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Estimation

Plant

State
estimator

+
u y

x̂

ev

Nonlinear System

x[t+ 1] = f(x[t],u[t]) + v[t]

y[t] = h(x[t],u[t]) + e[t]

Noise

general p(x,y) from unknown distribution

The Task
Design a function:

x̂[t] = g(y[0 : t− 1],u[0 : t− 1])
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Estimation - LKF Assumptions

Plant

State
estimator

+
u y

x̂

ev

Linear System

x[t+ 1] = Ax[t] + Bu[t] + v[t]

y[t] = Cx[t] + Du[t] + e[t]

Gaussian White Noise

p

([
v[t]
e[t]

])
= N

(
0,

[
Q S
ST R

])
ε

([
v[t1]
e[t1]

] [
v[t2]
e[t2]

]T)
=

[
Q S
ST R

]
δ(t1 − t2)
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LKF Algorithm

The algorithm can be divided into two separate steps, assuming the process noise v(t) and measurement noise
e(t) are uncorrelated (S = 0):

• Prediction (Time-Update) – predicts the state using our knowledge of the control action

• Correction (Data-Update) – updates the prediction with the new observation

Filtration

Prediction

N (x̂[t|t],P[t|t]) N (x̂[t+ 1|t],P[t+ 1|t])

N (ŷ[t],R)

u[t]

tt+ 1
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Prediction

Simulates a single step based on the current control action u[t] using the system model (A, B, C) and updates
our estimated probability density function (described by the mean and covariance matrix):

PredictionN (x̂[t|t],P[t|t]) N (x̂[t+ 1|t],P[t+ 1|t])

u[t]

where:

• [t|t] denotes the value of a variable at time t, given the data up to the time t

• [t+ 1|t] denotes the value of a variable at time t+ 1, given the data up to the time t

But how does the PDF of the predicted state evolve?

• Can we describe the evolution of the mean value of the state (x̂[t|t]→ x̂[t+ 1|t])?

• Can we describe the evolution of the covariance matrix of the state (P[t|t]→ P[t+ 1|t])?

We can use our model for that!
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Prediction - Derivation

Stochastic dynamics of the system:

x[t+ 1] = Ax[t] + Bu[t] + v[t]

Since ε(v(t)) = 0 (i.e., the process noise is unbiased), the mean value dynamics is simply:

x̂[t+ 1|t] = Ax̂[t|t] + Bu[t]

Let us define the error dynamics as:

x̃[t+ 1] = x[t+ 1]− x̂[t+ 1] = Ax̃[t] + v[t]

Using the error dynamics, the development of the covariance is given by:

P[t+ 1|t] = cov(x[t+ 1]) = ε
(
x̃[t+ 1]x̃T [t+ 1]

)
= ε

(
(Ax̃[t] + v[t]) (Ax̃[t] + v[t])T

)
=

ε
(
Ax̃[t]x̃T [t]AT

)
︸ ︷︷ ︸

AP[t|t]AT

+ ε
(
v[t]vT [t]

)
︸ ︷︷ ︸

Q

+ ε
(
Ax̃[t]vT [t]

)
︸ ︷︷ ︸

0

+ ε
(
v[t]x̃T [t]AT

)
︸ ︷︷ ︸

0

= AP[t|t]AT + Q

These are the relations that we use to calculate the pdf of our prediction
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Filtration

We are provided with a predicted p.d.f. and a measurement, and we are supposed to update the p.d.f. such
that it reflects the measured data:

FiltrationN (x̂[t|t− 1],P[t|t− 1]) N (x̂[t|t],P[t|t])

N (ŷ[t],R)

But what is the optimal way to estimate a random variable, in our case state x[t], by observing another
random variable, in our case measurement y[t]?
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Filtration - Linear Mean Square Estimate

From a statistical point of view, it is reasonable to design the filtration method x̂(y) such that it minimizes the
Mean Square Error:

JMS = ε((x− x̂MS(y))T (x− x̂MS(y)))

This is, however, generally difficult or even impossible.

We therefore make the following simplification:

• Let us assume that the estimate is a linear function of the observation:

x̂LMS(y) = Ay + b. (1)

• and that they are drawn from a joint normal probability density function:

p

([
x
y

])
= N

([
µx
µy

]
,

[
Pxx Pxy

Pyx Pyy

])
.

Using these assumptions, we can find a closed-form solution for x̂LMS(y) that minimizes the Mean Square
Error.
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Filtration - Linear Mean Square Estimate - Derivation

The cost function can be rewritten as:

JLMS = E((x̄−Aȳ − b)T (x̄−Aȳ − b)) = tr
(
E
(

(x̄−Aȳ − b)(x̄−Aȳ − b)T
))

=

tr
(
Pxx + A(Pyy + µyµ

T
y )AT + (b− µx)(b− µx)T + 2Aµx(b− µx)T − 2APyx

)
,

where tr(·) denotes the trace of a matrix.
Since the cost function is convex, the optimum can be obtained by finding the extrema points:

∂JLMS

∂A
= 2A(Pyy + µyµ

T
y ) + 2(b− µx)µTy − 2Pxy = 0,

∂JLMS

∂b
= 2(b− µx) + 2Aµy = 0.

(2)

The set of equations (2) is solved by:

A = PxyP
−1
yy , b = µx −PxyP

−1
yy µy (3)

By substituting (3) into (1), we obtain the closed-form solution for the LMS estimate:

ˆ̄xLMS(ȳ) = µx + PxyP
−1
yy (ȳ − µy) (4)

and the covariance of the LMS estimate:

Pˆ̄xLMS
= E

((
x̄− ˆ̄xLMS(ȳ)

) (
x̄− ˆ̄xLMS(ȳ)

)T)
= Pxx −PxyP

−1
yy Pyx (5)
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Filtration - Joint p.d.f.

However, the LMSE equations (4), (5) contain the mean and covariance of the measurement, which are not
explicitly given. Therefore, we take the predicted state

p
(
x[t]|Dt−1

)
= N (x̂[t|t− 1],P[t|t− 1])

and use our measurement model
y[t] = Cx[t] + e[t]

to calculate the predicted measurement p.d.f.:

ŷ[t|t− 1] = Cx̂[t|t− 1]

Py[t|t− 1] = ε
(
ỹ[t|t− 1]ỹT [t|t− 1]

)
= ε

(
(Cx̃[t|t− 1] + e[t]) (Cx̃[t|t− 1] + e[t])T

)
= CP[t|t− 1]CT + R

Similarly, we can calculate the cross-covariance matrices Pxy and Pyx, and obtain the joint p.d.f. as:

p

([
x[t]
y[t]

]∣∣∣∣Dt−1

)
= N

([
x̂[t|t− 1]
Cx̂[t|t− 1]

]
,

[
P[t|t− 1] P[t|t− 1]CT

CP[t|t− 1] CP[t|t− 1]CT + R

])
(6)

That’s all we need to know to use the LMS estimate!
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Filtration - Finalization

By plugging the provided p.d.f. (6) into the LMS estimate equations (4), (5), we obtain the Filtration step:

ˆ̄xLMS(ȳ) = µx + PxyP
−1
yy (ȳ − µy)

Pˆ̄xLMS
= Pxx −PxyP

−1
yy Pyx

p

([
x[t]
y[t]

]∣∣∣∣Dt−1

)
= N

([
x̂[t|t− 1]
Cx̂[t|t− 1]

]
,

[
P[t|t− 1] P[t|t− 1]CT

CP[t|t− 1] CP[t|t− 1]CT + R

])

x̂[t|t] = x̂[t|t− 1] + L[t](y[t]−Cx̂[t|t− 1]−Du[t])

P[t|t] = P[t|t− 1]− L[t]CP[t|t− 1]

L[t] = PxyP
−1
yy = P[t|t− 1]CT

(
CP[t|t− 1]CT + R

)−1
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Overview

Prediction:

x̂[t+ 1|t] = Ax̂[t|t] + Bu[t]

P[t+ 1|t] = AP[t|t]AT + Q

Filtration:

x̂[t|t] = x̂[t|t− 1] + L[t](y[t]−Cx̂[t|t− 1]−Du[t])

P[t|t] = P[t|t− 1]− L[t]CP[t|t− 1]

L[t] = PxyP
−1
yy = P[t|t− 1]CT

(
CP[t|t− 1]CT + R

)−1
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Implementation

Calculate the Kalman gain

K[k] = P[k]C
ᵀ(CP[k]C

ᵀ + R)−1

Correction

x∗
[k] = x∗

[k] + K[k](z[k] − Cx∗
[k])

Calculate the error covariance

P[k] = (I − K[k]C)P[k]

Prediction

x∗
[k+1] = Ax∗

[k] + Bu[k]

P[k+1] = (AP[k]A
ᵀ) + Q

k := k + 1

initial conditions

x∗
[0],P[0]

measurement

z[k]

output

x∗
[k]
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Takeaway

Optimality

• The LKF is a Linear Mean Square Estimator

• In the case of Gaussian white noise, the LKF is optimal

• In the case of general noise, the LKF is optimal among linear methods

Practical aspects

• Tuning by setting the covariance matrices of noise (Q, R)

• Large Q → trust in measurement, resulting in a noisy, fast response

• Large R → trust in model, resulting in a smooth, slow response
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