Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy

Marker-

based Marker-

less Other

sensors

Tracking & filtration

Distance estimation

Conclusion

Lecture 9: Multi-robot mutual localization

B3M33MRS — Aerial Multi-Robot Systems

Doc, Ing. Martin Saska, Dr. rer. nat.

Labs: Ing. Tomáš Báča, Ph.D

Multi-Robot Systems group, Faculty of Electrical Engineering Czech Technical University in Prague

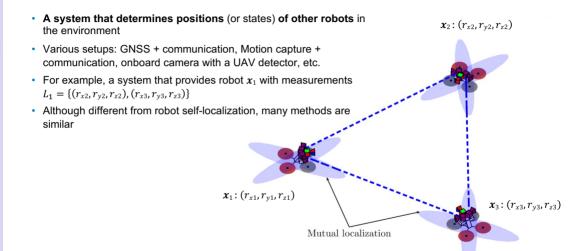
What is multi-robot mutual localization?

Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy

Markerbased


Markerless

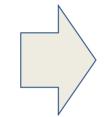
Other sensors

Tracking & filtration

Distance estimation

Conclusion

Why is mutual localization important?


- Lecture 9: Mutual localization
- Martin Saska Motivation
- Taxonomy
- Marker-
- based Marker-
- less

Other sensors

Tracking 8

Distance estimation Conclusion

- · Collision avoidance
- · Cooperation/coordination/collaboration
 - Formation control, swarming
- · Mutual physical interaction
 - Aerial interception

Almost all multi-robot scenarios require mutual localization!

Source: MRS archive

Clasification of multi-robot mutual localization

Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy

Marker-

based Marker-

less

Other sensors

Tracking & filtration

Distance estimation

Conclusion

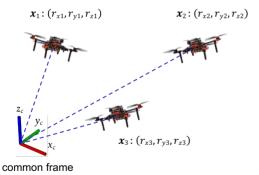
- · Frame of reference
 - Absolute vs. relative localization
 - Requiring communication vs. communication-less
- Markers
 - Marker-based vs. marker-less localization
 - Active markers vs. passive markers
- Time of flight-based localization (UWB)
- Map sharing-based localization

Frame of reference: Absolute vs. relative localization

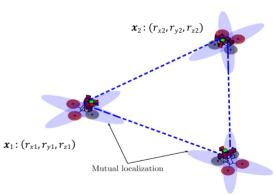
Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy


Markerbased

Markerless


Other sensors

Tracking & filtration

Distance estimation Conclusion Absolute localization: localization in a common coordinate frame using an external source

- Relative localization: localization using only onboard sensors
- · Each UAV with its own coordinate frame

 \mathbf{x}_3 : (r_{x3}, r_{y3}, r_{z3})

Absolute (global) localization

Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy

Markerbased

Markerless

Other sensors

Tracking 8 filtration

Distance estimation Conclusion

- GNSS-based localization (GPS, Galileo, GLONASS ...)
- · Motion Capture (Vicon, Optitrack, Qualisys ...)
- · Map (or landmark) merging
- · Pre-installed radio beacons

Source: archive of GRASP lab at UPENN

Towards a Swarm of Nano Quadrotors

Alex Kushleyev, Daniel Mellinger, and Vijay Kumar GRASP Lab, University of Pennsylvania

Source: archive of GRASP lab at UPENN

Relative localization

Lecture 9: Mutual localization

localization

Martin Saska

Motivation

ranomoni

Markerbased

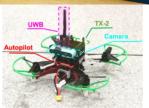
Markerless

Other

sensors
Tracking 8

filtration

Distance estimation


Conclusion

Marker detection (visual, IR, UV, etc.)

- Radio-based multilateration (UWB)
- Marker-less detection (CNNs, RADAR, LiDAR, acoustic, etc.)
- Hybrid approaches

Xu, Hao, et al., "Decentralized visual-inertial-UWB fusion for relative state estimation of aerial swarm", IEEE ICRA 2020.

Frame of reference: Absolute vs. relative localization

Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy Marker-

based Marker-

less Other

sensors
Tracking &

filtration

Distance estimation

Conclusion

Absolute localization

- Usually little or no drift
- + Easy to use from the user's perspective
- + Can be extremely accurate and low-delay
- + Simplifies multi-robot planning
 - Often relies on existing infrastructure (satellites, MoCap cameras, the beacons)
 - Requires communication between robots to share the measurements/the map

- Relative localization
- + no reliance on infrastructure
- + communication not necessary
- may work almost in any environment
- accuracy/drift varies
- can suffer from false positives \rightarrow lower reliability

Markers: Marker-based vs. marker-less localization

Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy

Markerbased

Marker-

Other sensors

Tracking 8 filtration

Distance estimation Conclusion

- Marker-based localization: group members equipped with distinct markers
- Visual markers for cameras, IR markers for MoCap, UWB beacons, active/passive markers

Source: MRS archive

- Marker-less localization: group members localized without markers
- detection based on visual appearance,
 3D shape, noise, radio reflectivity, ...

Types of multi-robot mutual localization: Markers

Lecture 9: Mutual localization

Martin Saska

Motivation

Taxonomy

Markerbased

Marker-

Marke less

Other sensors

Tracking & filtration

Distance estimation

Conclusion

· Marker-based localization

- + Simpler to implement
- + Usually more reliable
- + Usually more accurate
- + Easier to estimate relative orientation
- Not always applicable (e.g. noncooperating targets)
- Markers take up space & weight (active markers also energy)
- Often difficult to localize from an arbitrary direction

Marker-less localization:

- Can be used for non-cooperating targets
- + Bio-inspired approach
- A harder recognition problem to solve
- More complex approaches required
- Usually less robust and less accurate

Passive markers

Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy

Marker-

based

Marker-

Other sensors Tracking &

filtration Distance

estimation Conclusion WhyCON

- WhyCode
- ArUco
- QR
- Color-based markers
- Other fiducials
- Simple to implement
- Cheap and easy to install
- Dependent on light conditions
- Large size for significant range
- Heavy, non-aerodynamic, complicated maintenance
- Directional dependent

Source: MRS archive

Source: Ulrich's archive

Evangeliou, N., Chaikalis, D., Tsoukalas, A., & Tzes, A., "Visual Collaboration Leader-Follower UAV-Formation for Indoor Exploration".

Frontiers in Robotics and Al. 8, 2021.

Tron, R., Thomas, J., Loianno, G., Polin, J., Kumar, V. & Daniilidis, K., "Vision-based formation control of aerial vehicles", RSS, 2014.

Active markers

Lecture 9: Mutual localization

Martin Saska

Motivation

Taxonomy Marker-

based Marker-

less Other

sensors
Tracking &

filtration Distance

estimation Conclusion • RGB LFDs

• KGB LEDS

Infrared LEDs

Ultraviolet LEDs

+ Lighting-independent

Monochrome visible light LEDs

+ Small image - typically points → less computationally demanding

+ Higher reliability

+ Smaller footprint

Usually less precise pose estimate

Complex implementation (HW and SW)

Power consumption

L. Teixeira, F. Maffra, M. Moos and M. Chli, "VI-RPE: Visual-Inertial Relative Pose Estimation for Aerial Vehicles", *IEEE RAL*, vol. 3, no. 4, pp. 2770-2777, 2018.

Achtelik, M., Zhang, T., Kuhnlenz, K., & Buss, M., "Visual tracking and control of a quadcopter using a stereo camera system and inertial sensors", *IEEE ICMA*, 2019

Source: MRS archive

Faessler, M., Mueggler, E., Schwabe, K., & Scaramuzza, D., "A monocular pose estimation system based on infrared leds", *IEEE ICRA*, 2014.

Marker-less relative localization

Lecture 9: Mutual localization

localization

Martin Saska

Motivation

Taxonomy

Markerbased

Marker-

Other sensors

Tracking & filtration

Distance estimation

Conclusion

- Typically used if the target
 - is too small to carry markers
 - ✓ is non-cooperative (i.e. collision avoidance with non-team members)
 - √ is hostile (i.e. intruder/attacker drone)
- · In comparison with marker-based methods, it is
 - √ harder to estimate full pose (e.g., orientation estimation)
 - harder to provide unique IDs of targets (can be mitigated by multi-target tracking)
 - less restrictive usage

train the CNN

feed images to the CNN

Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy Marker-

based Marker-

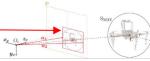
less

Other sensors

Tracking & filtration

Distance estimation Conclusion

7


198

Source of images: Redmon's and MRS archives

- Deep learning-based methods e.g. using Convolutional Neural Network (CNN)
 - Straightforward: only needs a large dataset for training
 - Assumes known visual appearance and size of targets
 - Deep learning is sensitive to domain changes (e.g. environment)
 - Unreliable distance estimation
 - Sensitive to sensor changes

the CNN estimates bounding boxes

calculate relative positions of the targets using a calibrated camera projection model

train the CNN

Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy Marker-

based Markerless

Other sensors

Tracking 8 filtration

Distance

estimation Conclusion feed images to the CNN Deep learning-based methods (a typical approach) A large labeled dataset for training and validation

A neural network (usually a CNN such as YOLO)

• The main steps of the detection algorithm:

- Train the CNN to detect the desired targets in images
- Feed the CNN with camera images
- Use the detections to estimate targets' relative positions

the CNN estimates bounding boxes

calculate relative positions of the targets using a calibrated camera projection model

Source of images: Redmon's and MRS archives

toreground mask

Lecture 9:

localization

Martin Saska

Motivation

Taxonomy

Markerbased

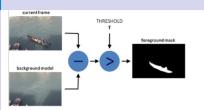
Marker-

less

Other sensors Tracking &

filtration

Distance estimation Conclusion


https://docs.opencv.org/3.4/d1/dc5/tutorial_background_subtraction.html

J. Li, D. H. Ye, ... C. Bouman, "Multi-target detection and tracking from a single camera in Unmanned Aerial Vehicles (UAVs)", IROS, 2016.

- Background subtraction steps:
 - Detect salient features in subsequent images
 - Calculate the transformation between corresponding features
 - Obtain the background model by transforming the 2nd image
 - ✓ Subtract the background model from the 1st image
 - ✓ Filter the resulting differential image
 - Detect and classify moving objects in the differential image
- Optical flow can also be used to remove the background
- A classifier is often used to further filter the detected objects
- Can detect distant and small targets
- Agnostic to the target's visual appearance
- Unreliable distance estimation

Lecture 9: Mutual

localization

Martin Saska

Motivation

Taxonomy Marker-

based

Markerless

Other sensors Tracking &

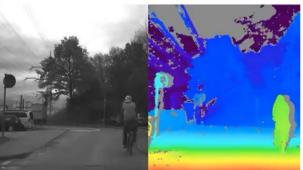
<u>Distance</u> estimation

Conclusion

https://docs.opencv.org/3.4/d1/dc5/tutorial_background_subtraction.html

J. Li, D. H. Ye, ... C. Bouman, "Multi-target detection and tracking from a single camera in Unmanned Aerial Vehicles (UAVs)", IROS, 2016.

- Visual tracking steps:
 - ✓ Initialize with a bounding box of the target in an image
 - In the subsequent image, find a visually similar shape nearby
 - Estimate the target's motion to predict its position in the next frame
 - Repeat from the second step
- Related to multi-target tracking (later in this lecture)
- + Can associate the targets and fill out frames when detection fails
- Can latch onto a visually similar background shape


 Spatial information about the environment provided by stereo cameras and 3D LiDARs used for flying object detection

Flying objects "stand out" in spatial sensor modalities as compared to visual

https://nerian.com

https://ouster.com/products/scanning-lidar/os1-sensor/

Lecture 9:

localization

Martin Saska
Motivation
Taxonomy
Markerbased
Markerless
Other
sensors
Tracking &
filtration
Distance
estimation
Conclusion

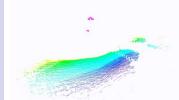
Mutual

Lecture 9: Mutual localization

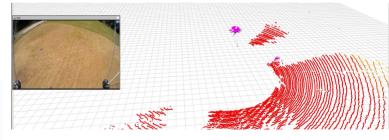
Martin Saska Motivation

Taxonomy Marker-

based Marker-


less Other

sensors


Tracking & filtration

Distance estimation Conclusion

- Appearance-agnostic
- Implicit estimation of the target's relative 3D position
- Ad-hoc methods that are not always reliable (ongoing research)

M Vrba, D Heit and M Saska, "Onboard Marker-Less Detection and Localization of Non-Cooperating Drones for Their Safe Interception by an Autonomous Aerial System.", IEEE RAL, 2019.

Ultra-Wideband (UWB) localization

Lecture 9: Mutual localization

Martin Saska

Motivation

Taxonomy

Marker-

based Marker-

less

sensors

<u>Tracking &</u>

filtration

Distance estimation

Conclusion

- UWB beacons placed on the UAVs and optionally in the environment
- ToF-based range measurements between the beacons provided by the UWB system
- Relative positions of beacons multilaterated similar approach as in task 02
- UWB provides:
 - Good accuracy and robustness to interference and reflections provided by UWB - compared to e.g. Bluetooth
 - Precise and reliable localization especially when combined with other methods

Map merging

Lecture 9: Mutual localization

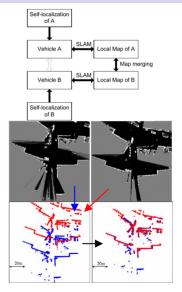
Martin Saska Motivation

Taxonomy

Markerbased

Markerless

Other


Tracking & filtration

Distance estimation

Conclusion

- · Neighboring agents sharing their own maps
- Only salient features/landmarks can be transmitted to reduce bandwidth
- Each agent tries to localize itself in the map of the other robots (similarly to normal SLAM algorithms)
- Requires communication
- Susceptible to local minima when merging
- A global map provided for free

H. Li and F. Nashashibi, "Multi-vehicle cooperative localization using indirect vehicle-to-vehicle relative pose estimation", CVES, 2012.

Multi-target tracking and filtration for localization - motivation

Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy

Markerbased

Marker-

less


Other sensors

Tracking & filtration

Distance estimation

Conclusion

- Relative localization methods can produce noisy measurements and false positives
- Not all methods provide unique identification of the detected targets
- Required estimating more states than the localization methods provide
- Fusing multiple different localization methods together to improve accuracy, robustness, and reduce delay

Multi-target tracking and filtration algorithms with a motion model of the robot can help!

Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy

Marker-

based Marker-

less Other

sensors
Tracking &

filtration

Distance

estimation Conclusion Issues to be solved in Multi-Target Tracking (MTT):

- ✓ An unknown number of relevant objects (UAVs in our case) in the observed area
- Objects appearing and disappearing (e.g. when entering/leaving the area)
- Anonymous inaccurate position estimates of the objects
- ✓ Tracking the objects identification of which detection belongs to which object
- Filtering the position estimates to obtain a better state estimation of each object
- Input of an MTT algorithm in one iteration: a set of detections and their corresponding position estimates = a single observation
- Desired output of an MTT algorithm: filtered state estimates of the identified objects in the observed area
 confirmed tracks

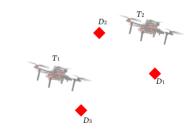
Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy Marker-

Marker-

less Other


sensors
Tracking &

filtration

estimation Conclusion

- How to assign the detections to the tracks? Global Nearest Neighbor (GNN):
 - An example of a greedy method using trackdetection distance:
 - Start with any valid assignment of detections to tracks
 - 2. Let i := 1 be the index of the first assigned pair
 - For an assigned pair {T_i, D_i}, find j≥ i so that after swapping D_i with D_j the sum of distances between all assigned pairs is minimized. Swap D_i with D_j
 - 4. Increment *i* and repeat step 3 for all pairs *{1, ..., n}*

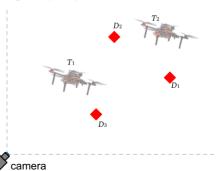
Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy

Markerbased Marker-

less Other


sensors Tracking &

filtration

Distance estimation Conclusion

- How to assign the detections to the tracks? Global Nearest Neighbor (GNN):
 - The greedy method provides a reasonable feasible solution, although not necessarily the optimal solution
 - But in most of the cases good enough
 - ✓ Asymptotic complexity: O(N²)
 - ✓ An optimal solution using the Hungarian algorithm with O(N³) asymptotic complexity

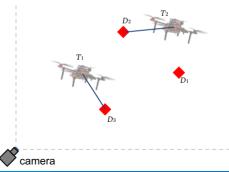
Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy

Markerbased

Markerless


Other sensors

Tracking & filtration

Distance estimation Conclusion Content of Content of

- How to assign the detections to the tracks? Global Nearest Neighbor (GNN):
 - Using Euclidean distance between the track and detection:

$$D2 \leftrightarrow T2$$

Lecture 9: Mutual localization

Martin Saska Motivation

Markerbased

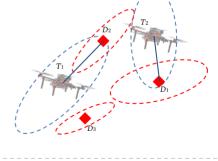
Markerless

Other sensors

Tracking & filtration

Distance estimation

Conclusion



https://www.mathworks.com/help/fusion/ug/introduction-to-multiple-target-tracking.html

- How to assign the detections to the tracks? Global Nearest Neighbor (GNN):
 - Using track-detection distance scaled by track and detection uncertainties:

$$D2 \leftrightarrow T1$$

- Taking known uncertainties into account statistical improving the algorithm
- Applying only track uncertainties or even detection uncertainties

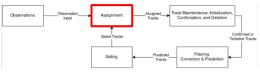
camera

Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy Marker-

based Marker-

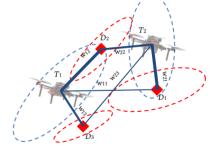

Other

sensors Tracking &

filtration

Distance

estimation Conclusion


https://www.mathworks.com/help/fusion/ug/introduction-to-multiple-target-tracking.html

- How to assign the detections to the tracks? Joint Probabilistic Data Association (JPDA):
 - Multiple detections used to update a single track (no hard associations):

$$w_{11}D_1 + w_{12}D_2 + w_{13}D_3 \leftrightarrow T_1$$

 $w_{21}D_1 + w_{22}D_2 + w_{23}D_3 \leftrightarrow T_2$

with $w_{ii} = d(T_i, D_i)$, where the distance function $d(\cdot)$ is Euclidean, Mahalanobis, measurement likelihood, etc.

- Used to simplify the Assignment problem
- Can deal with multiple detections corresponding to the same object, track overlapping, etc.
- Number of track-detection combinations growing with the number of tracks and detections

camera

Lecture 9: Mutual localization

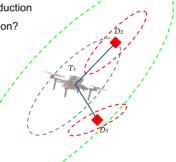
Martin Saska Motivation

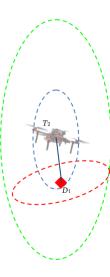
Taxonomy

Markerbased

Marker-

Other


sensors
Tracking &


filtration Distance

estimation Conclusion

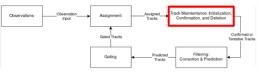
- Complexity of the Assignment problem increasing with many tracks and detections!
 - Considering only relevant detections for each track – complexity reduction
 - ✓ What is a "relevant" detection?
 - A possible approach:
 Using the track's
 uncertainty to select a
 gating volume and
 ignore detections that
 lie outside of it

Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy Marker-

based Marker-


less

Other sensors

Tracking & filtration

Distance estimation

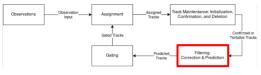
Conclusion

- How to deal with new objects entering the observed area and old objects leaving the area?
 - Some detections not assigned to any track and vice-versa
 - Unassigned detections used to initialize new tracks (but only tentative – to avoid false positives)
 - Tracks not updated for a long time are deleted
 - Tracks with enough assigned detections are confirmed
 - Considering uncertainty etc.

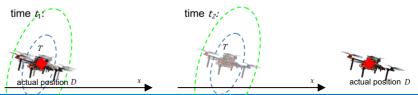
Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy Marker-


based Marker-

Other sensors


Tracking & filtration

Distance estimation

Conclusion

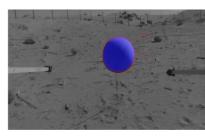
- · What to do with noisy measurements?
- · Estimating and filtering states of the targets: e.g. a Kalman Filter:
 - To improve accuracy, to provide estimation of the track uncertainties (covariance matrices)
 - To enable estimation of non-measured states of the targets (e.g. velocity, acceleration) and prediction of future movement, e.g. using a state-space motion model of a mass point in 3D

Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy

Markerbased


Marker-

Other sensors

Tracking & filtration

Distance estimation Conclusion Relative 3D position task divided into relative bearing and range (distance) estimation sub-tasks

- Bearing calculated from pixel position of an image of the object using a calibrated projection model
- More difficult task is **estimating the range** if assuming a monocular system
- Using perspective object image size depends on its distance from the camera
- The distance can be retrieved from
- a segment area (pixel count) vs. a known object size
- a dimension of a bounding box vs. a known object size
- Both approaches require a priori knowledge of object size and shape
- Uncertainty caused by
 - inaccurate object segmentation
 - inaccurate assumptions on the object's properties
 - inaccurate camera calibration

Source: MRS archive

Lecture 9: Mutual localization

Martin Saska

Motivation

Taxonomy

Markerbased

Markerless

Other sensors

Tracking & filtration

Distance estimation

Conclusion

Common camera models:

Source: Immersive Media

- Pinhole
 - Fisheye
 - Omnidirectional
- The pinhole camera model:
 - √ The classical principle of Camera Obscura
 - Computationally easy
 - Assumes no lens distortion (modelled separately)

Source: Mathworks

Source: blackcreek.ca

Lecture 9: Mutual localization

Martin Saska

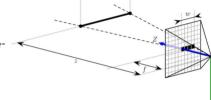
Taxonomy

Markerbased

Markerless

Other

sensors
Tracking &


filtration

Distance estimation

Conclusion

The pinhole camera model assumes given:

- 1) Focal distance f (in pixels): $f = f_x = f_y$
- Dimension of the object's image w := x_{IMG2} x_{IMG1} [pixels]
- Object is perpendicular to the optical axis Z with a horizontal dimension I:= x₂ x₁ [m]

· Estimated distance to the object is obtained as:

$$\frac{l}{z} = \frac{w}{f} \rightarrow z = \frac{lf}{w}$$

Lecture 9: Mutual localization

Martin Saska

Motivation

Taxonomy

Markerbased

Markerless

Other sensors

Tracking & filtration

Distance estimation

Conclusion

For an approximate evaluation of the depth error, we can linearize the formula

Error caused by an incorrect object segmentation or bounding box estimation:

$$\frac{dz}{dw} = -\frac{lf}{w^2} \quad \to \quad e_w = -\frac{lf}{w^2} \Delta w$$

- Blur, blending with background, badly trained CNN, etc.
- ✓ A pixel averages light intensity over its surface, cameras have a limited resolution
- Error caused by an incorrect assumption about the object's size:

$$\frac{dz}{dl} = \frac{f}{w} \rightarrow e_l = \frac{f}{w} \Delta l$$

- ✓ Inaccurate size measurement, imprecise assumptions about the object's shape, etc.
- ✓ It is not always possible to measure physical dimensions of the object accurately.
- Error caused by an incorrect focal length:

$$\frac{dz}{df} = \frac{l}{w} \rightarrow e_f = \frac{l}{w} \Delta f$$

 Inaccurate calibration of the projection model, wrong projection model, lens misalignment, mechanical damage of the lens assembly, etc.

Error from object image size

Lecture 9: localization

Mutual

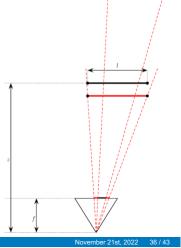
Martin Saska Motivation

Taxonomy

Markerbased

Marker-

Other sensors


Tracking 8 filtration

Distance estimation

Conclusion

Example 1 – incorrect size estimation of the object's image:

- Error is $\pm 0.5px$ on each side of the bounding box $\rightarrow \pm 1px$ in total
- Assuming an object at z = 10m and camera parameters:
- ✓ f = 200px (for image resolution $W = 640 \rightarrow 116^{\circ}$ HFoV)
- l = 1m (a relatively large micro UAV)
- w = 20px
- \checkmark $\Delta w = \pm 1px$
- $\checkmark z = \frac{lf}{} = 10m$
- $w' = w \pm 2 \cdot 0.5px = w \pm 1px$
- \checkmark $e_w = \mp \frac{fl}{w^2} \Delta w = \mp \frac{200 \cdot 1}{20^2} \Delta w = \mp 0.5 \Delta w$
- \checkmark $\pm 1px \rightarrow e_{w1} = \pm 0.5m$
- The error is not symmetrical (we just linearized it)!

Error from physical object geometry

Lecture 9: localization

Mutual

Martin Saska Motivation

Taxonomy

Marker-

based Marker-

Other sensors

Tracking 8 filtration

Distance estimation

Conclusion

Example 2 – incorrect assumption about the object's physical size:

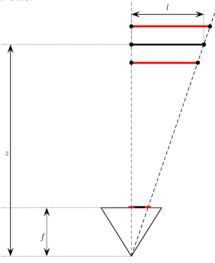
- Error is 5% of the object's true dimension
- Same assumptions as in Example 1:

$$\checkmark f = 200px$$

$$\checkmark$$
 $l = 1m$

$$\checkmark \quad w = 20px$$

$$\checkmark$$
 $\Delta l = 0.05l$


$$\checkmark z = \frac{lf}{w} = 10m$$

$$l' = 1.05l; \Delta l = 0.05l = 0.05m$$

$$\checkmark$$
 $e_l = \frac{f}{w} \Delta l = \frac{200}{20} \Delta l = 10 \Delta l$

$$\checkmark$$
 ±0.05m → e_{l5} = ±0.5m

Note: It is a coincidence that the errors are the same, not a rule!

Error from camera calibration

Lecture 9: Mutual localization

Martin Saska Motivation

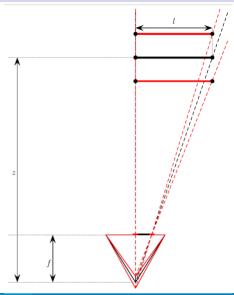
Taxonomy

Markerbased

Marker-

Other

sensors


Tracking 8 filtration

Distance estimation

Conclusion

Example 3 – incorrect focal length calibration:

- Error is 5% of the true f
- Same assumptions as in Example 1 and 2:
- f = 200px
- $\checkmark l = 1m$
- w = 20px
- \checkmark $\Delta f = 0.05 f$
- $\checkmark z = \frac{lf}{} = 10m$
- f' = 1.05f; $\Delta f = 0.05f = 10px$
- \checkmark $e_f = \frac{l}{w} \Delta f = \frac{1}{20} \Delta f = 0.05 \Delta f$
- \checkmark ±10px → e_{f5} = ±0.5m
- Note: It is a coincidence that the errors are the same, not a rule!

Error from object orientation or shape

Lecture 9: Mutual localization

Martin Saska

Motivation

Taxonomy

Markerbased

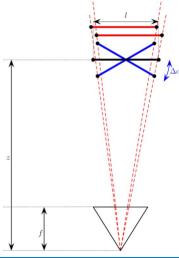
Marker-

Other sensors

Tracking 8

Distance estimation

Conclusion


Example 4 – incorrect assumption about object's perpendicularity to Z:

- Objects are not perpendicular in real situations
- ✓ Let assume (similarly as in the previous examples):
- $\checkmark f = 200px$
- \checkmark l=1m
- $\checkmark \quad w = 20px$
- ✓ Object's center lies on the optical axis Z and $z \gg l$
- $\Delta \alpha = 10^{\circ}, 20^{\circ}, 30^{\circ}$

$$l'' \approx \cos(\Delta \alpha) l; \quad z_l'' \approx \frac{l'' f}{w} = \cos(\Delta \alpha) \frac{l f}{w}$$

 $e_\alpha \approx (1 - \cos(\Delta \alpha)) \frac{l f}{w} = (1 - \cos(\Delta \alpha)) 10m$

 \checkmark cos(Δα) ≤ 1 → the object is never closer than estimated

Δα	e_{lpha}
±10°	-0.15m
±20°	-0.60m
±30°	-1.34m

Distance estimation for a spherical object

Lecture 9: Mutual localization

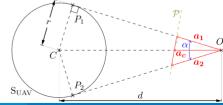
Martin Saska Motivation

Taxonomy

Marker-

Markerless

Other sensors


Tracking 8 filtration

Distance estimation

Conclusion

- · Assuming spherical objects to tackle the perpendicularity issue
 - Complicated distance estimation formula
- · Assumptions:
 - ✓ Spherical object (not a flat line) with a known radius r
 - \checkmark Known bearing vectors a_1 and a_2 corresponding to the edges of the object's bounding box
 - ✓ Removing assumptions about the projection model to simplify the math
 - \checkmark Estimating the distance *d* instead of the depth z again to simplify the math
 - ✓ Using the distance to estimate the 3D position given the bearing vector a_c Applying the triangle \triangle O_CCP₁ : $\alpha = a\cos\left(\frac{a_1 \cdot a_2}{\|a_1\| \|a_2\|}\right)$; $d = \frac{r}{\sin\left(\frac{\alpha}{\alpha}\right)}$

Other camera models

Lecture 9: Mutual localization

Martin Saska

Motivation

Taxonomy Marker-

based Marker-

less Other

sensors

Tracking & filtration

Distance estimation

Conclusion

- Real cameras typically don't conform to the pinhole model due to distortion
 - Barrel
 - Pincushion
- Present in omnidirectional and fisheye cameras useful for MRS with UAVs: scene overview without an extra movement

Source: Mathworks

Conclusion

Lecture 9: Mutual localization

Martin Saska Motivation

Taxonomy

Markerbased

Markerless

Other sensors

Tracking & filtration

Distance estimation Conclusion

- Motivation
 - Mutual/relative localization is a key technique enabling safe close coordination and interaction among the UAVs sharing the same workspace
- · Marker-based visual relative localization
 - ✓ Reliable approach (mainly active markers e.g. LEDs)
 - ✓ Enables difficult-to-jam communication (secured systems of large MRS e.g. urban mobility)
- Marker-less visual relative localization
 - ✓ General usage also none-cooperating UAVs
 - Sense and avoid mechanisms
- Multi-target tracking and filtration
 - ✓ Important technique for real-world systems with sensory uncertainty
 - Enables estimating states not observable by the localization method or even future behavior of the observed UAVs
 - ✓ Important for large teams of anonymous UAVs distinguishing between particles/UAVs

References

Lecture 9: Mutual

localization

Martin Saska Motivation

Taxonomy Marker-

based Marker-

less Other

sensors Tracking & filtration

Distance estimation Conclusion [1] Xu. Hao, et al., "Decentralized visual-inertial-UWB fusion for relative state estimation of aerial swarm", IEEE ICRA 2020.

[2] L. Teixeira, F. Maffra, M. Moos and M. Chli, "VI-RPE: Visual-Inertial Relative Pose Estimation for Aerial Vehicles", IFFF RAL, vol. 3, no. 4, pp. 2770-2777, 2018

[3] Faessler, M., Mueggler, E., Schwabe, K., & Scaramuzza, D., "A monocular pose estimation system based on infrared leds", IFFE ICRA, 2014

[4] J. Li, D. H. Ye, ... C. Bouman, "Multi-target detection and tracking from a single camera in Unmanned Aerial Vehicles (UAVs)", IROS, 2016.

[5] H. Li and F. Nashashibi, "Multi-vehicle cooperative localization using indirect vehicle-to-vehicle relative pose estimation", CVFS, 2012.

[6] M Vrba, D Hert and M Saska, "Onboard Marker-Less Detection and Localization of Non-Cooperating Drones for Their Safe Interception by an Autonomous Aerial System.", IEEE RAL, 2019.