
B(E)3M33MRS - Task 03 Swarm

Pavel Petráček

November 22, 2023

v1.01

Contents

1 Introduction 2

2 Requirements 2

3 Preliminaries 2
3.1 Local-information swarming . 2

3.1.1 The Boids model . 3
3.2 Swarming with physical agents between obstacles . 3

3.2.1 Rules weighting . 3
3.2.2 Obstacle avoidance . 4

3.3 Consensus in distributed systems . 5

4 Task T.1: Boids 6
4.1 Description . 6
4.2 Perceptual inputs . 8
4.3 Implementation . 9
4.4 Tips . 9
4.5 Testing, tuning, and validation . 10
4.6 Scoring . 10

5 Task T.2: Hunting the robot 10
5.1 Objectives . 10
5.2 Environment . 11
5.3 Perceptual inputs . 11
5.4 Implementation . 12
5.5 Tips . 14
5.6 Testing, tuning, and validation . 15
5.7 Scoring . 15

6 Starting the simulation 15

7 Dos and Don’ts 16
7.1 Dos . 16
7.2 Don’ts . 17

8 Submit to BRUTE 18

9 Change log 18

1

1 Introduction

The third task focuses on sensor-driven decentralized control and decision making in multi-agent systems. The
goal of the task is similar to the objective of task 02 formation; however, the architecture will differ — you will be
writing programs which will be run many times in parallel with the same parametrization, once for each agent in the
world.

2 Requirements

p Task T.1: Implement a decentralized multi-agent control and value-agreement strategy.

u Program the contents of the updateAgentState() function in
task_03_swarm:packages/swarm/src/boids.cpp.

p Task T.2: Implement a non-increasing function for weighting of vectors separating an agent from others and
from obstacles.

u Program the contents of the weightingFunction() function in
task_03_swarm:packages/swarm/src/swarm.cpp.

p Task T.2: Implement a decentralized multi-agent control strategy for finding a mobile source of signal.

u Program the contents of the updateAction() function in
task_03_swarm:packages/swarm/src/swarm.cpp.

The red-labeled circle tasks are verified automatically using the Brute upload system.

3 Preliminaries

Decentralized formation control is a multi-agent control scheme that cannot be implemented using a centralized
element which would act on the base of availability of all the required data. Instead, the control scheme is to be
written such that both local and global cooperation is achieved with respect to the current or short history of past
sensory observations. These sensory observations are available only locally, are subject to outages (e.g., due to visual
occlusions), and contain stochastic noise. However, studies on swarming theory (hot research topic) have shown that
a decentralized multi-robot system can use this deprived information to globally behave as a cooperative group — a
self-organizing behavior emerging from local information and actions only. To achieve such a behavior, we need to
introduce two building blocks — sensor-driven control and the ability to agree on a common goal with partial and
inaccurate information.

3.1 Local-information swarming

In nature, there exist biological systems capable of forming groups comprising of rather simple agents. Although
these agents usually have highly limited sensory inputs, these systems are capable of both local and global behaviors
scalable up to thousands of agents (e.g., bird flocks and fish schools). The research of these systems has shown
that the behavior is self-organizing and may be emerging from local actions arising from both the interoceptive and
exteroceptive information. In natural systems, these actions (or behaviors) represent the need for finding food, water
and shelter, scouting and avoiding predators, socialization, mating, migration, hibernation, and even fun. Species to
species, these behaviors and their spectra differ and are subject to different priorities based on the domain, social
habits and structures, position of the species in the food chain, period of the year, and many other factors.

The primary branch of research on swarming behaviors models these behaviors as multi-variable functions and utilizes
them to act reactively with respect to the sensory input, typically only to the most recent one. These models combine
the functions in order to derive the physical action (ideally optimal) to be performed in the next iteration. To make
the models scalable, the amount of interactions is locally limited. This is done primarily by one of the two approaches
— topological and metric. In the topological sense, the amount of exteroceptive information is limited to a finite
number of nearest agents (e.g., field studies show that starlings act on the basis of six or seven animals surrounding
it). In the metric sense, the agent acts on the basis of all agents within a fixed-size neighborhood, typically modeled
as an agent-centered sphere. In this assignment, we’ll be considering the metric approach. Common attribute of these

2

models is that they define a next-iteration action a(·) ∈ RM as a linear combination of N aggregated functions (rules,
behaviors) represented as f(·) ∈ RN×M

a(·) = f(·) ω(·) = [f1(·), f2(·), . . . , fN (·)] [ω1(·), ω2(·), . . . , ωN (·)]T , (1)

where M is the domain dimension, fi(·) ∈ RM , i ∈ 1, . . . , N , is a column vector and ω(·) ∈ RN is a rule-weighting
column vector of scalar functions.

3.1.1 The Boids model

One of the oldest, simplest, and most utilized models combining several functions into a reactive action is the Boids
model. For each neighbor within an agent neighborhood, the Boids model combines the following three rules into a
final acting force:

� Velocity alignment: move in the same direction as your neighbors.

� Cohesion: stay close to your neighbors.

� Separation: avoid collisions with your neighbors.

To limit the amount of neighbors, the Boids model limits the perception in a metric fashion, sometimes with a different
perceptual radius for each of the rules.

Given a set N = {(pi,vi)} of neighbors of an arbitrary finite size |N | � ∞, where each neighbor i is specified by its
position pi ∈ R3 and velocity vi ∈ R3 in the 3D space, the Boids model produces for an agent at position p an action
a(p,v,N) ∈ R3. With relation to (1), this action is given as

a(p,v,N) = [fa(v,N), fc(p,N), fs(p,N)] [ωa, ωc, ωs]
T
, (2)

where

fa(v,N) =
1

|N |+ 1

v +

|N |∑
i=1

vi

 , fc(p,N) =
1

|N |

|N |∑
i=1

pi − p, fs(p,N) =
1

|N |

|N |∑
i=1

p− pi, (3)

represent the alignment, cohesion, and separation rules; and ω = [ωa, ωc, ωs] represents scalar weighting coefficients.
In this notation1, the cohesion and separation rules force an agent to stay close to and separate from the weighted
geometrical center of the neighbors set N . Although very simple, the Boids model produces self-organizing behavior
with its properties being directly related to the vector ω. If no noise is present in the observations, the model converges
to an equilibrium of forces in a finite number of iterations. In the equilibria, the distance between the agents relates
directly to the ratios of the coefficients in the ω parametrization.

The Boids model validated that a set of decoupled rules can be combined together to reasonably mimic the behavior
observed in biological systems. Because it was the first model proposing such a methodology, it is the baseline for
further and more elaborate models combining a set of decoupled rules.

In the task T.1 of this assignment, you will be utilizing this model and selecting a feasible vector ω in order to
achieve collective navigation in a simplistic world. In the task T.2 of this assignment, you may utilize the model
partially or entirely, but you will have to design your own rules to succeed, particularly for navigation through the
environment.

3.2 Swarming with physical agents between obstacles

3.2.1 Rules weighting

The swarming models aggregating the decoupled behaviors according to (1) are designed by default for virtual dimen-
sionless particles. In the original models, the particles are not compensated for their overlaps and thus collisions among
the particles may occur. This makes these models unfeasible for use on real agents. To assure collision-free behavior of
the system, we introduce non-linear distance-based weighting to the rules handling the separation of the agents. Such
a function is arbitrary, but has a clear functionality — prevent collisions between two physical or virtual Unmanned
Aerial Vehicles (UAVs) by scaling high with low mutual distance and vice versa. Example of such a function is shown
in Figure 1. One of the objectives of task T.2 is to design such a non-increasing function (does not have to be exactly
the one shown in Figure 1) which will lead to safety and stability of your formation.

1Note that the equations are derived from the linguistic description and their exact formulation is not set.

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

10

20

mutual distance (m)

w
ei

gh
t

(-
)

Safety limit
Weight

Figure 1: Example weighting as a function of mutual distance between two agents.

With the weighting function being related to the agent-to-agent distance, we may rewrite (2) to

a(p,v,N) = [fa(v,N), fc(p,N), fs(p,N)] [ωa, ωc, ωs(p,N)]
T
. (4)

3.2.2 Obstacle avoidance

The swarming models have been extended with variety of mechanisms to avoid obstacles. One of these mechanisms
introduces the concept of virtual agents. A virtual agent represents, in some arbitrary way, either single obstacle or
several obstacles at once. Similarly to a physical agent, a virtual agent is perceivable only in a local neighborhood
and is characterized by a state. The state characterization of virtual agents allows us to easily utilize the same (or at
least very similar) behaviors defined for the physical agent-to-agent cooperation (e.g., the Boids rules) for the virtual
agents and hence to avoid obstacles with minimal overhead (i.e., implementation, computation).

To showcase an example, Figure 2 shows the virtual agents derived for circular and line-segment obstacles. In this
example, the states of the virtual agents for agent A with virtual position p and virtual velocity v have been obtained
as follows.

For circular obstacles, the virtual agents have virtual position equal to the closest point on the circle to agent A and
virtual velocity defined as

pi = p +

(
1− ri
||ci||2

)
ci, vi =

ri
||ci||2

(
I− cic

T
i

||ci||22

)
v, (5)

where ri is the radius and ci is the circle center of a circular obstacle i in frame of agent A, and I ∈ R3×3 is the
identity matrix.

For line-segment obstacles, the virtual agents have virtual position pi equal to the closest point on the line segment
to agent A and virtual velocity given as

vi =
1

||pi||2
(
I− nin

T
i

)
v, (6)

where ni is the unit normal vector of the line segment.

It is clear from Figure 2 that the virtual position lies on the edge of an obstacle and the virtual velocity is a distance-
scaled vector steering the movement along the respective obstacle. The definition in (5) and (6) assures that the vectors
vi lie in the same half-space of the space as v, where the space is divided by a hyperplane p + t(pi −p), t ∈ R.

Part of the objective of task T.2 is to navigate a set of UAVs through a structured obstacle-filled environment. To do
so, you may exploit the concept of virtual agents, e.g., by redefining (2) to

a(p,v,N ,O) = [fa(v,N ,O), fc(p,N), fs(p,N ,O)] [ωa, ωc, ωs(p,N ,O)]
T
. (7)

Remark 1. The environment in task T.2 does not have circular nor line-segment obstacles — you have to design
the states of your virtual agents on the basis of the environment structure and available data.

4

|O| = 2

A

a(O)
p1 p2

v1
v2

|O| = 3

A

a(O)

p1
p2

p3

v1

v2

v3

|O| = 2

A
a(O)

p1

p2

v1

v2

Figure 2: Example of virtual agents in an environment filled with circular and line-segment obstacles. The obstacles
(the set O) are perceived within a perception radius (light blue circle), with one virtual agent representing one obstacle.
The state of the virtual agents is comprised of a position pi (red dots) and a velocity vi (blue arrows), i ∈ 1, 2, 3, in the
body frame of agent A. The output action a(O) (red arrow) is the result of applying an upwards-steering navigation
and the Boids rules, as defined in (7) and weighted according to Figure 1, on the set of obstacles O.

3.3 Consensus in distributed systems

Achieving consensus within a decentralized multi-agent system is about coming to an agreement about a value of
a single or multiple variables among several distributed nodes in the presence of a number of faulty or uninformed
agents. Some of the nodes/agents may fail or be unreliable in other ways, hence the consensus protocols must be
robust to failures. There are plethora of models tackling consensus in various systems with different sources of failures,
architectures, and properties. These models tackle the following selected problems:

� dimensions of the value to be agreed on — single value (e.g., Paxos protocol), binary consensus, and multiple
values (e.g., Multi-Paxos and Raft protocols),

� failure types — crash (an agent abruptly stops and does not start working again) or a Byzantine crash (unspecified
failure of an arbitrary type — e.g., sending contradictory/conflicting information or pausing activity for an
arbitrary time period),

� time synchronization — synchronous and asynchronous systems,

� message authentication — required, allowed, or none,

� network topology — fully connected graphs, rings, trees, dynamic networks (agents come and leave the network
arbitrarily),

� uniformity — non-uniform (agents may decide on different values) and uniform (no two agents are allowed to
decide on different values).

Tackling all these problems is out of our scope of this task, so we will narrow our focus to the architecture of our tasks
presented in section 4 and section 5. Our objectives require to uniformly agree on a single value in an asynchronous
dynamic network where the failures can be modeled as a Byzantine crash. This combination of attributes makes the
consensus probably the hardest to be achieved, yet required in a dynamic multi-agent system. It is tackled by two
main concepts — voting on a value or a majority selection — based on the current available information.

In the voting scheme, an agent can propose a value and the receiving agents may or may not decide to accept it. A
common approach in this scheme is to not propose a value but rather propose on becoming a leader of the group. Once
the agents decide on a leader, the leader decides on the value of the entire system. However, problem of this concept

5

is how to decide on the leader and how to make sure the leader’s decision is correct. In an unconnected multi-agent
system, there may also be multiple leaders, which yields further problems in selecting which leader is superior if two
or more leaders meet.

In the majority selection scheme, each agent decides on its value with respect to the current or a history of received
information. This seems to go well with definition of swarming and with the objectives of our tasks, but this concept
is sensitive to errors and inaccuracies. Implementing a majority selection must be robust to probabilistic errors. One
way to do so in a single-value consensus over a fixed-domain (our case in T.1 where the agents are agreeing on a
single color out of four possible) is to represent the value with a probabilistic distribution and fusing the available
information using the Bayes filter, such as

p̄k(Ci) =
p(Z|Ci)p̄k−1(Ci)

ηk
(8)

for deciding the belief (differentiated from probability by the overline p̄) of state Ci, i ∈ 1, . . . ,M , at time step k out of

M discrete values given observations Z. Variable ηk represents a normalization constant ensuring that
∑M

i=1 p̄k(Ci) = 1.
Deciding on the value of an agent based on the probability distribution generated with the use of Bayes filter lowers
the negative effects of stochastic noise in the measurements. Note that the equation above uses only the sensor model
and misses the action model typical for Bayes filters in mobile robotics.

Remark 2. If p̄(Ci) = 1, then p̄(Cj) = 0, j ∈ 1, . . . ,M, j 6= i, since
∑M

i=1 p̄(Ci) = 1. This makes p̄(Ci) dominant
and makes the value of p(Z|Cj) irrelevant in future iterations of the Bayes filter. Once p̄(Ci) = 0, it will never be
nonzero again, no matter the acquired measurements. Because of this, it is a common practice to clamp the values
of a discrete probability distribution to a certain interval such that 0 < pmin ≤ p̄(Ci) ≤ pmax < 1, i ∈ 1, . . . ,M ,

and
∑M

i=1 p̄(Ci) = 1. This is particularly important in a dynamic world where the distribution changes over time,
as is the case of our task.

4 Task T.1: Boids

4.1 Description

The task focuses on implementing self-organizing navigation behavior scalable up to an arbitrary amount of agents.
The behavior requires the agents to be capable of a collective decision making, i.e., to reach consensus on a common
value. The control approach will be run N times in N independent synchronous instances with identical parametriza-
tion.

The task environment is bounded by rectangular bounds outside of which lives a terribly frightening, yet invisible
predator. Four static beacons are located inside the rectangle, each defined by two distinct colors — color of the beacon
itself C and color of the beacon it points to C→. Inside the bounds live the agents trying to agree on what color should
they all possess. Both the beacons and agents can be only of four distinct colors: {red, green, blue, orange}. Colors of
the beacons and initial colors of the agents are randomized during every run of the task. An example environment
of the task is shown in Figure 3.

The agents have the following properties:

� The agents are modeled as differential wheel drives with the forward velocity constrained to a strictly positive
interval.

� Movement of the agents is limited to 2D.

� The agents know their own color and see position, velocity, and color of the agents in a circular neighborhood
with a constant radius.

� No direct communication among the agents is possible.

� The agents have no memory. They have to work with only the current available information.

� In each simulation iteration outside the initialization phase (see below), the agents can die (the terribly
frightening predator is sleeping during the initialization phase) if one of these scenarios happens:

1. If two or more agents hit each other (are 0.3 m close or less), the weakest (a hidden state) one of them dies
from the collision with probability of 30 %.

6

Figure 3: Example world of task T.1. The black rectangle defines the world bound. Inside the rectangle, the four
colored circles denote beacons, each defined by two colors — inner color is its own color, outer color is the color of
the beacon it points to. The agents are the smaller circles, here all in green. The agents which see each other are
connected via colored edges. The beacons and the agents can yield only the colors {red, green, blue, orange} whereas
the inactive parts of the environment are colored in black. Dead agents are represented by black squares. Beacons,
world bounds, nor dead agents can move.

2. If an agent moves outside the world bound, it dies with probability of 1 % by terrible death of being eaten
by the invisible, yet terribly frightening and always hungry predator.

3. If an agent does not have at least 2 other agents in radius of 5 m, it dies with probability of 20 % by
loneliness.

� Agents distinguish colors of other nearby agents perfectly with 0 % error rate.

� When an agent is within the outer radius of a beacon, it may see the color C→ the beacon points to. However,
the agents are very bad in distinguishing colors of the beacons and may randomly classify C→ as one of the three
remaining colors with probability of 50 %. Although the agents are generally bad in distinguishing beacons’ colors,
80 % of the agents were only taught to distinguish colors of other agents — these agents cannot distinguish colors
of the beacons at all. However, the agents are socially responsible, thus if an agent sensitive to beacon colors is
dying, the last thing it does is that it teaches a random living beacon-colorblind agent how to distinguish beacon
colors, even if its just with 50 % success rate in distinguishing them.

The task goes as follows.

� A set of N agents is randomly (random position, velocity, and color distribution) spawned within the environment.
This starts the initialization phase.

� The agents move through the environment. Once an agent sees a nearby agent, it detects its state (position,
velocity, color) and can act on it by changing its own color and velocity.

� Once all the agents reach a consensus agreement C0 (all of them agree on the same color), the initialization

phase ends and the agents are in danger of being killed from now on. The value of C0 is arbitrary. However,
the first consensus agreement C0 defines the expected behavior for the rest of the task (see two • below).

� Every time the agents reach a consensus agreement to color Ci, they start receiving information about position
of beacon with color Ci. If the agents break the agreement (some agent changes its color), all the agents still
keep receiving the last position related to beacon with color Ci till another agreement is reached.

� The agents are expected to agree on a common value in a correct order at least 5 times. The first agreed value C0

7

and colors of the beacons define the expected sequence of the agreed values. The expected sequence is given as
{C0 → C→0 = C1 → C→1 = C2 → C→2 = C3 → C→3 = C0}. In the example shown in Figure 4, C0 is blue which yields
the expected consensus-agreement sequence of {blue → orange → red → green → blue}.

� The task succeeds if the agents agree on the color sequence in the correct order with at least 70 % of surviving
agents in 3600 iterations from the initialization start. Otherwise, the task fails.

a) b) c) d)

Figure 4: Example behavior of agents in task T.1. (a) The agents are spawned randomly (random position, velocity,
and color) in the environment. (b) The agents agree on a blue color and start sensing position of the blue beacon
(the bottom right). (c) After navigating to close proximity of the blue beacon, the beacon-color-sensitive agents have
seen the beacon emits orange and have persuaded the rest to change their color to orange too. After they all agree
on becoming orange, they start sensing the orange beacon (the top right). (d) After navigating to close proximity of
the orange beacon, the beacon-color-sensitive agents have seen the beacon emits red and have persuaded the rest to
change their color to red too. The expected behavior would continue this pattern till they all became blue again.

4.2 Perceptual inputs

The control of an agent A has the following perceptual inputs:

� Velocity of A in the world frame.

� Vector towards the beacon with color agreed on during last consensus agreement. During the initialization

phase, vector towards (0, 0) is given instead. The Euclidean norm of the vector yields distance to the beacon.

� Discrete probability distribution representing the A’s certainty about each of the colors.

– The domain {red, green, blue, orange} is represented with a discrete probabilistic distribution over four
possible values P = {pr, pg, pb, po}, where pr + pg + pb + po = 1.

– A uniform color distribution is represented as
{

1
4 ,

1
4 ,

1
4 ,

1
4

}
.

– An agent with distribution {1, 0, 0, 0} is 100 % sure it should be red.

� Information whether A is nearby a beacon. If yes, the agent A disposes with the information about color C→
of the beacon. Beware that in 50 % of cases, the agent distinguishes the color C→ incorrectly. In other words, a
beacon with C→ = red = {1, 0, 0, 0} is distinguished by the agent

– as C→ = {1, 0, 0, 0} with probability of 1
2 ,

– as C→ = {0, 1, 0, 0} with probability of 1
6 ,

– as C→ = {0, 0, 1, 0} with probability of 1
6 ,

– as C→ = {0, 0, 0, 1} with probability of 1
6 .

The same applies for all the colors from the domain, not only red.

� States of agents within the neighborhood N of agent A:

– position,

– velocity in the world frame, and

– discrete probability distribution representing the neighbor’s certainty about each of the colors.

8

If not specified otherwise, the information is given in the body frame of A. Beware that because only local information
is available (except of the target vector), the agents have no notion about their global position in the world.

4.3 Implementation

All the logic is supposed to be implemented within the task_03_swarm:packages/swarm/src/boids.cpp file by filling
function updateAgentState().

/**

* @br ie f Ca l cu la te a next−i t e r a t i o n ac t i on o f one agent g iven r e l a t i v e in fo rmat ion o f i t s ←↩
ne ighbors and the d i r e c t i o n towards a t a r g e t . This method i s supposed to be f i l l e d in by the ←↩
student .

*

* @param AgentState t Current s t a t e o f the agent as de f ined in ag en t s t a t e . h .
* @param user params user−c o n t r o l l a b l e parameters
* @param ac t i on hand l e r s f unc t i on s f o r v i s u a l i z a t i o n
* − v i sua l i z eArrow () w i l l pub l i sh the g iven arrow in the agent frame with in the v i s u a l i z a t i o n
*

* @return
* 1) XYZ vecto r in frame o f the agent to be s e t as v e l o c i t y command . Beware that i) the vec to r ←↩

z−ax i s component w i l l be s e t to 0 , i i) the vec to r magnitude w i l l be clamped in to <v min , v max←↩
> l im i t s and i i i) azimuth o f the vec to r ' s XY−p r o j e c t i o n w i l l be sa turated such that the ←↩
azimuth between the agent ' s cur r ent v e l o c i t y and the vec to r does not exceed a maximal change .

* Example 1 : Maximal change i s d=45deg , v min=0.1 , v max=0.2 , and cur rent v e l o c i t y i s (0 . 2 , ←↩
0 , 0) −> vec to r (0 , 1 , 1) w i l l be clamped and saturated to 0 . 2* (cos (d) , s i n (d) , 0) .

* Example 2 : Maximal change i s d=45deg , v min=0.1 , v max=0.2 , and cur rent v e l o c i t y i s (0 . 2 , ←↩
0 , 0) −> vec to r (0 , −0.05 , 1) w i l l be clamped and saturated to 0 . 1* (cos (−d) , s i n (−d) , 0) .

* 2) Probab i l i t y d i s t r i b u t i o n o f c o l o r s to be s e t to the agent f o r next i t e r a t i o n . Beware that ←↩
output d i s t r i b u t i o n . dim () has to equal input s t a t e . d i s t r i b u t i o n . dim () .

*/
std : : tuple<Eigen : : Vector3d , Distribution> updateAgentState (const AgentState_t &state , const ←↩

UserParams_t &user_params , const ActionHandlers_t &action_handlers) ;

This function will be called at the rate of 30 Hz since the moment all the agents are spawned in the virtual world. The
function is pre-filled to assist you with tackling the task.

The implementation process can be divided into the following fundamental steps:

� Implement the Boids model and tune it without solving the value agreement yet.

� Once the agents produce collective behavior, implement value agreement.

4.4 Tips

To use (8) in our task for agreeing on values among agents requires a feasible sensor model which needs the knowledge
of hidden joint probabilities (i.e., what is the probability of measuring the current observations given each possible
value). Try to dynamically approximate the hidden probabilities (e.g., by values derived from the current perceptual
inputs) and use the approximations in the value-agreement fusion among the agents.

Remember that the 20 % minority of agents that is able to distinguish color of beacons has to convince the remaining
80 % agents. This makes the concept of simple voting and majority selection insufficient for the assigned task. In our
task, think whether it would be good to

� remain uncertain about a single color of an agent’s color distribution, or to

� react to changes in local disagreement rather than agreement (counter-intuitive to the concept of majority
selection).

The joint distribution for the beacons is known and using the Bayes formula

p(Ci|Z) =
p(Z|Ci)p(Ci)∑M

j=1 p(Z|Cj)p(Cj)
(9)

is possible and recommended since it will help you deal with the faulty measurements of the beacons’ colors.

9

4.5 Testing, tuning, and validation

To tune your solution, use parameters passed to the updateAgentState() method via the user params parameter.
You may change default values of these parameters in task_03_swarm:packages/swarm/config/user_params_boids.

yaml or update them on the run in the dynamic reconfigure window (do not forget to store your results in task_03_

swarm:packages/swarm/config/user_params_boids.yaml after).

Implementation of the updateAgentState() can be tested by running simulation test ./simulation/run_boids_

testing.sh VARIANT, where VARIANT is one of {testing, easy, medium, difficult}. This will run your implemen-
tation once. In testing variant, the simulation will load parametrization from task_03_swarm:packages/wrapper/

config/boids_testing.yaml. You may use testing to play with the task by changing the simulation, the interface,
the agents’ properties, and many others to discover the potential of your solution. Note that particularly useful may be
parameter rate which allows you to slow down or speed up the simulation. The variants {easy, medium, difficult}
will use parametrization specific to the particular variant which will be used during evaluation in BRUTE.

In BRUTE, your implementation will be run T times for each of the {easy (T = 100), medium (T = 50), difficult (T
= 50)} variants. The results from the runs will be averaged and used in evaluation (see below). Because of randomized
initialization, we allow 10 % failure rate for each of the variants (i.e., 10/100 runs can fail and your solution will still
pass). You may run this test locally by calling ./simulation/boids_evaluate.sh. The test passes if at least 90 %
runs pass. The rules for successful completion of a single run are stated in the list at the end of subsection 4.1.

4.6 Scoring

The {easy, medium, difficult} variants are evaluated in BRUTE. Passing the easy variant is compulsory, the rest
is voluntary. From this task, you may receive from 1 to 16 points as given by Table 1.

Variant (minimum points required) Alive agents Base points Bonus points Total points

easy (1) ≥ 90 % 1 2 3
80 % ≤ x < 90 % 1 1 2
70 % ≤ x < 80 % 1 0 1

< 70 % 0 0 0

medium (0) ≥ 95 % 2 3 5
90 % ≤ x < 95 % 2 2 4
80 % ≤ x < 90 % 2 1 3
70 % ≤ x < 80 % 2 0 2

< 70 % 0 0 0

difficult (0) ≥ 95 % 3 5 8
90 % ≤ x < 95 % 3 4 7
85 % ≤ x < 90 % 3 3 6
80 % ≤ x < 85 % 3 2 5
75 % ≤ x < 80 % 3 1 4
70 % ≤ x < 75 % 3 0 3

< 70 % 0 0 0

Max: 6 10 16

Table 1: Scoring of task T.1. The ratio of alive agents represents the alive-to-all ratio averaged from 90 % best (most
alive agents) runs for each variant. Obtaining at least 1 point from the easy variant is compulsory to pass the test.

5 Task T.2: Hunting the robot

5.1 Objectives

The task is similar to the hunt-the-robot task in task 02 formation — a source of signal is moving through a structured
environment and the primary objective is to find and follow it with a set of UAVs. In contrast to centralized formation
control in task 02 formation, the control in this assignment is decentralized. The goal is to write a control approach
which will be run N times in N independent asynchronous instances with identical parametrization.

10

The task has the following properties.

� The number of UAVs is fixed to N = 3.

� Movement of the agents is limited to 2D with all the UAVs flying in the same height.

� Velocity of the UAVs is saturated at 0.75 m s−1 (maximal allowed speed).

� Heading of the agents is static and set to zero by default.

� The target (the ground robot) is slowly moving through the free space of the inner 9×9 cells in the environment.
The movement is randomized.

The task consists of the following three subproblems.

� Designing and implementing a non-increasing weighting function for UAV-UAV and UAV-obstacle separation.

� Designing and implementing a control action to be passed to the UAVs as velocity reference.

� Implementing a mission logic that will make the decentralized formation of UAVs follow the source of the radio
signal.

5.2 Environment

In this task, the UAVs will move in a structured 3D environment depicted in Figure 5. The environment has the
following attributes.

� The ground plane is flat and is given as z = 0 m.

� The ceiling plane is flat and is given as z = 8 m.

� The collision-free space is modeled as a grid of cylinders with radius of 5 m. The grid contains 11× 11 cells with
their centers spaced 10 m apart.

� 2 m wide corridors are cut along the grid lines.

The UAV formation will start at the [0, 0] cell; however, the positions of the individual UAVs will be randomized.

y

x
[0, 0]

5 m

2 m

Figure 5: Depiction of the simulated environment in RViz (left), schematic of the top-down ortho view of free space
within the simulation environment (right).

5.3 Perceptual inputs

The control of a UAV A have the following perceptual inputs:

� Current time.

� A unit-vector direction towards the target in the XY plane (the z-axis component is zero). Beware that this
vector is subject to the following inaccuracies.

11

– Minority of the agents measure the direction incorrectly.

– Which agents comprise the erroneous minority is set randomly each time all the agents stop.

– Each time the minority is changed, the statistical properties of the error change randomly.

� Information about other UAVs within the local spherical neighborhood. For each perceived UAV, the input will
contain the following.

– A vector representing the relative position of the agent.

– Three variables (two integers, one double) shared from the agent through a simulated asynchronous low-
bandwidth communication network.

� Information about the obstacles within the current cell (the absolute coordinates of the cell are not given) as
shown in Figure 6.

– A vector representing the relative position of the closest obstacle in the environment.

– Four pairs of vectors representing the relative position of the gates in the current cell.

All the relative information is relative to the body frame of A. Beware that because only local information is available
(except of the target vector), the UAVs have no notion about its global position in the world and hence cannot derive
directly the cell they are located in.

Remark 3. The target vector t can be characterized by a single angle

θ = atan2 (ty, tx) , (10)

and vice versa
t = [tx, ty, 0]

T
= [cos(θ), sin(θ), 0]

T
. (11)

The prepared implementation uses concept of directions (see Figure 6). For each cell in the environment, these
directions {RIGHT, UP, LEFT, DOWN} represent the direction in {positive x-axis, positive y-axis, negative x-axis, negative
y-axis} from origin of the particular cell. The orientation of the cell-origin axes matches the world coordinate system.
You may or you may not use this prepared concept.

5.4 Implementation

All the logic is supposed to be implemented within the task_03_swarm:packages/swarm/src/swarm.cpp file by filling
these two functions — weightingFunction() and updateAction().

The function weightingFunction()

/**

* @br ie f Non−l i n e a r we ight ing o f f o r c e s .
*

* The func t i on i s to be non−i n c r ea s i ng , non−negat ive , and grows to i n f i n i t y as the d i s t ance i s ←↩
approaching the lower bound (the s a f e t y d i s t ance) . Below the lower bound (i n c l ud ing) , the ←↩
f unc t i on i s to be undef ined . Over the v i s i b i l i t y range , the func t i on s h a l l r e turn 0 .

*

* @param d i s t ance to an agent / ob s t a c l e
* @param v i s i b i l i t y range o f the UAVs
* @param sa f e t y d i s t anc e : min d i s t ance to other UAVs or ob s t a c l e s
* @param de s i r ed d i s t ance : d e s i r ed d i s t ance to other UAVs or ob s t a c l e s (does not need to be used)
*

* @return
* bool : True i f f unc t i on i s de f ined f o r the g iven d i s tance , Fa l se o therw i se
* double : Weight f o r an agent / ob s t a c l e at g iven d i s tance , i f f unc t i on i s de f ined f o r the g iven ←↩

d i s t ance .
*/
std : : tuple<bool , double> weightingFunction (const double distance , const double visibility , const ←↩

double safety_distance , const double desired_distance) ;

relates to ωs(p,N) defined in (4). It takes distance between two agents and outputs a nonlinear weight for a separation
function. This function will be evaluated separately in its own test checking whether the function behaves as expected.
Passing this test is compulsory! Using this function in other part of your code is recommended but not obligatory.

12

G1

G1.1

G1.2

G2G2.1 G2.2

G3

G3.1

G3.2

G4 G4.1G4.2

RIGHTLEFT

UP

DOWN

Figure 6: Detail of the default RViz visualization showing three UAVs (the larger axes) in task T.2. The smaller axes
(partially overlaid with the arrows denoting navigation directions) represent the world coordinate system. The larger
RGB spheres show the closest obstacle to each of the UAVs. The smaller red spheres represent the edge pair of each
gate as detected by one of the UAVs. The gates input to the task are ordered sequentially as denoted, with the Gx.1
representing the first and Gx.2 the second element in each pair G.

Given a distance d (m) between two agents, a visibility distance v (m) of an agent, and a weighting function f() with
a lower bound s (m) such as s < v, the evaluation will look whether the following criteria are met:

� function is undefined in interval (−∞, s〉,

� f(b) ≤ f(a) for all b > a, where a, b ∈ (s,∞),

� f(d) ≥ 0, d ∈ (s,∞),

� limd→s+ f(d) =∞, and

� f(d) = 0, d ∈ (v,∞).

Example of a function passing all the criteria is shown in Figure 1.

The function updateAction()

/**

* @br ie f This method c a l c u l a t e s a next−i t e r a t i o n ac t i on o f one UAV given r e l a t i v e in fo rmat ion o f ←↩
i t s ne ighbors and ob s t a c l e s ; and the d i r e c t i o n towards the

* moving ta r g e t . This method i s supposed to be f i l l e d in by the student .
*

* @param percept i on Current pe r ceptua l in fo rmat ion o f t h i s UAV. Def ined in pe rcept i on . h . I t ←↩
conta in s :

* − cur rent time
* − t a r g e t vec to r : 3D vecto r towards the moving robot in the UAV body frame
* − ne ighbors de f ined by :
* − t h e i r p o s i t i o n in the UAV body frame
* − the v a r i a b l e s shared through the communication network
* − ob s t a c l e s c o n s i s t i n g o f :
* − 3D vecto r from the body frame to the c l o s e s t ob s t a c l e in the environment
* − 4 gate s (pa i r s o f 2 gate edges) in the UAV body frame
* @param user params user−c o n t r o l l a b l e parameters
* @param ac t i on hand l e r s f unc t i on s f o r v i s u a l i z a t i o n and data shar ing among the UAVs:
* − sha r eVar i ab l e s (int , int , double) w i l l share the three bas ic−type v a r i a b l e s among the UAVs
* − v i sua l i z eArrow () w i l l pub l i sh the g iven arrow in the UAV body frame with in the v i s u a l i z a t i o n

13

* − visual izeArrowFrom () w i l l pub l i sh the g iven arrow at po s i t i o n g iven in the UAV body frame ←↩
with in the v i s u a l i z a t i o n

* − v i sua l i z eCube () w i l l pub l i sh a cube in the UAV body frame with in the v i s u a l i z a t i o n
*

* @return Next−i t e r a t i o n ac t i on f o r t h i s UAV given as a 3D vecto r . Zero vec to r i s expected i f no ←↩
ac t i on should be performed . Beware that i) the vec to r z−ax i s component w i l l be s e t to 0 , i i) ←↩
the vec to r vec to r magnitude w i l l be clamped in to <0, v max> l im i t s , and i i i) the vec to r w i l l ←↩
be passed to a v e l o c i t y c o n t r o l l e r o f the UAV.

*

* Example 1 : v max=0.75 −> vec to r (1 , 0 , 1) w i l l be sa turated to 0 . 75* (1 , 0 , 0) .
*/
Eigen : : Vector3d updateAction (const Perception_t &perception , const UserParams_t &user_params , ←↩

const ActionHandlers_t &action_handlers) ;

is going to be utilized in simulation tests. Remark that the output vector of the updateAction() function will be 1)
projected to the XY plane, 2) saturated at the desired UAV velocity, and 3) passed as velocity reference to the UAV
controller by the task handler calling the function. In the simulation tests, the function will be called at the rate of
10 Hz since the moment all the UAVs are ready in the air. The function is pre-filled to assist you with tackling the
task.

The implementation process can be divided into the following fundamental steps:

� Implement the weightingFunction() function.

� Design and implement a state machine handling the distributed cooperation, decision making, and navigation
through the environment.

� Design and implement a set of local forces to be summed for achieving the desired behavior.

� Tune the weights of your forces to obtain qualitatively smooth behavior.

Remark 4. The optimal derivation of the weights to achieve equilibria in all scenarios of the task is out of scope
of this assignment (and honestly, even out of scope of current state of the art). Design the weights by hand till
you achieve qualitatively sufficient collision-free results.

Remark 5. Use the functions provided in the action handlers a lot. Particularly the shareVariables() without
which the task is very hard to be solved.

5.5 Tips

Designing solution for the task might be unclear, thus you may use the tips below.

� Prepare a state machine logic first. We’ve prepared some template for you to do that.

– Note that in some cases, you might want to output zero velocity command.

� Use the shareVariables() function to share data between the agents.

� Because of the constraint on proximity of all the agents, you have to synchronize the navigation of all the agents.
You may use voting or majority selection in order to do so.

– In voting, think about what happens if you vote for an erroneous measurement.

– In majority, think about what happens if all the agents report different value.

� Apart from synchronizing the direction of the agents, you might want to synchronize an order of the agents’
movement.

� Use the gates to align the velocity for smoother navigation.

� In various stages of the hunt, you may enable/disable some of the rules/forces you utilize. No need to use them
all the time.

� There are various helper functions available either in swarm.cpp itself or in task_03_common/utilities.h.
Using them should save you some implementation time.

14

5.6 Testing, tuning, and validation

Implementation of the weightingFunction() can be validated by running automated test ./simulation/weighting_
evaluate.sh. The hunt-the-robot task implementation can be tested locally by running the ./simulation/run_hunt_
the_robot.sh script.

To tune your solution, use parameters passed to the updateAction() method via the user params parameter. You
may change default values of these parameters in task_03_swarm:packages/swarm/config/user_params_hunt_the_

robot.yaml or update them on the run in the dynamic reconfigure window (do not forget to store your results in
task_03_swarm:packages/swarm/config/user_params_hunt_the_robot.yaml after).

The ./simulation/run_hunt_the_robot.sh task passes if

1. No UAV has landed due to a collision with another UAV or an obstacle.

2. All the UAVs stay together during the hunt. The threshold for maximal allowed distance between two UAVs is
10 m.

3. The UAVs find the robot in time limit of 300 s. To find the robot, all the UAVs have to be in proximity of 7 m
to the robot for at least 10 s.

5.7 Scoring

Passing both the automated tests ./simulation/weighting_evaluate.sh and ./simulation/run_hunt_the_robot.

sh is compulsory. Together, they yield 9 points in total.

6 Starting the simulation

1. You should already have Singularity installed from the previous task. If not, then install the Singularity2 container
software on your system. The CTU university computers will have it installed already. If you are a Linux user,
follow the instructions provided for your particular Linux distribution. For Ubuntu, use our pre-configured install
script in task_03_swarm/install/install_singularity.sh. It is possible to set up Singularity for Windows.
However, we provide no support for it. Follow the short manual here3 for Windows installation instructions.

2. To save your HDD space, you can make a symbolic link of the image from the previous task, e.g., as:

ln −s $HOME/task_01_controller/simulation/images/mrs_uav_system . sif $HOME/task_03_swarm/←↩
simulation/images/mrs_uav_system . sif

Otherwise, download the pre-built Singularity image by executing: ./simulation/download.sh. This will
download approx. 4 GB of data. The resulting image will be placed in ./simulation/images.

3. Compile the sources by running ./simulation/compile.sh.

4. Running task T.1:

� Start the simulation by running ./simulation/run_boids_testing.sh VARIANT, where VARIANT is one of
{testing, easy, medium, difficult}. The evaluation of the task will start right away in the task window.

– After the simulation starts, three windows will appear on your screen (see Fig. 7):

(a) A window of the dynamic reconfigure (can be closed if you do not intend to tune the configurable
parameters).

(b) Terminal window running all the simulation software. Feel free to interrupt this windows by ctrl+c
and restart it again with up+Enter. This will restart the entire task, including the evaluation.
Nothing else needs to be restarted to reset the task.

(c) A window of the RViz visualizer.

5. Running task T.2:

� Start the simulation by running ./simulation/run_hunt_the_robot.sh. The evaluation of the hunt-the-
robot task will start automatically after the UAVs take off.

2https://sylabs.io/singularity/
3https://github.com/ctu-mrs/mrs_singularity/

15

https://sylabs.io/singularity/
https://github.com/ctu-mrs/mrs_singularity/

(a)

(b)

(c)

Figure 7: Windows shown during the simulation of task T.1: (a) the dynamic reconfigure window allows to change
the parameters during the flight (can be closed without affecting the simulation), (b) the terminal window runs your
code together with its evaluation, and (c) the RViz GUI shows visualization of task T.1.

– After the simulation starts, four windows will appear on your screen (see Fig. 8):

(a) Terminal windows running all the simulation software. Three windows (top left, top right, bottom
left) run three instances of the student’s code. The bottom right window runs evaluation of the
hunt task. Feel free to interrupt these windows by ctrl+c and restart them again with up+Enter.

(b) A window of the Gazebo simulator (can be closed without affecting the simulation).

(c) A window of the dynamic reconfigure (can be closed if you do not intend to tune the configurable
parameters).

(d) A window of the RViz visualizer.

6. Kill the simulation by running ./simulation/kill_simulation.sh.

7. Start a code editor from within the container:

� start the VSCode editor ./simulation/vscode.sh or

� start the Sublime Text editor ./simulation/sublimetext.sh.

7 Dos and Don’ts

7.1 Dos

� Think about how the task needs to be tackled if 1) you do not have all the information centrally and 2) the
information you have is local only. Think about

– how to write the code just for one homogeneous agent and

– how to design the data flow and procedures required to coherently decide on the actions of all the agents.

16

(a) (b) (c)

(d)

Figure 8: Windows shown during the simulation of task T.2: (a) the terminal window runs the student’s code in three
distributed instances and evaluation of the task in the bottom right corner, (b) the Gazebo GUI shows what exactly
are the UAVs doing (can be closed to increase runtime performance), (c) the dynamic reconfigure window
allows to change the parameters during the flight (can be closed), and (d) the RViz GUI shows visualization of task
T.2.

� Study this document and orient yourself within the provided source codes.

� Use the following functions a lot. It will save your time.

1. action handlers->shareVariables(. . .)

2. action handlers->visualizeArrow(. . .)

3. action handlers->visualizeArrowFrom(. . .)

4. action handlers->visualizeCube(. . .)

7.2 Don’ts

� Do NOT modify any other files except the following:

– task_03_swarm:packages/swarm/src/boids.cpp

– task_03_swarm:packages/swarm/src/swarm.cpp

– task_03_swarm:packages/swarm/include/student_headers/swarm.h

– task_03_swarm:packages/swarm/config/user_params_boids.yaml

– task_03_swarm:packages/swarm/config/user_params_hunt_the_robot.yaml

� Do NOT write any data into system files. The automatic evaluation checks for this and will let us know if you
would try to do so.

17

� Do NOT use any third-party library, besides Eigen4, which is already provided.

� Do NOT advertise nor subscribe to any ROS topics. The automatic evaluation checks for this and will let us
know if you would try to share any information outside the provided communication channel.

8 Submit to BRUTE

The BRUTE server will run the same tests that are available on your local machine. If the tests pass on your local
machine, it is likely they will also pass on the server.

1. Upload an archive (zip, tar, tag.gz) of the swarm (located in the packages folder) folder to BRUTE. Create
the archive, e.g., by issuing the command:

zip −r swarm . zip swarm

2. Upload the archive to BRUTE (https://cw.felk.cvut.cz/brute/).

3. Wait for the evaluation.

4. If the compilation fails, you will be presented with the compilation log.

5. If the compilation succeeds, you will be presented with logs from the T.1 evaluation, and the T.2 weighting
test and simulation.

The evaluation can take up to 15 minutes.

9 Change log

� 2023-22-11 minor text corrections to improve understandability

4https://eigen.tuxfamily.org/dox/GettingStarted.html

18

https://cw.felk.cvut.cz/brute/
https://eigen.tuxfamily.org/dox/GettingStarted.html

	Introduction
	Requirements
	Preliminaries
	Local-information swarming
	The Boids model

	Swarming with physical agents between obstacles
	Rules weighting
	Obstacle avoidance

	Consensus in distributed systems

	Task T.1: Boids
	Description
	Perceptual inputs
	Implementation
	Tips
	Testing, tuning, and validation
	Scoring

	Task T.2: Hunting the robot
	Objectives
	Environment
	Perceptual inputs
	Implementation
	Tips
	Testing, tuning, and validation
	Scoring

	Starting the simulation
	Dos and Don'ts
	Dos
	Don'ts

	Submit to BRUTE
	Change log

