Lecture 4: Loops, Program Branching
BEOB17MTB - Matlab

Miloslav Capek, Viktor Adler, Michal Magek, and Vit Losenicky

Department of Electromagnetic Field
Czech Technical University in Prague
Czech Republic
matlablelmag.org

October 14, 2020
Winter semester 2020,/21

BEOB17TMTB — Matlab Lecture 4: Loops, Program Branching

https://cw.fel.cvut.cz/b201/courses/be0b17mtb
mailto:matlab@elmag.org
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Outline %

1. Loops
2. Program Branching

3. Excercises

BEOB17TMTB — Matlab

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loops 1. %

» Repeating certain operation multiple-times, one of the basic programming techniques.

» There are two types of cycles in MATLAB:

» for: the most used one, number of repetitions is known in advance,

» while: condition is known ensuring cycle continuation as long as it remains true.
» Essential programming principles to be observed:

» memory allocation (matrix-related) of sufficient size,

» cycles should be properly terminated,

» to ensure terminating condition with while cycle,

» (more on it later).

Program Flow

» Frequently, it is possible to modify array (1D — 2D, 2D — 3D using function repmat or
implicit expansion of dimensions, and carry out a matrix-wise operation, vectorized code
is faster under certain conditions and more understandable, possibility of utilization of
GPU).

» Always ask the question: s the cycle really necessary?

BEOB17TMTB — Matlab Lecture 4: Loops, Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

%

Loop — for 1.

» for loop is applied to known number of repetitions of a group of commands:
for m = expression

commands
end

> expression is a vector/matrix. g
—
» Columns of this vector/matrix are successively assigned to n/m. e
2
forn=1:4 for m = magic (4) ;b_b
n m 8
end end ol
» Frequently, expression is generated using 1inspace or using “:”, with the help of

length, size, numel, etc.
» Instead of m it is possible to use more relevant names as mPoints, mRows, nSymbols,
etc.
» For clarity, it is suitable to use, e.g., mXX for rows and nxX for columns.

BEOB17TMTB — Matlab Z B n Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loop — for IL %

» Create a script calculating factorial N,
» use a cycle, verify your result using MATLAB function factorial.

» Can you come up with other solutions (e.g., using vectorizing)?

» Compare all possibilities for decimal input N as well.

BEOB17MTB — Matlab Lecture 4: Loops, Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Memory Allocation

Loops

» Allocation can prevent perpetual increase of the size of a variable.

» Code Analyser (M-Lint) will notify you about the possibility of allocation by underlining

the matrix’s name.

» Whenever you know the size of a variable, allocate!

» Sometimes, it pays off to allocate even when the final size is not known — then the worst-case

scenario size of a matrix is allocated and then it may be reduced.
» Allocate the variable of the largest size first, then the smaller ones.

» Example (try it):

%% WITHOUT allocation
tic;
form=1:1e7
A(m) =m + m;
end
toc;
% computed in 0.45s

BEOB17TMTB — Matlab

%$%$ WITH allocation
tic;
A =nan(l,1e7);
form=1:1e7

A(m) =m + m;
end
toc;

o

% computed in 0.06s

Lecture 4: Loops, P n Branching

R

Program Flow

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loop —while L %

» Keeps on executing commands contained in the body of the cycle depending on a logical

condition.

while condition
commands

end

» Keeps on executing commands as long as all elements of the expression (condition can
be a multidimensional matrix) are non-zero.
» The condition is converted to a relational expression, i.e., till all elements are true.
» Logical and relational operators are often used for condition testing.

» If condition is not a scalar, in can be reduced using function any or all.

Program Flow

BEOB17TMTB — Matlab Z B n Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Typical Application of Loops

%

%% script generates N experiments with M throws with a coin

clear;

mThrows= 1le3;

nTimes= 1le2;

results= nan (mThrows, nTimes) ;

for iTime= 1:nTimes % however, can be even further vectorized!
results(:, iTime) = round (rand (mThrows, 1)); % vectorized

end

%% script finds out the number of lines in a file
clear;
fileName= 'sin.m';
fid = fopen(fileName, 'r');
count = 0;
while ~feof (£id)
line = fgetl (fid);
count = count + 1;

Program Flow

end
disp(['lines:' num2str (count)])
fclose (fid);

BEOB17TMTB — Matlab Z B n Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loop — while Il %

» Calculate the sum if integers from 1 to 100 using while cycle.
» Apply any approach to solve the task, but use while cycle.

» Are you able to come up with another solution (using a MATLAB function and without
cycle?)

BEOB17MTB — Matlab sure 4: Loops, P m Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Infinite Loop %

» Pay attention to conditions in while cycle that are always fulfilled = danger of infinite
loop.
» Mostly (not always) it is a semantic error.

» Trivial, but good example of a code:

» These codes “never” ends. Shortcut to terminate: CTRL+C.

2

o

—

while 1 == while true =
disp ('OK"); disp('OK"); E
end end s
20

Qo

=

B}

BEOB17TMTB — Matlab sure 4: Loops, am Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Interchange of an Index and Complex Unit

» Be careful not to confuse complex unit (i, j) with a cycle index.
» Try to avoid using i and j as an index.

» Overloading can occur (applies generally, e.g., sum = 2 overloads the sum function).

» Find out the difference in the following pieces of code:

A=0;

for i =1:10
A=A+ 11,

end

A =0;
for i =1:10

A=A+ 1i;
end

A =0;
for i =1:10

A=A+ 3;
end

» All the commands can, in principle, be written in one line:

’A=O; for i =1:10, A=A+ 1i; end

%

Program Flow

» Usually less understandable. In general, not as fast as commands written separately line by

line.

BEOB17TMTB — Matlab

Lecture 4: Loops, Pr

ram Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Nested Loops, Loop Combining

%

» Often, there is a need for a nested loops.

» Consider vectorizing instead.
» Consider proper loop type.

» Loop nesting usually rapidly increases computational demands.

%% script generates N experiments with M throws with a coin
clear;

mThrows = le3;

nTimes = le2;

results = nan (mThrows, nTimes) ;
for iThrow = 1:mThrows

Program Flow

for iExperiment= 1l:nTimes % not vectorized (30 times slower!!)
results (iThrow, iExperiment) = round(rand(l));
end
end

BEOB17TMTB — Matlab

n Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loops II. %

» Fill in the matrix A = [a,,] using loops. The matrix entries read
mn m
mn = ==+ 5
» Consider m € {1,...,100}, n € {1,...,20}, allocate matrix first.
» To plot the matrix A use for instance function pcolor (2).

BEOB17TMTB — Matlab Lecture 4: Loops, Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loops III. Fﬁg

» In the previous task the loops can be avoided by using vectorizing.

» Try to eliminate inner loop.
» Try to eliminate both loops using implicitly expansions of vectors with compatible sizes.

BEOB17TMTB — Matlab Lecture 4: Loops, Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loops IV. %

» Visualize guitar string whose movement is
described as

I(z,t) =1Io(z)e ™",
Ip =cosz, wy=2m.

» in the interval t € (0,47), z € (_271-, 7;)7

choose N = 101 samples.

» For visualization inside the loop use
following piece of code:

figure(1l);

plot (x, real(I));

axis([x (1) x(end) -1 11);

pause (0.1);

BEOB17TMTB — Matlab sure 4: Loops, am Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Commands break and continue

» Function break enables to terminate

execution of the loop.

% previous code ..
for k = 1:1length(v)
if v(k) > x
break
end
% another code
end

if true

R

» Function continue passes control to

the next iteration of the loop.

% previous code .
for k = 1:1length(v)
if v(k) > x
continue
end
% another code
end

if true

Program Flow

BEOB17TMTB — Matlab

Lecture 4: Loops, P

n Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

%

Loops vs. Vectorizing 1.

» Since MATLAB 6.5 there are two powerful hidden tools available:

» Just-In-Time accelerator (JIT),
» Run-Time Type Analysis (RTTA).
» JIT enables partial compilation of code segments.
» Precompiled loops are even faster than vectorizing.
» Following rules have to be observed with respect to loops:

» Scalar index has to be used with for loop.
» Only build-in functions are called inside the body of for loop.
» the loop operates with scalar values only.

Program Flow

» RTTA assumes the same data types as during the previous course of the code —
significant speed up for standardized calculations.
» When measuring speed of the code, it is necessary to carry out so called warm-up (first run
the code 2 or 3 times).

BEOB17TMTB — Matlab Lecture 4: Loops, Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

Loops vs. Vectorizing II. Wg

» The motivation for introduction of JIT was to catch up with third-generation languages.
» When fully utilized, JIT’s computation time is comparable to that of C or Fortran.
» Highest efficiency (the highest speedup) in particular:

» when loops operate with scalar data,
» when no user-defined functions are called (i.e., only build-in functions are called),
» when each line of the loop uses JIT.

» As the result, some parts of the code don’t have to vectorized (or should not even be!).

» The whole topic is more complex (and simplified here).

» More information

Program Flow

BEOB17TMTB — Matlab Lecture 4: Loops, Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b181/_media/courses/a0b17mtb/jit_accel_matlab.pdf
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Loops

%

Loops vs. Vectorizing III.

. . . s . clear;clc;
» Previous statement is verified using a simple L

’ . N = 5e3;
code — filling a band matrix. mat = nan (N) ;
» Conditions for using JIT are fulfilled (working tic
. . e . for nl = 1:N
with scalars only, calling build-in functions for n2 = 1:N =
only). mat (nl, n2) = 0; E‘O
» HW and MATLAB version dependent! on dend g
clear; clc; for nl = 1:N ?D
N = Se3; mat (nl, nl) = 1; 2
tic end A~
mat = diag(ones (N, 1)) + ... for nl = 1: (N-1)
2+«diag(ones(N-1, 1), 1) + ... mat (nl, nl+l) = 2;
3xdiag(ones (N-1, 1), -1); end
toc % computed in 0.2182 s for nl = 2:N
mat (nl, nl-1) = 3;
mat = toeplitz([1l, 3, zeros(l, N-2)], ... end
(1, 2, zeros(l, N-2)]); toc % computed in 0.3407 s

% computed in 0.3428 s (2019a, Winl0, 1i5)

BEOB17TMTB — Matlab Z B n Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Program Branching

R

» If it is needed to branch the program (execute certain part of code depending on whether

a condition is fulfilled), there are two basic ways:
» if —elseif —else —end,
» switch — case — otherwise — end.

if condition
commands

elseif condition
commands

elseif condition
commands

else
commands

end

Cell data type “{}” will be explained in detail later.

switch variable
case valuel
commands
case {value2a, value2b}
commands
case value3
commands
otherwise
commands
end

Program Flow

BEOB17TMTB — Matlab

n Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

if vs. switch

%

if —elseif —else — end switch — case — otherwise — end

It is possible to create very complex struc- Simple choice of many options.
ture (&& / |).

Function strcmp is used to compare strings of Test string directly.
various lengths.

Program Flow

Test equality / inequality. Test equality only.

Great deal of logical expression is needed in the Enables to easily test many options using
case of testing many options. cell data type (more on later).

BEOB17TMTB — Matlab Lecture 4: Loops, Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Program Branching — if —elseif —else I %

» The most probable option should immediately i f=m22n(ii (2?0)

follow the if statement. disp('c is odd');
elseif ¢ > 10

disp('c is even, > 10")
» The else part is carried out only in the case else

where other conditions are not fulfilled. disp('c is even, <=10")
end

» Only the if part is obligatory.

» If N x M matrix is part of the condition, the
condition is fulfilled only in the case it is fulfilled
for each element of the matrix.

Program Flow

» The condition may contain calling a function, etc.

» if conditions can be nested.

BEOB17TMTB — Matlab Lecture 4: Loops, Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Program Branching — if —elseif —else IL %

» 40 students pass the test with following
points:

points = randi (100, nStudents,
1);

» Count how many:
> excellent students (with 80+ points),
» average students (with 35-79 points),
» poor students (with less than 35 points)
are visiting the class.

» Use for cycle, if-else statement and
indexing for storing values of points.

» Can you come up with a more elegant
solution? (for cycle is not always
necessary.)

BEOB17MTB — Matlab Lecture 4: Loops, Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Program Branching — if —elseif — else IIL Fﬁg

» Write a script generating a complex
number z and determining to what
quadrant the complex number
belongs to.

Im {z}

A

IT. L.

’ Re{z}

II1.

BEOB17TMTB — Matlab Lecture 4: Loops, Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

» Does a variable correspond to one of
(usually many) values?

» BEach switch must have at leas one
case, otherwise part is not required,
but highly recommended (to deal
somehow with unpredictable options).

» The commands in the part otherwise
are carried out when none of the cases
above apply.

» Suitable to evaluate conditions containing
strings.

» If you want to learn more details on when
to use 1 f and when to use switch, visit:

» blogs.mathworks.com

Program Branching — switch — case I.

%

c = 0.5+*randi (100)
switch mod(c, 2)
case 1

disp('c is odd integer"')

case 0

disp('c is even integer')

otherwise

end

disp('c is decimal number')

BEOB17TMTB — Matlab Lecture 4: Loops, Program Branching

Program Flow

https://www.cvut.cz/en
https://blogs.mathworks.com/
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Program Branching — switch — case IL %

» Depending on the given grade from important
test, select the amount of money a student will
receive as an reward:

Grade Reward

1 1000
2 500
3 200
4 50
5 0

» Use switch — case statement.

BEOB17MTB — Matlab Lecture 4: Loops, Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Program Branching — switch — case III. Wg

» Create a script that, given lengths of two sides of a right triangle, calculates the length of

the third side (Pythagorean theorem).
» Two sides are known together with string marking the type of unknown side ('leg' for leg

or '"hyp' for hypotenuse).

%% HINT:
clear, clc
% input variables will be here
% including type of unknown side
switch type
case 'hyp'
% calculation here
case 'leg'
% calculation here
otherwise % unknown values
% return empty (default) values

end

BEOB17TMTB — Matlab Z B s, Pr am Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

What Does the Script Do? 1. %

» Try to estimate what the script below assigns to logResult variable depending on
input variable vec (a vector).
» Are you able to decide whether there is a MATLAB function doing the same?

% vec 1s a given vector
logResult = false;
m=1;
while (m <= length(vec)) && (logResult == false)
if vec(m) ~= 0
logResult = true;
end
m=m+ 1;
end

m Branching

BEOB17MTB — Matlab

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

n Branching

What Does the Script Do? II. %

» Try to estimate what the script below assigns to logResult variable depending on
input variable mat (a matrix).

» Are you able to decide whether there is a MATLAB function doing the same?

[

% mat is a given matrix

count = 0;

[mRows, nColumns] = size (mat);
for m = l:mRows

for n = 1:nColumns

if mat (m, n) ~=0
count = count + 1;
end
end
end
logResult = count == numel (mat);

BEOB17MTB — Matlab Z 8 n Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Example of Listing More Options In switch - case

» switch supports options listing
» Evaluation of values A1 and A2 in the same way:

switch my_expression
case {Al, A2}
% do something
otherwise
% do something else
end

BEOB17TMTB — Matlab

am Branching

%

Program Flow

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Program Branching

Infinite Loop — for Cycle (A Riddle) Fﬁg

» In this lecture we learned how to construct infinite loop with while cycle command
(>> while true, disp('ok'), end).
» Do you think, that the infinite loop can be constructed with the for cycle as well?

» How?
» Are there any restrictions? How many cycles will be performed and why?

Program Flow

BEOB17TMTB — Matlab Lecture 4: Loops, Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Exercises

BEOB17N

https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Exercise I.a %

» Fibonacci sequence: F; =1, Fy=1, F,=F,_1+ F,_o forn> 2.

BEOB17MTB — Matlab Z 4: Loops, Pr n Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Exercise I.b

» Draw a script to calculate values of Fibonacci

sequence up to certain value 1imit.

» plot the resulting series using function:

figure(l), plot(F, '-o'")
» Calculate length of Fibonacci spiral.

» Calculate approximations to the golden ratio:

— lim Fnia :M
14 2

n—oo n

» plot it: figure(2), plot (phi,

BEOB17MTB — Matlab

~ 1.618033

I_Orl)

Lecture 4: Loops, P

Fibonacci number

8
Element n

Golden ratio
5 F @ s L @

11

»m Branching

5

Element n

10

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Excercises

Exercise II.a %

» Create vector v € C**! which contains one
complex number from each quadrant.

Re{v1} > 0,Im{v1} >0
Re{vs} < 0,Im{vz} <0
RG{UQ} > O,Im{’Uz} <0
Re{vs} < 0,Im{vg} >0

» Prepare a code which can generate random
complex number. Determine its quadrant
and save it into v. Repeat the process until
vector v is not full.

BEOB17TMTB — Matlab Lecture 4: Loops, Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Exercise I1.b Wg

» Can you do the same without loop and program branching?

BEOB17TMTB — Matlab Z S am Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Exercise I11.a

» Try to determine the density of prime
numbers:

>

>

examine the functions primes
generating prime numbers,

for the orders 10! — 107 determine the
primes density (i.e., the number of
primes up to 10, to 100, ..., to 107).

Outline the dependence using plot.
Display results in logarithmic scale,
» loglog(xData, yData).
» How does the plot change?

BEOB17TMTB — Matlab

8

%% density of prime numbers

clear, clc, close all

N=7;

nPrimes = $ alocate here

orders = $ vector of orders 1071-10"7
your code here..

o
S
o
S
o
S
o

o

figure, plot (nPrimes)
figure, loglog(orders, nPrimes)

am Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Exercise I11.b

» Can the script be speeded-up?

» What does, in your view, have the
dominant impact on computation time?

» Is it necessary to compute primes in
every loop?

BEOB17TMTB — Matlab

Figure 2 —
File Edit View Inset Jools Deskiop Window Help
DEEHS | KRN E LS| 0E| O
108 T - - - -
105
s
? 10
£
&
o
S 10
[5]
=]
£
S
Z 102
10’
10°
10! 102 10° 10* 10° 108
order

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Excercises

Exercise IV.a Fﬁg

» Following expansion holds true:

arctan(x):Z(fl)"2n+1 :x—§+€77+§7...

n=0
» Based on the expansion for z = 1 estimate value of :
1 1

1 1
arctan(l):%:1_§+5_?+§_“.

» Determine the number of elements of the sum and computational time required to
achieve estimation accuracy better than 1-1076.

Lecture 4: Loops, Program Branching

BEOB17TMTB — Matlab

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Excercises

Exercise IV.b Fﬁg

» Estimate value of 7 using following expansion:

1 1 1

z:: dn +1) 4n+3):1-3+5-7+9-11

» Approximate value of 7 using following expansion with the expansion for arctan(z) from

the previous slide:
il Garcta; L + 2arcta ! + arcta L
— = I n|(— I n|{— i n
4 8 57 239

» Determine the number of elements of the sum and computational time required to
achieve estimation accuracy better than 1-1076.

» Compare all three solutions.

BEOB17TMTB — Matlab Lecture 4: Loops, Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Exercise IV. — Solution

BEOB17TMTB — Matlab Program Branching

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

Questions?

BEOB17MTB — Matlab
matlab@elmag.org

October 14, 2020
Winter semester 2020/21

This document has been created as a part of BEOB17MTB course.
Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted
only with the prior permission of the authors.
Acknowledgement: Filip Kozak, Pavel Valtr.

BEOB17TMTB — Matlab Lecture 4: Loops, P am Branching

https://cw.fel.cvut.cz/b201/courses/be0b17mtb
mailto:matlab@elmag.org
https://cw.fel.cvut.cz/b201/courses/be0b17mtb

	Loops
	Program Branching
	Excercises
	

	anm0:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

