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Nonlinear System Noise
x[t + 1] = £(x[t], u[t]) + v[t] general p(x,y) from unknown distribution J
y[t] = h(x[t], u[t]) + e[t]
The Task
Design a function:
x[t] =g(yl0:t—1],ul0: ¢t —1])

October 9, 2024

Lab 3: Linear Kalman Filter

Martin Jirousek (CTU in Prague)



Lab 3:
Linear
Kalman
Filter

Martin
Jirousek

Intro
Prediction
Filtration
Summary

Takeaway

Estimation - LKF Assumptions

Linear System

x[t + 1] = Ax[t] + Bult] + v([t]
y[t] = Cx[t] + Dult] + elt]

Martin Jirousek (CTU in Prague)
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LKF Algorithm

e The algorithm can be divided into two separate steps, assuming the process noise v(t) and measurement noise
Kalman e(t) are uncorrelated (S = 0):
liter
. e Prediction (Time-Update) — predicts the state using our knowledge of the control action
Jrouselc e Correction (Data-Update) — updates the prediction with the new observation
Intro
Prediction
N(F[thR)
Filtration
Summary
Takeaway
N (X[t|t], P[t|t]) N[+ 1t], P[t + 1]t])
ult]
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Prediction

Simulates a single step based on the current control action u[t] using the system model (A, B, C) and updates
our estimated probability density function (described by the mean and covariance matrix):

ult]

N(x[t[t], Pt[]) N (X[t +1]t], Pt + 1]1])

e [t|t] denotes the value of a variable at time ¢, given the data up to the time ¢

where:

e [t + 1|t] denotes the value of a variable at time ¢t + 1, given the data up to the time ¢
But how does the PDF of the predicted state evolve?

e Can we describe the evolution of the mean value of the state (X[t[t] — X[t + 1]¢])?

e Can we describe the evolution of the covariance matrix of the state (P[t|t] — P[t + 1|¢])?

We can use our model for that!
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Prediction - Derivation

Lab 3: . .
Cinear Stochastic dynamics of the system:

Kalman

Filter

Marti x[t + 1] = Ax[t] + Bu[t] + v[t]

rousek Since e(v(t)) = 0 (i.e., the process noise is unbiased), the mean value dynamics is simply:

Intro X[t + 1[t] = AX[t[] + Bult]

Prediction

Filtration

Summary Let us define the error dynamics as:
Takeaway
X[t + 1) = x[t + 1] — X[t + 1] = AX[t] + Vv[¢]

Using the error dynamics, the development of the covariance is given by:

Plt+1]t] = cov(x[t + 1]) = & (fc[t + 1T+ 1]) = ((Aic[t} + v[t]) (AX[t] + v[t])T) =

e (Ai[t]iT [t]AT) te (v[t]vT[t]) te (Ai[t}vT[t]> te (v[t]iT[t]AT> = AP[t[t]AT + Q

AP[t|t]AT Q 0 0
These are the relations that we use to calculate the pdf of our prediction
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Martin We are provided with a predicted p.d.f. and a measurement, and we are supposed to update the p.d.f. such
JeEs that it reflects the measured data:

Intro

Prediction N(y[t],R)

Filtration

Summary
Takeaway N (x[t|t — 1], P[t]t — 1]) N (x[t|t], P[t]t])

But what is the optimal way to estimate a random variable, in our case state x[t], by observing another
random variable, in our case measurement y|t|?
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Filtration - Linear Mean Square Estimate

From a statistical point of view, it is reasonable to design the filtration method %X(y) such that it minimizes the
Mean Square Error:

Jars = e((x — xus(y))" (x — xrs(y)))

This is, however, generally difficult or even impossible.

We therefore make the following simplification:

e Let us assume that the estimate is a linear function of the observation:

*Lms(y) = Ay +b. (1)

e and that they are drawn from a joint normal probability density function:
X Hz Poo P,
ol e e ])
b ([ y }) Hy Py: Py

Using these assumptions, we can find a closed-form solution for X, 5rs(y) that minimizes the Mean Square
Error.
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Filtration - Linear Mean Square Estimate - Derivation

The cost function can be rewritten as:
Jias = E((x — Ay ~b)T(x— Ay — b)) =tr (¢ (x~ Ay~ b)(x - Ay~ D)) ) =
tr (Paw + A(Pyy + iy )AT + (b — i) (b — p12) " + 2840 (b — pia) T — 24Py ) ,

where tr(-) denotes the trace of a matrix.
Since the cost function is convex, the optimum can be obtained by finding the extrema points:

dJrms
oA 2A(Pyy + Hy ey ) + 2(b ,U«z) - 2sz =0,
(2)
0Jrums
=9(b — ps) + 2A =0.
b (b — pe) +2A 1y

The set of equations (2) is solved by:

A= PZyPyy 5 b=y — szPy_ylp,y (3)
By substituting (3) into (1), we obtain the closed-form solution for the LMS estimate:

\ %105(Y) = to + Pay P15 — 1y)

(4)
and the covariance of the LMS estimate:
N N\ (= 2 T
Pirys =€ (% —%xLms(¥)) (X —XLms () ) = Paa — PyyP,, 1Pys (5)
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Filtration - Joint p.d.f.

Lab 3:

;;[‘;Z’n However, the LMSE equations (4), (5) contain the mean and covariance of the measurement, which are not
Filter explicitly given. Therefore, we take the predicted state

Martin

Jirousek p (x[t]| DY) = N (x[t]t — 1], P[t[t — 1])

e and use our measurement model

e fzitem y[t] = Cx[t} + e[t}

Filtration

S to calculate the predicted measurement p.d.f.:

Takeaway [tlt — 1] = CX[tt — 1]

Pyltlt —1] = (ymt — 15Tt — 1}) =c ((Ciz[t|t — 1] + e[t]) (Cx[t|t — 1] + e[t])T) =CP[tt—1cT +R

Similarly, we can calculate the cross-covariance matrices Pxy and Pyx, and obtain the joint p.d.f. as:
x[t] =1 _ X[t|t — 1] Pltjt — 1] P[t|t — 1]CT
P ( [ . ”D ) —N({ cxltlt—1] || CcPltlt—1] CP[tt—1CT + R (6)

That's all we need to know to use the LMS estimate!
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Filtration - Finalization

Lab 3: By plugging the provided p.d.f. (6) into the LMS estimate equations (4), (5), we obtain the Filtration step:
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CP[t|t — 1]CT + R
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xLms(y) = pa + PwyP;yl (¥ — 1y)
P

_ -1
5 ms = Poo — PoyPyy Pyo

%[t[t] = %[t]t — 1] + Lt)(y[t] — Cx[t|t — 1] — Dult])
P[t|t] = P[t|t — 1] — L{{]CPt[t — 1]

-1
L[] = P, Py, = Ptlt - 1]CT (CPtt — 1)C” + R)
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%[t + 1|t] = A%[t|t] + Bult]
Pt + 1|t = AP[t|]AT + Q
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Filtration:

%[t|t] = %[t|t — 1] + L[t](y[t] — Cx[t|t — 1] — Dul[t])
P[t|t] = P[t|t — 1] — L[{]CPt|t — 1]

-1
L[] = PP, = Pltlt - 1]C7 (CP[f)¢ - 1]CT +R)
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Implementation

initial conditions
X{o)» Po]

y

Calculate the Kalman gain

K[ = P CT(CP;CT +R)™'

measurement
Z[k]
+ output
Correction X[k)
»- —————»
>

Xy = X + Ky (2] — Cxfyy)

A
k:=k+1
Y
Prediction )
Calculate the error covariance
xE‘k_H] = Axf‘k] + Buyy <
P =I-KpCP
Pit1) = (AP1AT) +Q ) = ( (k1 )P k)
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Optimality
e The LKF is a Linear Mean Square Estimator

e In the case of Gaussian white noise, the LKF is optimal
e In the case of general noise, the LKF is optimal among linear methods

Practical aspects
e Tuning by setting the covariance matrices of noise (Q, R)

e Large Q — trust in measurement, resulting in a noisy, fast response
e Large R — trust in model, resulting in a smooth, slow response
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