
Lecture 2: Vectors & Matrices
B0B17MTB – Matlab

Miloslav Čapek, Viktor Adler, Michal Mašek, and Vít Losenický

Department of Electromagnetic Field
Czech Technical University in Prague

Czech Republic
matlab@fel.cvut.cz

February 22, 2021
Summer semester 2020/21

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 1 / 50

https://cw.fel.cvut.cz/b202/courses/mtb
mailto:matlab@fel.cvut.cz
https://cw.fel.cvut.cz/b202/courses/mtb

Outline

1. Matlab Editor

2. Matrix Creation

3. Operations with Matrices

4. Excercises

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 2 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matlab Editor

Matlab Editor

I It is often required to evaluate certain sequence of commands repeatedly ⇒ utilization of
Matlab scripts (plain ASCII coding).

I The best option is to use Matlab Editor,
I which can be opened using the following command:

>> edit

I A script is a sequence of statements what we have been up to now typing in the
command line.
I All the statements are executed one by one upon the launch of the script.
I The script operates over Matlab base workspace data.
I Scripts are suitable for quick analysis and solving problems involving multiple statements.

I There are specific naming conventions for scripts (and also for functions as we will see
later).

Sc
ri
pt
s
an

d
Fu

nc
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 3 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matlab Editor

Matlab Editor, R2019

Sc
ri
pt
s
an

d
Fu

nc
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 4 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matlab Editor

Script Execution, m-files

I To execute script:
I F5 function key in Matlab Editor,
I Current folder → select script → context menu → Run,
I Current folder → select script → F9,
I from the command line:
>> script_name

I Scripts are stored as so called m-files, .m
I Caution: If you have Mathematica installed, the .m files may be launched by

Mathematica.

Sc
ri
pt
s
an

d
Fu

nc
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 5 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matlab Editor

Data in Scripts

I Scripts can use data located in Workspace.
I Variables remain in the Workspace even after the calculation is finished.
I Operations on data in scripts are performed in the base Workspace.
I Matlab carries out commands sequentially.

Sc
ri
pt
s
an

d
Fu

nc
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 6 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matlab Editor

Useful Functions for Script Generation I.

I Function disp displays value of a variable in Command Window.
I Without displaying variable’s name and the equation sign “=”.
I Can be combined with a text (more on that later).
I Often it is advantageous to use more complicated but robust function sprintf.

a = 2^13 - 1;
b = [8*a 16*a];
b

a = 2^13 - 1;
b = [8*a 16*a];
disp(b);

Sc
ri
pt
s
an

d
Fu

nc
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 7 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matlab Editor

Useful Functions for Script Generation II.

I Function input is used to enter variables.
I If the function it terminated unexpectedly, the input request is repeated

A = input('Enter parameter A: ');

I It is possible to enter strings as well:
str = input('Enter String str', 's');

Sc
ri
pt
s
an

d
Fu

nc
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 8 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matlab Editor

Script Commenting

I MAKE COMMENTS!!
I Important/complicated parts of code.
I Description of functionality, ideas, change of implementation.

I Typical single-line comment:
% create matrix, sum all members
matX = [1, 2, 3, 4, 5];
sumX = sum(matX); % sum of matrix

I Multiple-line comment:
%{
This is a multiple-line comment.
Mostly, it is more appropriate to use
more single-line comments.

%}

I Cell mode enables to separate script into more blocks.
matX = [1, 2, 3, 4, 5];
%% CELL mode (must be enabled in Editor)
sumX = sum(matX);

Sc
ri
pt
s
an

d
Fu

nc
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 9 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matlab Editor

Cell Mode in Matlab Editor

I Cells enable to separate the code into smaller, logically compacted parts.
I Separator %%.
I The separation is visual only, but it is possible to execute a single cell – shortcut

CTRL+ENTER.

Sc
ri
pt
s
an

d
Fu

nc
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 10 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matrix Creation

Entering Matrices Using “:” I.

I Large vectors and matrices with regularly increasing elements can be typed in using colon
operator.

I a is the smallest element (“from”), x is increment, b is
the largest element (“to”)
A = a:x:b

>> A = 1:4:13
A =

1 5 9 13

I b doesn’t have to be element of the series.
I Last element N · x then follows the inequality:

|a+N · x| ≤ |b|

>> A = 1:4:10
A =

1 5 9

I If x is ommited, the increment is set equal to 1.
A = a:x:b

>> A = 3:8
A =

3 4 5 6 7 8

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 11 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matrix Creation

Entering Matrices Using “:” II.

I Using the colon operator “:” create:
I Following vectors

u = [1 3 . . . 99]

v = [25 20 . . . − 5]T

u = 1:2:99
v = (25:-5:-5).'

I Matrix
I Caution, the third column can’t be created using colon operator “:” only,

T =


−4 1

π

2

−5 2
π

4

−6 3
π

6



T = [-4:-1:-6; 1:3; pi/2 pi/4 pi/6].'

but can be created using “:” and dot operator “.” (we will see later).

T = [-4:-1:-6; 1:3; pi./(2:2:6)].'
T = [(-4:-1:-6).' (1:3).' (pi./(2:2:6)).']

300

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 12 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matrix Creation

Entering Matrices Using linspace, logspace I.

I Colon operator defines vector with evenly spaced points.
I In the case when fixed number of elements of a vector is required, use linspace:

A = linspace(a, b, N); >> A = linspace(0, 2, 5)
A =

0 0.5000 1.0000 1.5000 2.000

I When the N parameter is left out, the vector with 100 elements is generated:
A = linspace(a, b);

I The function logspace works analogically, except that logaritmic scale is used
A = logspace(a, b, N); M

at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 13 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matrix Creation

Entering Matrices Using linspace, logspace II.

I Create a vector of 100 evenly spaced points in the interval [−1.15, 75.4]

u = linspace(-1.15, 75.4)

I Create a vector of 201 evenly spaced points in the interval [−100, 100] sorted in
descending order.

v = linspace(100, -100, 201)

I Create a vector with spacing of −10 in the interval [−100, 100] sorted in descending
order.
I try both options using linspace and colon “:”

v = 100:-10:-100

v = linspace(100, -100, 200/10+1)

200

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 14 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matrix Creation

Entering Matrices Using Functions I.

I Special types of matrices of given sizes are needed quite often.
I Matlab offers a number of functions to serve the purpose.

I Example: matrix filled with zeros
I Will be used frequently.

zeros(m) % matrix of size [m x m]
zeros(m, n) % matrix of size [m x n]
zeros(m, n, p, ..) % matrix of size [m x n x p x ..]
zeros([m,n]) % matrix of size [m x n]

B = zeros(m, 'single') % matrix of size [m x n], of type 'single'

% see documentation for other options

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 15 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matrix Creation

Entering Matrices Using Functions II.

I Following useful functions analogical to the zeros function are available

ones matrix filled with ones
eye identity matrix

NaN, Inf matrix filled with NaN, matrix filled with Inf
magic matrix suitable for Matlab experiments, notice its properties

rand, randn, randi matrix filled with random numbers coming from uniform and normal
distribution, matrix filled with uniformly distributed random integers

randperm returns vector containing random permutation of numbers
diag creates diagonal matrix or returns diagonal of a matrix

blkdiag construct block diagonal matrix from input arguments
cat groups several matrices into one

true, false creates a matrix of logical ones and zeros

I For further functions see Matlab → Mathematics → Elementary Mathematics →
Constants and Test Matrices.

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 16 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matrix Creation

Entering Matrices Using Functions III.

I Create following matrices
I use Matlab functions
I begin with matrices you find easy to cope with.

M1 =

[
NaN NaN
NaN NaN

]
M2 =

[
1 1 1 1

]
M3 =

 2 0 0
0 3 0
0 0 −5



M4 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



M1 = NaN(2)

M2 = ones(1, 4)

M3 = diag([2 3 -5])

M4 = diag([1 1 1], 1)
M4 = [zeros(4, 1) [eye(3); zeros(1, 3)]]
M4 = diag(ones(3, 1), 1)

360

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 17 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matrix Creation

Entering Matrices Using Functions IV.

I Try to create an empty three-dimensional array of type double.

A1 = zeros(0, 0, 0) % or ones(...) etc.

I Can you find another option?

A2 = double.empty(0, 0, 0)

I empty is hidden (but public) method of all non-abstract classes in Matlab.

360

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 18 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matrix Creation

Dealing with Sparse Matrices

I Matlab provides support for working with sparse matrices.
I Most of the elements of sparse matrices are zeros and it pays off to store them in a more

efficient manner.

I To create a sparse matrix S out of matrix A:
S = sparse(A)

I Conversion of a sparse matrix to a full matrix:
B = full(S)

I In the case of need see Help for other functions.

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 19 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Matrix Creation

Entering Matrices

I Quite often, there are several options how to create a given matrix.
I It is possible to use an output of one function as an input of another function in Matlab:

I Consider:
I clarity,

I simplicity,

I speed,

I convention.

plot(diag(randn(10, 1), 1))

I E.g. band matrix with “1” on main diagonal and with “2” and “3” on secondary diagonals.
N = 10;
diag(ones(N, 1)) + diag(2 * ones(N - 1, 1), 1) + diag(3 * ones(N - 1, 1), -1)

I Can be done using for cycle as well (see later in semester), might be faster . . .
I Some other idea?

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 20 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Transpose and Matrix Conjugate

I Pay attention to situations where the matrix is complex, A ∈ CM×N .
I There are two operations:

transpose AT = [Aij]
T

= [Aji] transpose(A) ← don’t use A.'

transpose + conjugate AH = [Aij]
H

= [A∗]
T ctranspose(A) ← don’t use A'

>> A = magic(2) + 1j * magic(2)'
A =

1.0000 + 1.0000i 3.0000 + 4.0000i
4.0000 + 3.0000i 2.0000 + 2.0000i

>> A.'
ans =

1.0000 + 1.0000i 4.0000 + 3.0000i
3.0000 + 4.0000i 2.0000 + 2.0000i

>> A'
ans =

1.0000 - 1.0000i 4.0000 - 3.0000i
3.0000 - 4.0000i 2.0000 - 2.0000i

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 21 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Matrix Operations I.

I There are other useful functions apart from transpose (transpose) and matrix diagonal
(diag):

P = magic(4)

I upper triangular matrix,
U = triu(P)

I lower triangular matrix,
L = tril(P)

I a matrix can be modified
taking into account
secondary diagonals as well
V = triu(P, -1)

P =


16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

 U =


16 2 3 13
0 11 10 8
0 0 6 12
0 0 0 1



L =


16 0 0 0
5 11 0 0
9 7 6 0
4 14 15 1

 V =


16 2 3 13
5 11 10 8
0 7 6 12
0 0 15 1



M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 22 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Matrix Operations II.

I Function repmat is used to copy (part of) a matrix.
B = repmat(A, m, n)

A =
[
A11 A12 A13

]
B = repmat(A, 1, 2)
C = repmat(A, [2 1])

B =
[
A11 A12 A13 A11 A12 A13

]
C =

[
A11 A12 A13

A11 A12 A13

]
I repmat is a very fast function.

I Comparison of execution time of creation a 104 × 104 matrix filled with pi (HW, SW and
Matlab version dependent):
X = ones(1e4) % computed in 0.71s
Y = repmat(1, 1e4, 1e4) % computed in 0.4s, BUT... don't use it

I It is for you to consider the way of matrix creation. . .

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 23 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Matrix Operations III.

I Function reshape is used to rearrange a matrix
B = reshape(A, m, n)

I e.g.

A =

[
A11 A12

A21 A22

]
C = reshape(A, [4, 1])
D = reshape(A, 1, 4)
D = reshape(A, [], 4)

C =


A11

A21

A12

A22


D =

[
A11 A21 A12 A22

]

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 24 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Matrix Operations IV.

I Following functions are used to swap
the order of
I columns: fliplr,

B = fliplr(A)

I rows: flipud,
C = flipud(A)

I row-wise or column-wise: flip.
B = flip(A, 1)
C = flip(A, 2)

I The same result is obtained using
indexing (later in the course).

A =

[
A11 A12 A13

A21 A22 A23

]

B =

[
A13 A12 A11

A23 A22 A21

]

C =

[
A21 A22 A23

A11 A12 A13

]

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 25 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Matrix Operations V.

I Circular shift is also available.
I Can be carried out along an arbitrary dimension (row-wise/column-wise).
I Can be carried out in both directions (back/forth).

I Consider the difference between flip and circshift.
B = circshift(A, -2)
C = circshift(A, [-2 1])

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33



B =

 A31 A32 A33

A11 A12 A13

A21 A22 A23

 C =

 A33 A31 A32

A13 A11 A12

A23 A21 A22



M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 26 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Matrix Operations VI.

I Convert matrix A into the form of matrices A1 to A4.
A = [1 pi; exp(1) -1i]

A =

[
1 π
e −i

]
I Use repmat, reshape, triu, tril and conj.

A1 =

[
1 π 1 π 1 π
e −i e −i e −i

]
A2 =

[
1 π e −i

] A3 =


1 π
e +i
1 π
e +i
1 π
e +i

 A4 =


1 π 0 0 0 0
e −i e 0 0 0
0 π 1 π 0 0
0 0 e −i e 0
0 0 0 π 1 π
0 0 0 0 e −i



A1 = repmat(A, [1 3])

A2 = reshape(A.', [1 4])

A3 = repmat(conj(A), [3 1])

A4 = triu(tril(repmat(A, 3), 1), -1)

450

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 27 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Matrix Operations VII.

I Create the following matrix (use advanced techniques)

A =

 1 2 3 1 2 3
0 2 4 0 2 4
0 0 5 0 0 5



A = [1:3; 0:2:4; 0 0 5];
A = repmat(A, [1 2])

I Create matrix B by swapping columns in matrix A.

B = fliplr(A)

I Create matrix C by swapping rows in matrix B.

C = flipud(B)

300

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 28 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Matrix Operations VIII.

I Compare and interpret following commands.
x = (1:5).' % entering vector
x = repmat(x, [1 10]); % 1. option
X = x(:, ones(10, 1)); % 2. option

I repmat is powerful, but not always the most time-efficient function.

150

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 29 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Vector and Matrix Operations

I Remember that matrix multiplication is not commutative, i.e. AB 6= BA.
I Remember that vector × vector product results in

vM,1u1,N = wM,N

v11
v21
v31

u11 u12

w11 w12

w21 w22

w31 w32

v1,MuM,1 = w1,1

v11 v12 v13

u11
u21
u31

w11

. . . pay attention to the dimensions of matrices!

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 30 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Element-by-element Vector Product

I It is possible to multiply arrays of the same size in the element-by-element manner in
Matlab.
I Result of the operation is an array.
I Size of all arrays are the same, e.g. in the case of 1× 3 vectors:

a =
[
a1 a2 a3

]
b =

[
b1 b2 b3

]

>> a*b a1 a2 a3 * b1 b2 b3 →
Error using *

(Inner matrix dimensions must agree.)

>> a.*b a1 a2 a3 .* b1 b2 b3 → a1b1 a2b2 a3b3 = [aibi]

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 31 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Element-by-element Matrix Product

I If element-by-element multiplication of two matrices of the same size is needed, use
the .* operator.
I It is so called Hadamard product/element-wise product/Schur product : A ◦B.
I These two cases of multiplication are distinguished:

>> A*B
A11

A21

A12

A22

*

B11

B21

B12

B22

→
A11B11 +A12B21

A21B11 +A22B21

A11B12 +A12B22

A21B12 +A22B22

>> A.*B
A11

A21

A12

A22

.*

B11

B21

B12

B22

→
A11B11

A21B21

A12B12

A22B22

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 32 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Compatible Array Size

I Since Matlab version R2016b most two-input (binary) operators support arrays that
have compatible sizes.
I Variables have compatible sizes if their sizes are either the same or one of them is 1 (for all

dimensions).
I Examples:

I ◦ represents arbitrary two-input element-wise operator (+, -, .*, ./, &, <, ==, . . .).

◦ =

[2× 2] [2× 2] [2× 2]

◦ =

[2× 2] [2× 1] [2× 2]

◦ =

[2× 2] [1× 1] [2× 2]

◦ =

[3× 1] [1× 2] [3× 2]

◦ =

[4× 3× 1] [1× 3× 3] [4× 3× 3] M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 33 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Element-wise Operations I.

I Elements-wise operations can be applied to vectors as well in Matlab. Element-wise
operations can be usefully combined with vector functions.

I It is possible, quite often, to eliminate 1 or even 2 for-loops!!!
I These operations are exceptionally efficient → allow use of so called vectorization (see

later).

f (x) =
10

(x+ 1)
tan (x) , x ∈

[
−π

4
,
π

4

]
x = -pi/4:pi/100:pi/4;
fx = 10 ./ (1 + x) .* tan(x);
plot(x, fx)
grid on

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 34 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Element-wise Operations II.

I Evaluate functions of the variable
x ∈ [0, 2π]:

f1 (x) = sin (x)

f2 (x) = cos2 (x)

f3 (x) = f1 (x) + f2 (x)

I Evaluate the functions in evenly
spaced points of
the interval, the spacing is ∆x = π/20.

x = 0:pi/20:2*pi;
f1 = sin(x);
f2 = cos(x).^2;
f3 = f1 + f2;

I For verification use:
plot(x, f1, x, f2, x, f3)

300

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 35 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Element-wise Operations III.

I Depict graphically following functional
dependency in the interval x ∈ [0, 5π].

I Plot the result using the following function:

clear; clc;
x = linspace(0, 5*pi, 1e5);
f4 = (-cos(3*x)) ./ ...
(cos(x) .* sin(x - pi / 5) - pi);
plot(x, f4)

I Explain the difference in the way of
multiplication of matrices of the same size.

>> A*B >> A.*B >> A'.*B

f4 (x) =
− cos (3x)

cos (x) sin
(
x− π

5

)
− π

plot(x, f4)

240

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 36 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Element-wise Operation IV.

I Evaluate the function f (x, y) = xy, x, y ∈ [0, 2], use 101 evenly spaced points in both x
and y.

I The evaluation can be carried out either using vectors, matrix element-wise vectorization
or using two for loops.
I Plot the result using surf(x, y, f).
I When ready, try also f(x, y) = x0.5y2 on the same interval.

x = linspace(0, 2, 101);
y = x.';
f = x.*y;
figure;
surf(x, y, f)

360

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 37 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Matrix Operations

I Contruct block diagonal matrix: blkdiag.

A = 1;
B = [2 3; -4 -5];
C = blkdiag(B, A); A = A11 B =

B11

B21

B12

B22

C =

B11

B21

B12

B22

A1100

0

0

I Arranging two matrices of the same size: cat.

C = cat(2, A, B)
C = cat(1, A, B)
C = cat(3, A, B) A11 A12

A21 A22

B11 B12

B21 B22

A11 A12

A21 A22

B11 B12

B21 B22

B12

B21 B22

A11 A12

A21 A22

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 38 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Size of Matrices and Other Structures I.

I It is often needed to know sizes of matrices and arrays.
I Function size returns vector giving the size of a matrix/array.

A = randn(3, 5);
d = size(A) % d = [3 5]

I Function length returns largest dimension of an array.

length(A) = max(size(A)) A = randn(3, 5, 8);
e = length(A) % e = 8

I Function ndims returns number of dimensions of a matrix/array.

ndims(A) = length(size(A)) m = ndims(A) % m = 3

I Function numel returns number of elements of a matrix/array.

numel(A) = prod(size(A)) n = numel(A) % n = 120

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 39 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Size of Matrices and Other Structures II.

I Create an arbitrary 3D array.
I You can make use of the following commands:

A = rand(2 + randi(10), 3 + randi(5));
A = cat(3, A, flipud(fliplr(A)))

I And now:
I Find out the size of A.

size(A)

I Find out the number of elements of A.

numel(A)

I Find out the number of elements of A in the “longest” dimension.

length(A)

I Find out the number of dimensions of A.

ndims(A)

250

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 40 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Squeeze

I Function squeeze removes dimension of an array with length 1.
I If the input is scalar, vector or array without any dimension of the length 1, the output is

identical to the input.

squeeze() =

[1× 3× 3] [3× 3]

squeeze() = squeeze() = squeeze() =

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 41 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Operations with Matrices

Function gallery

I Function enabling to create a vast set of matrices that can be used for Matlab code
testing.

I Most of the matrices are special-purpose.
I Function gallery offers significant coding time reduction for advanced Matlab users.

I See: help gallery or doc gallery

I Try for instance:
gallery('pei', 5, 4)
gallery('leslie', 10)
gallery('clement', 8)

M
at
ri
x
O
pe

ra
ti
on

s

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 42 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Excercises

Exercises

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 43 / 50

https://cw.fel.cvut.cz/b202/courses/mtb

Excercises

Exercise I.

I Create matrix M of size size(M) = [3 4 2] containing random numbers coming
from uniform distribution on the interval [−0.5, 7.5].

I (x) = (Imax − Imin) rand (. . .) + Imin

rand() 8*rand() 8*rand() - 0.5

0 1 0 8 −0.5 7.5

M = 8*rand(3, 4, 2) - 0.5

360

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 44 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Excercises

Exercise II.

I Consider the operation a1^a2. Is this operation applicable to the following cases?

a1 – matrix a2 – scalar

YES

a1 – matrix a2 – matrix

NO

a1 – matrix a2 – vector

NO

a1 – scalar a2 – scalar

YES

a1 – scalar a2 – matrix

YES

a1, a2 – matrix a1.^a2

YES

You can always create the matrices a1, a2 and make a test . . .

200

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 45 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Excercises

Exercise III.

I Make corrections to the following piece of code to get values of the function f (x) for 200
points on the interval [0, 1]:

% erroneous code
x = linspace(0, 1);
clear;
g = x^3+1; H = x+2;
y = cos xpi; z = x.^2;
f = y*z/gh

% correct code
clear;
x = linspace(0, 1, 200);
g = x.^3+1; h = x+2;
y = cos(x*pi); z = x.^2;
f = y.*z./(g.*h)
plot(x, f);

f (x) =
x2 cos (πx)

(x3 + 1) (x+ 2)

I Find out the value of the function for x = 1 by
direct accessing the vector.

I What is the value of the function for x = 2?
I To check, plot the graph of the function f (x).

420

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 46 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Excercises

Exercise IV.

I Create a random matrix M of size N ×N containing only 0 and 1 elements.

M = randi(2, 5, 5) - 1;

I Compute the percentage of 0 elements in matrix.

percentage = 100 - 100 * sum(sum(M)) / numel(M);

I Compute number of 1 elements on the matrix main diagonal.

mainDiagonal = diag(M);

300

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 47 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Excercises

Exercise V.a

I A proton, carrying a charge of Q = 1.602 · 10−19 C with a mass of m = 1.673 · 10−31 kg
enters a homogeneous magnetic and electric field in the direction of the z axis in the way
that the proton follows a helical path; the initial velocity of the proton is
v0 = 1 · 107 ms−1. The intensity of the magnetic field is B = 0.1 T, the intensity of the
electric field is E = 1 · 105 Vm−1

I Velocity of the proton among the z axis is v =
QE

m
t+ v0,

I where t is time, traveled distance along the z axis is z =
1

2

QE

m
t2 + v0t,

I radius of the helix is r =
vm

BQ
,

I frequency of orbiting the helix is f =
v

2πr
,

I the x and y coordinates of the proton are x = r cos (2πft), y = r sin (2πft).

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 48 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Excercises

Exercise V.b

I Plot the path of the proton in space in the time interval from 0 ns to 1 ns in 1001 points
using function comet3(x, y, z).

clear; clc; close all;

m = 1.673e-31; Q = 1.609e-19;
v0 = 1e7; E = 1e5; B = 0.1;
t = linspace(0, 1e-9, 1001);
v = Q * E * t / m + v0;
z = 0.5 * Q * E / m * t .^ 2 + v0 * t;
r = v * m / (B * Q);
f = v / (2 * pi * r);
x = r .* sin(2 * pi * f * t);
y = r .* cos(2 * pi * f * t);

comet3(x, y, z);

420

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 49 / 50

https://www.cvut.cz/en
https://cw.fel.cvut.cz/b202/courses/mtb

Questions?
B0B17MTB – Matlab

matlab@fel.cvut.cz

February 22, 2021
Summer semester 2020/21

This document has been created as a part of B0B17MTB course.
Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted
only with the prior permission of the authors.
Acknowledgement: Filip Kozak, Pavel Valtr.

B0B17MTB – Matlab Lecture 2: Vectors & Matrices 50 / 50

https://cw.fel.cvut.cz/b202/courses/mtb
mailto:matlab@fel.cvut.cz
https://cw.fel.cvut.cz/b202/courses/mtb

	Matlab Editor
	Matrix Creation
	Operations with Matrices
	Excercises
	

