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Loops

Loops 1. %

» Repeating certain operation multiple-times, one of the basic programming techniques.

» There are two types of cycles in MATLAB:

» for: the most used one, number of repetitions is known in advance,

» while: condition is known ensuring cycle continuation as long as it remains true.
» Essential programming principles to be observed:

» memory allocation (matrix-related) of sufficient size,

» cycles should be properly terminated,

» to ensure terminating condition with while cycle,

» (more on it later).

Program Flow

» Frequently, it is possible to modify array (1D — 2D, 2D — 3D using function repmat or
implicit expansion of dimensions, and carry out a matrix-wise operation, vectorized code
is faster under certain conditions and more understandable, possibility of utilization of
GPU).

» Always ask the question: s the cycle really necessary?
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Loops

%

Loop — for 1.

» for loop is applied to known number of repetitions of a group of commands:
for m = expression

commands
end

> expression is a vector/matrix. g
—
» Columns of this vector/matrix are successively assigned to n/m. e
2
forn=1:4 for m = magic (4) ;b_b
n m 8
end end ol
» Frequently, expression is generated using 1inspace or using “:”, with the help of

length, size, numel, etc.
» Instead of m it is possible to use more relevant names as mPoints, mRows, nSymbols,
etc.
» For clarity, it is suitable to use, e.g., mXX for rows and nxX for columns.
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Loops

Loop — for IL %

» Create a script calculating factorial N,
» use a cycle, verify your result using MATLAB function factorial.

» Can you come up with other solutions (e.g., using vectorizing)?

» Compare all possibilities for decimal input N as well.
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Memory Allocation

Loops

» Allocation can prevent perpetual increase of the size of a variable.

» Code Analyser (M-Lint) will notify you about the possibility of allocation by underlining

the matrix’s name.

» Whenever you know the size of a variable, allocate!

» Sometimes, it pays off to allocate even when the final size is not known — then the worst-case

scenario size of a matrix is allocated and then it may be reduced.
» Allocate the variable of the largest size first, then the smaller ones.

» Example (try it):

%% WITHOUT allocation
tic;
form=1:1e7
A(m) =m + m;
end
toc;
% computed in 0.45s

BEOB17TMTB — Matlab

%$%$ WITH allocation
tic;
A =nan(l,1e7);
form=1:1e7

A(m) =m + m;
end
toc;

o

% computed in 0.06s
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Loops

Loop —while L %

» Keeps on executing commands contained in the body of the cycle depending on a logical

condition.

while condition
commands

end

» Keeps on executing commands as long as all elements of the expression (condition can
be a multidimensional matrix) are non-zero.
» The condition is converted to a relational expression, i.e., till all elements are true.
» Logical and relational operators are often used for condition testing.

» If condition is not a scalar, in can be reduced using function any or all.

Program Flow

BEOB17TMTB — Matlab Z B n Branching


https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Typical Application of Loops

%

%% script generates N experiments with M throws with a coin

clear;

mThrows= 1le3;

nTimes= 1le2;

results= nan (mThrows, nTimes) ;

for iTime= 1:nTimes % however, can be even further vectorized!
results(:, iTime) = round (rand (mThrows, 1)); % vectorized

end

%% script finds out the number of lines in a file
clear;
fileName= 'sin.m';
fid = fopen(fileName, 'r');
count = 0;
while ~feof (£id)
line = fgetl (fid);
count = count + 1;

Program Flow

end
disp(['lines:' num2str (count)])
fclose (fid);
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Loops

Loop — while Il %

» Calculate the sum if integers from 1 to 100 using while cycle.
» Apply any approach to solve the task, but use while cycle.

» Are you able to come up with another solution (using a MATLAB function and without
cycle?)
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Loops

Infinite Loop %

» Pay attention to conditions in while cycle that are always fulfilled = danger of infinite
loop.
» Mostly (not always) it is a semantic error.

» Trivial, but good example of a code:

» These codes “never” ends. Shortcut to terminate: CTRL+C.

2

o

—

while 1 == while true =
disp ('OK"); disp('OK"); E
end end s
20

Qo

=

B}
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Loops

Interchange of an Index and Complex Unit

» Be careful not to confuse complex unit (i, j) with a cycle index.
» Try to avoid using i and j as an index.

» Overloading can occur (applies generally, e.g., sum = 2 overloads the sum function).

» Find out the difference in the following pieces of code:

A=0;

for i =1:10
A=A+ 11,

end

A =0;
for i =1:10

A=A+ 1i;
end

A =0;
for i =1:10

A=A+ 3;
end

» All the commands can, in principle, be written in one line:

’A=O; for i =1:10, A=A+ 1i; end

%

Program Flow

» Usually less understandable. In general, not as fast as commands written separately line by

line.
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Loops

Nested Loops, Loop Combining

%

» Often, there is a need for a nested loops.

» Consider vectorizing instead.
» Consider proper loop type.

» Loop nesting usually rapidly increases computational demands.

%% script generates N experiments with M throws with a coin
clear;

mThrows = le3;

nTimes = le2;

results = nan (mThrows, nTimes) ;
for iThrow = 1:mThrows

Program Flow

for iExperiment= 1l:nTimes % not vectorized (30 times slower!!)
results (iThrow, iExperiment) = round(rand(l));
end
end
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Loops

Loops II. %

» Fill in the matrix A = [a,,] using loops. The matrix entries read
mn m
mn = ==+ 5
» Consider m € {1,...,100}, n € {1,...,20}, allocate matrix first.
» To plot the matrix A use for instance function pcolor (2).
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Loops

Loops III. Fﬁg

» In the previous task the loops can be avoided by using vectorizing.

» Try to eliminate inner loop.
» Try to eliminate both loops using implicitly expansions of vectors with compatible sizes.
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Loops

Loops IV. %

» Visualize guitar string whose movement is
described as

I(z,t) =1Io(z)e ™",
Ip =cosz, wy=2m.

» in the interval t € (0,47), z € (_271-, 7;)7

choose N = 101 samples.

» For visualization inside the loop use
following piece of code:

figure(1l);

plot (x, real(I));

axis([x (1) x(end) -1 11);

pause (0.1);
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Loops

Commands break and continue

» Function break enables to terminate

execution of the loop.

% previous code ..
for k = 1:1length(v)
if v(k) > x
break
end
% another code
end

if true

R

» Function continue passes control to

the next iteration of the loop.

% previous code .
for k = 1:1length(v)
if v(k) > x
continue
end
% another code
end

if true

Program Flow
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Loops

%

Loops vs. Vectorizing 1.

» Since MATLAB 6.5 there are two powerful hidden tools available:

» Just-In-Time accelerator (JIT),
» Run-Time Type Analysis (RTTA).
» JIT enables partial compilation of code segments.
» Precompiled loops are even faster than vectorizing.
» Following rules have to be observed with respect to loops:

» Scalar index has to be used with for loop.
» Only build-in functions are called inside the body of for loop.
» the loop operates with scalar values only.

Program Flow

» RTTA assumes the same data types as during the previous course of the code —
significant speed up for standardized calculations.
» When measuring speed of the code, it is necessary to carry out so called warm-up (first run
the code 2 or 3 times).
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Loops

Loops vs. Vectorizing II. Wg

» The motivation for introduction of JIT was to catch up with third-generation languages.
» When fully utilized, JIT’s computation time is comparable to that of C or Fortran.
» Highest efficiency (the highest speedup) in particular:

» when loops operate with scalar data,
» when no user-defined functions are called (i.e., only build-in functions are called),
» when each line of the loop uses JIT.

» As the result, some parts of the code don’t have to vectorized (or should not even be!).

» The whole topic is more complex (and simplified here).

» More information

Program Flow
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Loops

%

Loops vs. Vectorizing III.

. . . s . clear;clc;
» Previous statement is verified using a simple L

’ . N = 5e3;
code — filling a band matrix. mat = nan (N) ;
» Conditions for using JIT are fulfilled (working tic
. . e . for nl = 1:N
with scalars only, calling build-in functions for n2 = 1:N =
only). mat (nl, n2) = 0; E‘O
» HW and MATLAB version dependent! on dend g
clear; clc; for nl = 1:N ?D
N = Se3; mat (nl, nl) = 1; 2
tic end A~
mat = diag(ones (N, 1)) + ... for nl = 1: (N-1)
2+«diag(ones(N-1, 1), 1) + ... mat (nl, nl+l) = 2;
3xdiag(ones (N-1, 1), -1); end
toc % computed in 0.2182 s for nl = 2:N
mat (nl, nl-1) = 3;
mat = toeplitz([1l, 3, zeros(l, N-2)], ... end
(1, 2, zeros(l, N-2)]); toc % computed in 0.3407 s

% computed in 0.3428 s (2019a, Winl0, 1i5)
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Program Branching

Program Branching

R

» If it is needed to branch the program (execute certain part of code depending on whether

a condition is fulfilled), there are two basic ways:
» if —elseif —else —end,
» switch — case — otherwise — end.

if condition
commands

elseif condition
commands

elseif condition
commands

else
commands

end

Cell data type “{}” will be explained in detail later.

switch variable
case valuel
commands
case {value2a, value2b}
commands
case value3
commands
otherwise
commands
end

Program Flow
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Program Branching

if vs. switch

%

if —elseif —else — end switch — case — otherwise — end

It is possible to create very complex struc- Simple choice of many options.
ture (&& / | ).

Function strcmp is used to compare strings of Test string directly.
various lengths.

Program Flow

Test equality / inequality. Test equality only.

Great deal of logical expression is needed in the Enables to easily test many options using
case of testing many options. cell data type (more on later).
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Program Branching

Program Branching — if —elseif —else I %

» The most probable option should immediately i f=m22n(ii (2?0)

follow the if statement. disp('c is odd');
elseif ¢ > 10

disp('c is even, > 10")
» The else part is carried out only in the case else

where other conditions are not fulfilled. disp('c is even, <=10")
end

» Only the if part is obligatory.

» If N x M matrix is part of the condition, the
condition is fulfilled only in the case it is fulfilled
for each element of the matrix.

Program Flow

» The condition may contain calling a function, etc.

» if conditions can be nested.
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Program Branching

Program Branching — if —elseif —else IL %

» 40 students pass the test with following
points:

points = randi (100, nStudents,
1);

» Count how many:
> excellent students (with 80+ points),
» average students (with 35-79 points),
» poor students (with less than 35 points)
are visiting the class.

» Use for cycle, if-else statement and
indexing for storing values of points.

» Can you come up with a more elegant
solution? (for cycle is not always
necessary.)
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Program Branching

Program Branching — if —elseif — else IIL Fﬁg

» Write a script generating a complex
number z and determining to what
quadrant the complex number
belongs to.

Im {z}

A

IT. L.

’ Re{z}

II1.
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Program Branching

» Does a variable correspond to one of
(usually many) values?

» BEach switch must have at leas one
case, otherwise part is not required,
but highly recommended (to deal
somehow with unpredictable options).

» The commands in the part otherwise
are carried out when none of the cases
above apply.

» Suitable to evaluate conditions containing
strings.

» If you want to learn more details on when
to use 1 f and when to use switch, visit:

» blogs.mathworks.com

Program Branching — switch — case I.

%

c = 0.5+*randi (100)
switch mod(c, 2)
case 1

disp('c is odd integer"')

case 0

disp('c is even integer')

otherwise

end

disp('c is decimal number')

BEOB17TMTB — Matlab Lecture 4: Loops, Program Branching
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Program Branching

Program Branching — switch — case IL %

» Depending on the given grade from important
test, select the amount of money a student will
receive as an reward:

Grade Reward

1 1000
2 500
3 200
4 50
5 0

» Use switch — case statement.
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Program Branching

Program Branching — switch — case III. Wg

» Create a script that, given lengths of two sides of a right triangle, calculates the length of

the third side (Pythagorean theorem).
» Two sides are known together with string marking the type of unknown side ('leg' for leg

or '"hyp' for hypotenuse).

%% HINT:
clear, clc
% input variables will be here
% including type of unknown side
switch type
case 'hyp'
% calculation here
case 'leg'
% calculation here
otherwise % unknown values
% return empty (default) values

end
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Program Branching

What Does the Script Do? 1. %

» Try to estimate what the script below assigns to logResult variable depending on
input variable vec (a vector).
» Are you able to decide whether there is a MATLAB function doing the same?

% vec 1s a given vector
logResult = false;
m=1;
while (m <= length(vec)) && (logResult == false)
if vec(m) ~= 0
logResult = true;
end
m=m+ 1;
end

m Branching
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n Branching

What Does the Script Do? II. %

» Try to estimate what the script below assigns to logResult variable depending on
input variable mat (a matrix).

» Are you able to decide whether there is a MATLAB function doing the same?

[

% mat is a given matrix

count = 0;

[mRows, nColumns] = size (mat);
for m = l:mRows

for n = 1:nColumns

if mat (m, n) ~=0
count = count + 1;
end
end
end
logResult = count == numel (mat);
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Program Branching

Example of Listing More Options In switch - case

» switch supports options listing
» Evaluation of values A1 and A2 in the same way:

switch my_expression
case {Al, A2}
% do something
otherwise
% do something else
end

BEOB17TMTB — Matlab
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Program Branching

Infinite Loop — for Cycle (A Riddle) Fﬁg

» In this lecture we learned how to construct infinite loop with while cycle command
(>> while true, disp('ok'), end).
» Do you think, that the infinite loop can be constructed with the for cycle as well?

» How?
» Are there any restrictions? How many cycles will be performed and why?

Program Flow
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Exercises
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Exercise I.a %

» Fibonacci sequence: F; =1, Fy=1, F,=F,_1+ F,_o forn> 2.
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Exercise I.b

» Draw a script to calculate values of Fibonacci

sequence up to certain value 1imit.

» plot the resulting series using function:

figure(l), plot(F, '-o'")
» Calculate length of Fibonacci spiral.

» Calculate approximations to the golden ratio:

— lim Fnia :M
14 2

n—oo n

» plot it: figure(2), plot (phi,

BEOB17MTB — Matlab
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Excercises

Exercise II.a %

» Create vector v € C**! which contains one
complex number from each quadrant.

Re{v1} > 0,Im{v1} >0
Re{vs} < 0,Im{vz} <0
RG{UQ} > O,Im{’Uz} <0
Re{vs} < 0,Im{vg} >0

» Prepare a code which can generate random
complex number. Determine its quadrant
and save it into v. Repeat the process until
vector v is not full.
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Exercise I1.b Wg

» Can you do the same without loop and program branching?
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Exercise I11.a

» Try to determine the density of prime
numbers:

>

>

examine the functions primes
generating prime numbers,

for the orders 10! — 107 determine the
primes density (i.e., the number of
primes up to 10, to 100, ..., to 107).

Outline the dependence using plot.
Display results in logarithmic scale,
» loglog(xData, yData).
» How does the plot change?

BEOB17TMTB — Matlab

8

%% density of prime numbers

clear, clc, close all

N=7;

nPrimes = $ alocate here

orders = $ vector of orders 1071-10"7
your code here..

o
S
o
S
o
S
o

o

figure, plot (nPrimes)
figure, loglog(orders, nPrimes)

am Branching
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Exercise I11.b

» Can the script be speeded-up?

» What does, in your view, have the
dominant impact on computation time?

» Is it necessary to compute primes in
every loop?

BEOB17TMTB — Matlab
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Excercises

Exercise IV.a Fﬁg

» Following expansion holds true:

arctan(x):Z(fl)"2n+1 :x—§+€77+§7...

n=0
» Based on the expansion for z = 1 estimate value of :
1 1

1 1
arctan(l):%:1_§+5_?+§_“.

» Determine the number of elements of the sum and computational time required to
achieve estimation accuracy better than 1-1076.

Lecture 4: Loops, Program Branching
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Excercises

Exercise IV.b Fﬁg

» Estimate value of 7 using following expansion:

1 1 1

z:: dn +1) 4n+3):1-3+5-7+9-11

» Approximate value of 7 using following expansion with the expansion for arctan(z) from

the previous slide:
il Garcta; L + 2arcta ! + arcta L
— = I n|( — I n|{— i n
4 8 57 239

» Determine the number of elements of the sum and computational time required to
achieve estimation accuracy better than 1-1076.

» Compare all three solutions.
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Exercise IV. — Solution
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Questions?

BEOB17MTB — Matlab
matlab@elmag.org

October 14, 2020
Winter semester 2020/21

This document has been created as a part of BEOB17MTB course.
Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted
only with the prior permission of the authors.
Acknowledgement: Filip Kozak, Pavel Valtr.
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