
Lecture 4: Loops, Program Branching
BE0B17MTB – Matlab

Miloslav Čapek, Viktor Adler, Michal Mašek, and Vít Losenický

Department of Electromagnetic Field
Czech Technical University in Prague

Czech Republic
matlab@elmag.org

October 14, 2020
Winter semester 2020/21

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 1 / 42

https://cw.fel.cvut.cz/b201/courses/be0b17mtb
mailto:matlab@elmag.org
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Outline

1. Loops

2. Program Branching

3. Excercises

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 2 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loops I.

I Repeating certain operation multiple-times, one of the basic programming techniques.
I There are two types of cycles in Matlab:

I for: the most used one, number of repetitions is known in advance,
I while: condition is known ensuring cycle continuation as long as it remains true.

I Essential programming principles to be observed:
I memory allocation (matrix-related) of sufficient size,
I cycles should be properly terminated,
I to ensure terminating condition with while cycle,
I (more on it later).

I Frequently, it is possible to modify array (1D → 2D, 2D → 3D using function repmat or
implicit expansion of dimensions, and carry out a matrix-wise operation, vectorized code
is faster under certain conditions and more understandable, possibility of utilization of
GPU).

I Always ask the question: Is the cycle really necessary?

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 3 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loop – for I.

I for loop is applied to known number of repetitions of a group of commands:
for m = expression

commands
end

I expression is a vector/matrix.
I Columns of this vector/matrix are successively assigned to n/m.

for n = 1:4
n

end

for m = magic(4)
m

end

I Frequently, expression is generated using linspace or using “:”, with the help of
length, size, numel, etc.

I Instead of m it is possible to use more relevant names as mPoints, mRows, nSymbols,
etc.
I For clarity, it is suitable to use, e.g., mXX for rows and nXX for columns.

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 4 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loop – for II.

I Create a script calculating factorial N ,
I use a cycle, verify your result using Matlab function factorial.

clear;
N = 6;
F = 1;
for n = 1:N

F = F*n;
end

I Can you come up with other solutions (e.g., using vectorizing)?

prod(1:N)

I Compare all possibilities for decimal input N as well.

300

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 5 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Memory Allocation

I Allocation can prevent perpetual increase of the size of a variable.
I Code Analyser (M-Lint) will notify you about the possibility of allocation by

:::::::::
underlining

:::
the

:::::::
matrix’s

:::::
name.

I Whenever you know the size of a variable, allocate!
I Sometimes, it pays off to allocate even when the final size is not known – then the worst-case

scenario size of a matrix is allocated and then it may be reduced.
I Allocate the variable of the largest size first, then the smaller ones.

I Example (try it):

%% WITHOUT allocation
tic;
for m = 1:1e7

A(m) = m + m;
end
toc;
% computed in 0.45s

%% WITH allocation
tic;
A = nan(1,1e7);
for m= 1:1e7

A(m) = m + m;
end
toc;
% computed in 0.06s

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 6 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loop – while I.

I Keeps on executing commands contained in the body of the cycle depending on a logical
condition.
while condition

commands
end

I Keeps on executing commands as long as all elements of the expression (condition can
be a multidimensional matrix) are non-zero.
I The condition is converted to a relational expression, i.e., till all elements are true.
I Logical and relational operators are often used for condition testing.

I If condition is not a scalar, in can be reduced using function any or all. P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 7 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Typical Application of Loops

%% script generates N experiments with M throws with a coin
clear;
mThrows= 1e3;
nTimes= 1e2;
results= nan(mThrows, nTimes);
for iTime= 1:nTimes % however, can be even further vectorized!

results(:, iTime) = round(rand(mThrows, 1)); % vectorized
end

%% script finds out the number of lines in a file
clear;
fileName= 'sin.m';
fid = fopen(fileName, 'r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
count = count + 1;

end
disp(['lines:' num2str(count)])
fclose(fid);

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 8 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loop – while II.

I Calculate the sum if integers from 1 to 100 using while cycle.
I Apply any approach to solve the task, but use while cycle.

%% SL 9
clear;
N = 100; % calculate up to 100
k = 1; % start with 1
s = 0; % allocation for final sum
while k <= N

s = s + k; % add current value to the sum
k = k + 1; % move to the next value

end

I Are you able to come up with another solution (using a Matlab function and without
cycle?)

sum(1:N)

300

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 9 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Infinite Loop

I Pay attention to conditions in while cycle that are always fulfilled ⇒ danger of infinite
loop.
I Mostly (not always) it is a semantic error.

I Trivial, but good example of a code:

while 1 == 1
disp('OK');

end

while true
disp('OK');

end

I These codes “never” ends. Shortcut to terminate: CTRL+C.

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 10 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Interchange of an Index and Complex Unit

I Be careful not to confuse complex unit (i, j) with a cycle index.
I Try to avoid using i and j as an index.

I Overloading can occur (applies generally, e.g., sum = 2 overloads the sum function).

I Find out the difference in the following pieces of code:

A = 0;
for i = 1:10

A = A + 1i;
end

A = 0;
for i = 1:10

A = A + i;
end

A = 0;
for i = 1:10

A = A + j;
end

I All the commands can, in principle, be written in one line:
A = 0; for i = 1:10, A = A + 1i; end

I Usually less understandable. In general, not as fast as commands written separately line by
line.

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 11 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Nested Loops, Loop Combining

I Often, there is a need for a nested loops.
I Consider vectorizing instead.
I Consider proper loop type.

I Loop nesting usually rapidly increases computational demands.
%% script generates N experiments with M throws with a coin
clear;
mThrows = 1e3;
nTimes = 1e2;
results = nan(mThrows, nTimes);
for iThrow = 1:mThrows

for iExperiment= 1:nTimes % not vectorized (30 times slower!!)
results(iThrow, iExperiment) = round(rand(1));

end
end

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 12 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loops II.

I Fill in the matrix A = [amn] using loops. The matrix entries read

amn =
mn

4
+
m

2n
.

I Consider m ∈ {1, . . . , 100}, n ∈ {1, . . . , 20}, allocate matrix first.
I To plot the matrix A use for instance function pcolor(A).

%% script fills a matrix
close all; clear;
M = 100;
N = 20;
A = nan(M, N);
for m = 1:M

for n = 1:N
A(m,n) = (m*n)/4 + m/(2*n);

end
end
pcolor(A); % plot

480

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 13 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loops III.

I In the previous task the loops can be avoided by using vectorizing.
I Try to eliminate inner loop.
I Try to eliminate both loops using implicitly expansions of vectors with compatible sizes.

close all, clear;
M = 100;
N = 20;
m = (1:M).';
n = 1:N;
A = (m.*n)/4 + m./(2*n);
pcolor(A)

600

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 14 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loops IV.

I Visualize guitar string whose movement is
described as

I (x, t) = I0 (x) e
−jω0t,

I0 = cosx, ω0 = 2π.

I in the interval t ∈ (0, 4π), x ∈
(
−π
2
,
π

2

)
,

choose N = 101 samples.
I For visualization inside the loop use

following piece of code:
figure(1);
plot(x, real(I));
axis([x(1) x(end) -1 1]);
pause(0.1);

%% script visualizes guitar string
close all; clear;
N = 101;
om0 = 2*pi;
x = linspace(-pi/2, pi/2, N);
t = linspace(0, 4*pi, N);
I0 = cos(x);
for n = 1:N

I = I0*exp(1j*om0*t(n));
figure(1);
plot(x, real(I));
axis([x(1) x(end) -1 1]);
pause(0.1);

end

600

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 15 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Commands break and continue

I Function break enables to terminate
execution of the loop.
% previous code ..
for k = 1:length(v)

if v(k) > x
break

end
% another code

end

I Function continue passes control to
the next iteration of the loop.
% previous code ..
for k = 1:length(v)

if v(k) > x
continue

end
% another code

end

if true

if true

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 16 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loops vs. Vectorizing I.

I Since Matlab 6.5 there are two powerful hidden tools available:
I Just-In-Time accelerator (JIT),
I Run-Time Type Analysis (RTTA).

I JIT enables partial compilation of code segments.
I Precompiled loops are even faster than vectorizing.
I Following rules have to be observed with respect to loops:

I Scalar index has to be used with for loop.
I Only build-in functions are called inside the body of for loop.
I the loop operates with scalar values only.

I RTTA assumes the same data types as during the previous course of the code –
significant speed up for standardized calculations.
I When measuring speed of the code, it is necessary to carry out so called warm-up (first run

the code 2 or 3 times).

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 17 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loops vs. Vectorizing II.

I The motivation for introduction of JIT was to catch up with third-generation languages.
I When fully utilized, JIT’s computation time is comparable to that of C or Fortran.

I Highest efficiency (the highest speedup) in particular:
I when loops operate with scalar data,
I when no user-defined functions are called (i.e., only build-in functions are called),
I when each line of the loop uses JIT.

I As the result, some parts of the code don’t have to vectorized (or should not even be!).
I The whole topic is more complex (and simplified here).

I More information

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 18 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b181/_media/courses/a0b17mtb/jit_accel_matlab.pdf
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loops vs. Vectorizing III.

I Previous statement is verified using a simple
code – filling a band matrix.

I Conditions for using JIT are fulfilled (working
with scalars only, calling build-in functions
only).

I HW and Matlab version dependent!
clear; clc;
N = 5e3;
tic
mat = diag(ones(N, 1)) + ...

2*diag(ones(N-1, 1), 1) + ...
3*diag(ones(N-1, 1), -1);

toc % computed in 0.2182 s

mat = toeplitz([1, 3, zeros(1, N-2)], ...
[1, 2, zeros(1, N-2)]);

% computed in 0.3428 s (2019a, Win10, i5)

clear;clc;
N = 5e3;
mat = nan(N);
tic
for n1 = 1:N

for n2 = 1:N
mat(n1, n2) = 0;

end
end
for n1 = 1:N

mat(n1, n1) = 1;
end
for n1 = 1:(N-1)

mat(n1, n1+1) = 2;
end
for n1 = 2:N

mat(n1, n1-1) = 3;
end
toc % computed in 0.3407 s

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 19 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Program Branching

I If it is needed to branch the program (execute certain part of code depending on whether
a condition is fulfilled), there are two basic ways:
I if – elseif – else – end,
I switch – case – otherwise – end.

if condition
commands

elseif condition
commands

elseif condition
commands

else
commands

end

switch variable
case value1

commands
case {value2a, value2b}

commands
case value3

commands
otherwise

commands
end

P
ro
gr
am

F
lo
w

Cell data type “{}” will be explained in detail later.
BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 20 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

if vs. switch

if – elseif – else – end switch – case – otherwise – end
It is possible to create very complex struc-
ture (&& / ||).

Simple choice of many options.

Function strcmp is used to compare strings of
various lengths.

Test string directly.

Test equality / inequality. Test equality only.

Great deal of logical expression is needed in the
case of testing many options.

Enables to easily test many options using
cell data type (more on later).

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 21 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Program Branching – if – elseif – else I.

I The most probable option should immediately
follow the if statement.

I Only the if part is obligatory.
I The else part is carried out only in the case

where other conditions are not fulfilled.
I If N ×M matrix is part of the condition, the

condition is fulfilled only in the case it is fulfilled
for each element of the matrix.

I The condition may contain calling a function, etc.
I if conditions can be nested.

c = randi(100)
if mod(c, 2)

disp('c is odd');
elseif c > 10

disp('c is even, > 10')
else

disp('c is even, <= 10')
end

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 22 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Program Branching – if – elseif – else II.

I 40 students pass the test with following
points:
points = randi(100, nStudents,
1);

I Count how many:
I excellent students (with 80+ points),
I average students (with 35-79 points),
I poor students (with less than 35 points)

are visiting the class.
I Use for cycle, if–else statement and

indexing for storing values of points.
I Can you come up with a more elegant

solution? (for cycle is not always
necessary.)

clear, clc
nStudents = 40;
points = randi(100, nStudents, 1);
A = 0; B = 0; C = 0;
for iS = 1:nStudents

if points(iS) >= 80
A = A+1;

elseif points(iS) >= 35
B = B+1;

else
C = C+1;

end
end

A2 = sum(points >= 80);
B2 = sum(points >= 35 & points < 80);
C2 = sum(points < 35);

400

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 23 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Program Branching – if – elseif – else III.

I Write a script generating a complex
number z and determining to what
quadrant the complex number
belongs to.

Re {z}

Im {z}

I.II.

III. IV.

clear, clc
z = rand(1) + 1j*rand(1) - 1/2 * (1 + 1j);
if real(z) >= 0 % I. or IV. quadrant

if imag(z) >= 0
disp('I. quadrant');

else
disp('IV. quadrant');

end
else % II. or III. quadrant

if imag(z) >= 0
disp('II. quadrant');

else
disp('III. quadrant');

end
end

phi = angle(z);
quadrant = ceil(2*phi/pi + 4*(phi < 0))

500

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 24 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Program Branching – switch – case I.

I Does a variable correspond to one of
(usually many) values?

I Each switch must have at leas one
case, otherwise part is not required,
but highly recommended (to deal
somehow with unpredictable options).

I The commands in the part otherwise
are carried out when none of the cases
above apply.

I Suitable to evaluate conditions containing
strings.

I If you want to learn more details on when
to use if and when to use switch, visit:

I blogs.mathworks.com

c = 0.5*randi(100)
switch mod(c, 2)

case 1
disp('c is odd integer')

case 0
disp('c is even integer')

otherwise
disp('c is decimal number')

end

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 25 / 42

https://www.cvut.cz/en
https://blogs.mathworks.com/
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Program Branching – switch – case II.

I Depending on the given grade from important
test, select the amount of money a student will
receive as an reward:

Grade Reward
1 1000
2 500
3 200
4 50
5 0

I Use switch – case statement.

grade = 4;
switch grade

case 1
reward = 1000;

case 2
reward = 500;

case 3
reward = 200;

case 4
reward = 50;

otherwise
reward = 0;

end
disp(reward)

grade = 4;
reward = [1000 500 200 50 0];
reward(grade == 1:5)

300

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 26 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Program Branching – switch – case III.

I Create a script that, given lengths of two sides of a right triangle, calculates the length of
the third side (Pythagorean theorem).
I Two sides are known together with string marking the type of unknown side ('leg' for leg

or 'hyp' for hypotenuse).
%% HINT:
clear, clc
% input variables will be here
% including type of unknown side
switch type

case 'hyp'
% calculation here

case 'leg'
% calculation here

otherwise % unknown values
% return empty (default) values

end

clear, clc
s1 = 4;
s2 = 3;
type = 'hyp';
switch type

case 'hyp'
c = sqrt(s1^2 + s2^2);

case 'leg'
a = sqrt(max(s1, s2)^2 - min(s1, s2)^2);

otherwise
c = 0; a = 0;

end

450

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 27 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

What Does the Script Do? I.

I Try to estimate what the script below assigns to logResult variable depending on
input variable vec (a vector).

I Are you able to decide whether there is a Matlab function doing the same?

% vec is a given vector
logResult = false;
m = 1;
while (m <= length(vec)) && (logResult == false)

if vec(m) ~= 0
logResult = true;

end
m = m + 1;

end

Same as any(vec)!

90

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 28 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

What Does the Script Do? II.

I Try to estimate what the script below assigns to logResult variable depending on
input variable mat (a matrix).

I Are you able to decide whether there is a Matlab function doing the same?

% mat is a given matrix
count = 0;
[mRows, nColumns] = size(mat);
for m = 1:mRows

for n = 1:nColumns
if mat(m, n) ~= 0

count = count + 1;
end

end
end
logResult = count == numel(mat);

Same as all(all(mat)) or all(mat(:))!

90

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 29 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Example of Listing More Options In switch - case

I switch supports options listing
I Evaluation of values A1 and A2 in the same way:

switch my_expression
case {A1, A2}

% do something
otherwise

% do something else
end

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 30 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Infinite Loop – for Cycle (A Riddle)

I In this lecture we learned how to construct infinite loop with while cycle command
(>> while true, disp('ok'), end).
I Do you think, that the infinite loop can be constructed with the for cycle as well?
I How?
I Are there any restrictions? How many cycles will be performed and why?

P
ro
gr
am

F
lo
w

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 31 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Excercises

Exercises

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 32 / 42

https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Excercises

Exercise I.a

I Fibonacci sequence: F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2 forn > 2.

100

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 33 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Excercises

Exercise I.b

I Draw a script to calculate values of Fibonacci
sequence up to certain value limit.

I plot the resulting series using function:
figure(1), plot(F, '-o')

I Calculate length of Fibonacci spiral.
I Calculate approximations to the golden ratio:

ϕ = lim
n→∞

Fn+1

Fn
=

1 +
√
5

2
≈ 1.618033

I plot it: figure(2), plot(phi, '-or')

clear, clc, close all
limit = 1000; % set the limit
F = [1 1]; % initial values
while F(end) + F(end-1) < limit

F(end+1) = F(end) + F(end-1);
end
figure(1), plot(F, '-o')
% spiral length
sl = pi/2 * sum(F);
% golden ratios
phi = F(2:end) ./ F(1:end-1);
figure(2), plot(phi, '-or')

600

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 34 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Excercises

Exercise II.a

I Create vector v ∈ C4×1 which contains one
complex number from each quadrant.

Re{v1} > 0, Im{v1} > 0
Re{v3} < 0, Im{v3} < 0
Re{v2} > 0, Im{v2} < 0
Re{v4} < 0, Im{v4} > 0

I Prepare a code which can generate random
complex number. Determine its quadrant
and save it into v. Repeat the process until
vector v is not full.

v = nan(4, 1);
while any(isnan(v))

z = rand(1) + 1i * rand(1) ...
- 1/2 * (1 + 1i);

if real(z) >= 0
if imag(z) >= 0

quadrant = 1;
else

quadrant = 4;
end

else
if imag(z) >= 0

quadrant = 2;
else

quadrant = 3;
end

end
v(quadrant) = z;

end

500

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 35 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Excercises

Exercise II.b

I Can you do the same without loop and program branching?

mask = [1 1; -1 1; -1 -1; 1 -1];
numbers = mask .* rand(4, 2);
v = 0.5 * complex(numbers(:, 1), numbers(:, 2));

360

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 36 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Excercises

Exercise III.a

I Try to determine the density of prime
numbers:
I examine the functions primes

generating prime numbers,
I for the orders 101 – 107 determine the

primes density (i.e., the number of
primes up to 10, to 100, . . . , to 107).

I Outline the dependence using plot.
I Display results in logarithmic scale,

I loglog(xData, yData).
I How does the plot change?

%% density of prime numbers
clear, clc, close all
N = 7;
nPrimes = % alocate here
orders = % vector of orders 10^1-10^7
% your code here..
% ..
% ..
% ..
figure, plot(nPrimes)
figure, loglog(orders, nPrimes)

%% density of prime numbers
clear, clc, close all
N = 7;
nPrimes = nan(1, N); % alocation
orders = 10.^(1:N);
for n = 1:N

nPrimes(n) = ...
length(primes(orders(n)));

end
figure, plot(nPrimes)
figure, loglog(orders, nPrimes)

300

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 37 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Excercises

Exercise III.b

I Can the script be speeded-up?
I What does, in your view, have the

dominant impact on computation time?
I Is it necessary to compute primes in

every loop?

%% density of prime numbers
% improved performance
% primes is called only once
clear, clc, close all
N = 7;
nPrimes = nan(1, N); % alocation
orders = 10.^(1:N);
P = primes(orders(end));
for n = 1:N

nPrimes(n) = sum(P < orders(m));
end
figure, plot(nPrimes)
figure, loglog(orders, nPrimes)

600

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 38 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Excercises

Exercise IV.a

I Following expansion holds true:

arctan(x) =

∞∑
n=0

(−1)n x
2n+1

2n+ 1
= x− x3

3
+
x5

5
− x7

7
+
x9

9
− · · ·

I Based on the expansion for x = 1 estimate value of π:

arctan(1) =
π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− . . .

I Determine the number of elements of the sum and computational time required to
achieve estimation accuracy better than 1 · 10−6.

500

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 39 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Excercises

Exercise IV.b

I Estimate value of π using following expansion:

π

8
=

∞∑
n=0

1

(4n+ 1)(4n+ 3)
=

1

1 · 3
+

1

5 · 7
+

1

9 · 11
+ · · ·

I Approximate value of π using following expansion with the expansion for arctan(x) from
the previous slide:

π

4
= 6arctan

(
1

8

)
+ 2arctan

(
1

57

)
+ arctan

(
1

239

)
I Determine the number of elements of the sum and computational time required to

achieve estimation accuracy better than 1 · 10−6.
I Compare all three solutions.

500

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 40 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Excercises

Exercise IV. – Solution

n1 = 0;
err = 1e-6;
estPi1 = 0;
while abs(estPi1 - pi/4) > err

estPi1 = estPi1 + ...
(-1)^n1 * 1/(2*n1+1);

n1 = n1+1;
end % n1 = 250001

n2 = 0;
estPi2 = 0;
while abs(estPi2 - pi/8) > err

estPi2 = estPi2 + ...
1/((4*n2+1) * (4*n2+3));

n2 = n2+1;
end % n2 = 62500

n3 = 0;
estPi3 = 0;
argumentValues = [1/8, 1/57, 1/239];
coefs = [6, 2, 1];
while abs(estPi3 - pi/4) > err

estPi3 = 0;
for iValue = 1:3

x = argumentValues(iValue);
n = 0:n3;
y = sum((-1).^n .* x.^(2*n+1) ./ ...

(2*n+1));
estPi3 = estPi3 + coefs(iValue) * y;

end
n3 = n3 + 1;

end % n3 = 3

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 41 / 42

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Questions?
BE0B17MTB – Matlab
matlab@elmag.org

October 14, 2020
Winter semester 2020/21

This document has been created as a part of BE0B17MTB course.
Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted
only with the prior permission of the authors.
Acknowledgement: Filip Kozak, Pavel Valtr.

BE0B17MTB – Matlab Lecture 4: Loops, Program Branching 42 / 42

https://cw.fel.cvut.cz/b201/courses/be0b17mtb
mailto:matlab@elmag.org
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

	Loops
	Program Branching
	Excercises
	

	anm0:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

