-depth the class without its definition.
- ad-hoc classification are usually purpose-dependent thus less shareable. "Correct ontology" should not be knowledge base for problem solving but rather foundation of knowledge base for various purposes.
- is-a hierarchies should be shareable and stable backbone of the knowledge structure.
- with proper is-a hierarchy we can safely propagate properties of super-class to properties of its sub-classes

Proper representation of part-of relations

- part-of relation is used to represent a thing as a whole which is composed of few parts and is usually transitive.
- There are at least 5 types of part-of relations [mizoguchi2004part] :
 - Functional *part-of*, where contribution of the part to the whole is functional (e.g. wheel is *part-of* bike)
 - Qualification part-of, where instances of the relation must have qualification/role in order to become part of whole. (e.g. husband part-of married-couple)
 - Spatial/temporal relation part-of, where instances of the relation must satisfy spatial/temporal constraints to a become part of the whole.
 (e.g. tree part-of forest, mountain part-of mountains)
 - Staff part-of, where the whole is stuff. (e.g. a piece of pie part-of pie)
 - Material part-of, where instances are materials of the whole. (e.g. glass part-of cup)

Note

Although *part-of relation* is essential for building ontologies, OWL2 does not provide vocabulary to represent it. Thus, semantics of *part-of relation* must be defined within the ontology.

Difference between part-of and is-a relationship

- It does not make sense for two classes be in relation part-of and is-a relation at the same time.
- Consider following axioms in in context of plant:
 - normal operation *is-a* operation; restoration operation *is-a* operation
 - onormal operation part-of operation; restoration operation part-of operation
- How can we resolve this issue ?
 (Hint: differentiate between event/process and action)

Difference between instance-of and is-a relationship

- Class represent set of concrete things in target world
- Instance is element of those sets, i.e. they represent undividable elements
- Thus it does not make sense for an ontological entity to be instance and class within ontology at the same time.
- Consider following axioms about cars: my personal car instance-of Ford;
 Ford instance-of car brand
- How can we resolve this issue ?
 (Hint : differentiate between Ford within both axioms, e.g. who is owner of Ford for each axiom)
- What happens if we represent above axioms within OWL2 ontology?

Classification of ontologies

- 1 KOS Overview
- 2 skos
- 3 Ontology
 - Basic
 - Using ontology in the most correct way
 - Classification of ontologies

Different types of ontologies

- There are many classification of ontologies. We will distinguish only four types :
 - Top-level ontologies describe very general concepts such as event, object, action. They are independent of a particular problem or domain.
 - Domain ontologies describe the vocabulary related to a generic domain such as cultural tourism, or medicine.
 - Task ontologies describe the vocabulary related to a generic task or activity such as selling, or diagnosing.
 - Application ontologies describe classes that depend on both a specific task and a specific domain. The classes within ontology often correspond to roles played by domain entities performing some task.
- Domain and task ontologies typical specializes top-level ontologies.
- Application ontologies typically specializes both task and domain ontologies.

