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Probabilistic generative laws

Robot’s state is complete

e Robot's state at the time step k is all we need to predict the future:
P(X[k] 1X[0:k—1]> U[1:k]5 Z[1:k—1]) — P(X[k]|X[k—1]> Ufk—1])-
e The measurement of robot's state is conditionally independent on the previous states:

P(Z (k] 1X[0:k—1]> U[1:k]> Z[1:k—1]) — P(Z[k]|X[k)-

1)

)
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e Gauss-Markov assumption states that the future and past states are decorrelated given the current state.
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o e Minimum Mean-Square Error estimator. ° Pl‘Edlct!on: propagation of robot's state and its
Filter uncertainty through the model.
:Ll\‘\‘n‘:{tlwon e Correction: update of the robot's state and its
o uncertainty using measurements.
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e x* . is the state vector estimate,

[k]
. P[k] € R™*™ is the state covariance.

Estimator for the Linear Time Invariant (LTI) system

Measurement model

e Vector of measurements: z € RP.
2] = Hxpg) + vig,

where:
e Measurement-state mapping: H € RP*X",
o Measurement noise: vz ~ N (0, R),

. . x
o Measurement noise covariance: R € RP7P

>0 -

(4)
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Kalman P[k+1] = AP[k]AT +Q (6)
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L P = (I Ky H) Py, ©)
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Filter [ ] [ ] [ ]
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Kalman
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e Correction step executed on demand.

measurement cov.

. R
Calculate the Kalman gain
D —
K[ = P HT(HP;,H" + R) ™'
l measurement
Correction 21k]
e
Xk = X[k + K (20 — Hxy)

!

Calculate the error covariance

Py = (1 - Ky H)Py
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e Corrections can be even caused by variety of sources at different rate.
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The “asynchronous” LKF cycle

e The prediction step is often being evaluated at fixed rate. The state obtained at the prediction step is used for control.
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The system with LKF
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Tq 1 T r
0.9955+1

® |

x* = [r*, 7T
v

Measurement
e Measurement vector: z = [Fmes|T.

o Measurement mapping:

e Measurement mapping matrix:

H=[1 0. (13)
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Tq 1

> 0.1s+1

e The r state measurement exhibits added noise.

o LKF can estimate the state while removing the

noise.

Tmes

r measured

r true value

r estimated
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Kalman
Filter r
Extended mes

Kalman y
Filter

Unscented T
Kalman [ e e el e o -
Filter

- = = 7q (input)

7 true value

Attitude

Lk
estimation 77 LKF

Odometry

Localization

Global
localization —0.1 |- L —

Local

flere=iFesifem -1 0 1 2 3 4 5 6 7 8 9 10

time[s]
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Linear Kalman Filter (LKF) — Example 2

Lecture 3:
UAV local-

ization

Tomas Estimating hidden states

T e Hidden states are often used to model sensor biases.
State e LKF can estimate them if they are observable.
estimators >
:mld F \\‘m;

Linear

Kalman . Example LTI system, At = 0.01s

e LTI System diagram P Y

Extended

Kalman r

Filter .

Td 1 s .

(095571 x= || u=[ra, (15)
Attitude T
estimation H
o Bias 1.0 001 00 00 0

00 00 1.0 1.0 0
\(r‘r‘tl\lh‘/umn A= 00 00 10 00 ,B = K (16)
J 00 00 0.0 0.99 0.01

Local v

localization
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e Sensor bias estimation is heavily used to estimate nonzero offsets of sensors such as gyroscopes and accelerometers.

o Wind speed can be estimated as a bias in UAV acceleration.



Extended Kalman Filter (EKF) (EKF)

Lecture 3:
UAV local-
ization . .
o What if we have a non-linear model?
Bt . .
e o UAV Rotational dynamics.
It e Ackermann vehicle.
State . . .
S o Differential car-like model.
and Filters . . . .
o e ... almost anything engineering-related in the real world.
v
Fre
Extended . . .
(et Linearization?
P e Needs an operation point.
Filter . . . . . .
o e A single operation point is hard-to-find with most models.
ttitude v
estimation
Odometry . .
e Let's linearize more
Localization
Sl e Extended Kalman Filter (EKF).
e e De-facto standard in aviation and inertial navigation.
b )
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Extended Kalman Filter (EKF)

Lecture 3: 1 H
Leewre s Discrete stochastic system

aen e State at the time step k: x[;) € R™.

Tom33

Bita e Input at the time step k: up) € R™.
Intreduetion Xie41] = S (X[r)> Ugk)) + Wik (17)
S‘[‘"“( 7 where:
S e e f() is differentiable,

Linear

Kaiman e Process noise wiy ~ N (0,Q),

E}Eﬁ:d e Process covariance matrix: Q € RZg" ]
Unscented

e Measurement model
A‘t‘“”“: e Vector of measurements: z € RP.
Odometry Z[k]) = h(x[k]) + Vi) (18)
Localization where:

e e Measurement-state mapping: h() : R? — R" is differentiable,

o ¢ Measurement noise: v, ~ A (0, R),

e Measurement noise covariance: R € Rp;ép.
w
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Extended Kalman Filter (EKF)

Lecture 3:
UAV local-
ization

Tomas

e Correction

¢ Given Py, calculate the Kalman gain:

Introduction . .
B Prediction

State

-1
o Given x7,, Py, upy: Ki = PiH], (HyPH) +R) . (22)

and Filters
E“m xfk-&-l] — f(xfk]v up) (19) . .Given xr_k]’P[k]’Z[k]’K[k]' update the state and
(i Its covariance:

Extended Py = F[k]P[k]FT +Q, (20) . » y
Ci " X[y = X T K (Z[k] - h(x[k])) ; (23)

Unscented where
o of Py i= (I - Ky Hyy) Ppeg, (24)
Fiy= = (21)
Attitude x* u where
estimation (k] K] oh
Ox |4

Localization [k

- is the Jacobian of h() evaluated at the xJ,.
Local v
localization

Hpy, (25)

Odometry is the Jacobian of f() evaluated at the xf‘k], U

*
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Extended Kalman Filter (EKF) — properties

Lecture 3:
UAV local- .

ization EKF Properties

Toma¥ L

e e Optimality? no

: e Stability? not guaranteed

Introduction
S e Ease of use? far from it
estimators
and Filters

Kaiman EKF Problems

Filter

Extended e f(), and h() needs to be differentiable.
Kalman

Filter e f(), and h() are linearized blindly in each state.
Unscented

e e EKF is sensitive to model inaccuracies.
Attitude e EKF is sensitive to poor initialization.
estimation
Odometry

Localization

Global
localization

Local
localization
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Extended Kalman Filter (EKF) — properties

Lecture 3:
UAV local- .
ization EKF Properties
Tomas e Optimality? no
e Stability? not guaranteed
Introduction
S e Ease of use? far from it )
estimators
and Filters
e EKF Problems
Filter
Extended e f(), and h() needs to be differentiable.
Kalman
Filter e f(), and h() are linearized blindly in each state.
Unscented
S o EKEF is sensitive to model inaccuracies.
Attitude e EKF is sensitive to poor initialization.
estimation >
Odometry
oo EKF mind-set problem
- o How EKF deals with non-linearity? EKF works with the original state Probability Distribution Function (PDF) and a
o= degraded model description.
ocalization
e What about we swap it around? Let's transform a degraded state PDF through the original model.
v
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Tomas
Bata

Introduction

State

estimators

and Filters
Linear
Kalman
Filter
Extended
Kalman
Filter
Unscented
Kalman
Filter

Attitude
estimation

Odometry

Localization

Global
localization

Local
localization

Unscented Kalman Filter (UKF)

Unscented Kalman Filter

e Published in early 2000s by Uhlmann et al.

Uses the full nonlinear model f(), ().

e Does not linearize, therefore, f(),h() can be arbitrary.

e More elegant solution than EKF.
e More robust than EKF.

o
[2] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear estimation,” in Adaptive
Systems for Signal Processing, Communications, and Control Symposium, IEEE, |IEEE, 2000, pp. 153—
158
v
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Unscented Transform
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Unscented transform — original Gaussian Probability Distribution Function

Tomas
Bata

Introduction

State
estimators
and Filters
Linear
Kalman
Filter
Extended
Kalman
Filter
Unscented
Kalman
Filter

Attitude
estimation

Odometry

Localization

Global
localization

Local
localization

N(X, P)k
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Unscented Transform

Lecture 3:

Vi Unscented transform — sampling of 2n + 1 sigma points

Tomas
Bata

Introduction

State
estimators
and Filters
Linear
Kalman
Filter
Extended
Kalman
Filter
Unscented
Kalman
Filter

Attitude
estimation

Odometry

Localization

Global
localization

Local
localization
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Unscented Transform

Lecture 3:
UAV local-
ization

Tomas

Bsta Unscented transform — transforming sigma points through h()

Introduction h()
State

estimators g1

and Filters

Linear h()

Kalman
Filter

h(o1)

hiog) 'S h(o4)
h(o2)

-

Extended o
Kalma 3

o h()
Unscented 1%

Kalman h()

Filter

Attitude
estimation

Odometry

Localization

Q
I
Q
i~
=

Global
localization

Local
localization

Tth, 2024
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Unscented Transform

Lecture 3:
UAV local-
ization

Tomas

Bita Unscented transform — transforming sigma points through h()

Introduction

State h()

estimators
and Filters

Linear

Kalman h()

Filter
Extended
Kalman
Filter 03 h()
Unscented
Kalman H h()
Filter
g
Attitude 4
estimation

Odometry 02 ()

Localization

Global
localization
v

Local
localization
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Unscented Transform

Lecture 3:
UAV local- . .
iy Unscented transform — reconstruction of the transformed Gaussian PDF
Tom33
Baka
h()
Introduction o1
State
estimators h()
and Filters
Linear o
e : ()
Extended I‘L
?H‘ev o4 0 N(X, P)k+1
Unscented
Kalman
Filter o
i h()
Attitude
estimation
Odometry ./\f(x, P);
Localization
Global e UT preserves 1st, 2nd and 3rd moment of the Gaussian PDF.
localization
Loca e The new mean (x) is obtained by weighted sum of the sigma points using first-order weights.
B —
e The new covariance (P) is obtained by weighted sum of the sigma points using second-order weights.
v
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Unscented Kalman Filter (UKF) — Algorithm

Lecture 3:
UAV local-
ization

Tomss Correction step
Baka

— 1. Calculate the sigma points for x},,, P;.
Introduction Prediction Step [k] (k]

State 2. Propagate the sigma points through h() to obtain the
estimators 1. Calculate the sigma points for expected measurement z*.
and Filters «

x50, Pry- .
Ly [k]> * K] 3. Reconstruct the mean and covariance of the expected
Filter 2. Propagate the sigma points through measurement.
Extended
e f0- 4. Calculate cross-covariance between the measurement z and
N 3. Reconstruct xf‘k+1],P[k+1] the expected measurement z*.
Kalman
Filter 5. Calculate the Kalman gain using the cross-covariance.
i 6. Update the mean and covariance x*, P.
estimation y
Odometry
Localization [2] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear estimation,” in Adaptive
ol Systems for Signal Processing, Communications, and Control Symposium, IEEE, IEEE, 2000, pp. 153—
Local 158

localization
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Unscented Kalman Filter (UKF) — properties

UKF Properties
e Optimality? still no
e Stability? still not guaranteed, but much better than EKF

e Ease of use? yes

UKF Benefits
e No need to derive Jacobians.
e i() and f() can be arbitrary.
e Only the implementation of k() and f() needs to be supplied.

UKF Problems

e Does not have many.

e Mathematical soundness of operations needs to be checked (square rooting of P).
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Unscented Kalman Filter (UKF) — example

Lecture 3:
UAV local-
ization

Tomas

Bita State vector System illustration

The state vector is

Introduction

Sta . .
eslll\(r:ators X = [rTv rT7 m, 77] T ) (26)

and Filters

Linear where

Kalman
Filter

o r"V: the 2D position in the world frame,

Extended
Kalman

Filter e 1B: the 2D velocity in the body frame,

Unscented .
e e 7): the heading, r,R}

Filter

7: the heading rate.

Attitude y
estimation

Odometry

Measurement vector

Localization

Global

\o:z)\iaz:\t\on 7z = [I"T, 1'.'|'7 n] T (27) W
y

Local
localization
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Unscented Kalman Filter (UKF) — example

Lecture 3:
UAV local-
ization

Toma¥ Motion model, At : :
Bita System illustration

Introduction T'[k] —+ AtR[k] l‘[k]

State r[k]
estimators = . 3 26
X[k+1] k) + Atn[k] ( )

and Filters
(k1] (k)

Linear

3 =R

Kalman
Filter

Extended h
Kalman where

Filter cos —sin
Ry = k] Mk (27)

Unscented

it [ sin cos ’
?iltler 1] 1] y r, R}

Attitude
estimation

Observation model

Odometry

Localization I‘[k]
Global v

localization Z[k) = |T[k] (28) w
Local n[k] 4

localization y
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Unscented Kalman Filter (UKF) — example
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Introduction

State

estimators

and Filters
Linear
Kalman
Filter
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Kalman
Filter
Unscented
Kalman
Filter

Attitude
estimation

Odometry

Localization

Global
localization

Local

. Resat a2
localization

Video: https://youtu.be/HVVgLxYqvcl
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Unscented Kalman Filter (UKF) — example 2

Lecture 3:
UAV local-
ization

Tomas
Bata

Introduction
. State estimation of a car
estimators

i e e Nonlinear car-like model
Linear (similar to the previous

Kalman

Filter example).

Extended .
Kalman e Unscented Kalman Filter.
Filter

Unscented e Car observed by a single

Kalman

Filter camera.

Attitude
estimation

ki
Ty | ELEKTROTEGin A
TV praze |

Odometry

Video: https://youtu.be/BSNUOd61teY

Localization

Global
localization

o [3] T. Baca, P. Stepan, B. Spurny, D. Hert, R. Penicka, M. Saska, et al., “Autonomous Landing on a Moving
loceization Vehicle with an Unmanned Aerial Vehicle,” Journal of Field Robotics, vol. 36, pp. 874-891, 5 2019
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UAV Attitude estimation

Lecure 5 UAV Onboard Sensors

wion  Rotation-+translation Dynamics model e Gyroscope:

Tom33 .

Sim F=Jo+wx Jw (29) e 3-axis MEI\./IS.. ]

. e Measured intrinsic angular rate.

Introduction R=RQ (30) e Sufficient for attitude rate control.
State 1 .
g W — —RF? + gW (31) e Accelerometer:
and Filters m ) e 3-axis MEMS.

Kaiman e Measures proper acceleration.

Filter . . .
N What do we need? . Gra.vnty.model might be needed for precise
e navigation.

Unscented e Angular velocity: wB. e “Magnetometer”:

Kalman

Filter e Orientation: R. ) o 3-axis
Attt_ituci_e e Measures external magnetic field.
estimation

- o Magnetic field model needed for precise

Odometry State estimator nav;ggation P
Localization :
Global ¢ 2) Complementary filter o All above are often part of the Inertial
lefenifer e b) EKF Measurement Unit (IMU).

Local
focalization e Often based on quaternions. e All above need calibration.

e Bias estimation for all the sensors. ) e All above benefit from temperature stabilization.
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Filter
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Filter

Attitude
estimation

Odometry

Localization

Global
localization
Local
localization

Odometry

Etymology

Odo-metry = Measuring of steps — measuring of where we are based on the steps we took.

Ground robot analogy

e Ground robots have encoders in theirs wheels.

e Encoders’ outputs represent intrinsic velocity.

e Integrating encoders from the last known position is called dead reckoning.

y
Can we do odometry using the IMU

e Not in general: double-integration of acceleration will drift with increasing velocity.

e Can be done with very precise instruments and models: in aerospace.

e Definitely not with the consumer-level sensors in most UAVs: would not lead to a stable flight. )

How can we do odometry then?

e We need to go derivative higher from acceleration: to velocity.
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e To be complete: double integration of acceleration
non-zero bias.

Odometry
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will lead to quadratic drift in position, if the accelerometer exhibits



Odometry on UAVs — Optical Flow

Lecture 3: PX4 Flow
UAV local-
ization
Tomag
Bita e Ultrasound
rangefinder
Optical flow o GreyScale
camera
e Means of calculating velocity from RGB camera o Embedded
Uiz footage.
Faiman g ucontroller
o e Downwards-facing camera.
Fiter” e Requires distance measurement to fix the
recented absolute velocity. Flowdeck v2
e e Very common on most commercial platforms.
e Parrot AR Drone (2010)
_ e IR ToF
Oiforiiny e Relatively robust. rangefinder
o o Not very accurate. ) e GreyScale
\ij\‘\‘zahon camera
localization ° Embedded
pcontroller
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Odometry on UAVs — Optical Flow

Lecture 3: .
vaviea-  Optic Flow

ization

Tomas E ‘ - - ‘

Bata B | Grvovecamers [ssea 4 rocn Mere £ toroecaimme / ohGonl § pubanram # =

Introduction

State

estimators

and Filters
- . ]
Linear
Kalman o =
Filter L4
°

Extended
Kalman
Filter °
Unscented o ‘
Kalman ape

Filter

2

0ed -
 sutaserol | 10

Jarie
Attitude opic!

estimation
# € + Q=

w=126983 ye0.810231

Odometry 3
— uavsicontrolmanager/cmd_odom/pose/pose/positonix
O — Nuavs/control_managerlcmd_odomiposelposelpostianty
Localization 1| — mvsisometnyodom maposesposeestan
Iavs/odometrylodom_ mainpasespose positon’y
Global -2
localization -
Local -+
localization - -5 4 o
L2764

Video: https://youtu.be/tIKHGiIOs2w
October 7th,
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Odometry on UAVs — Feature-based visual odometry

Visual Inertial Odometry

e Combination of feature matching and IMU Features detectors:

predictions.
e Does not require a rangefinder.
e Requires proper camera calibration.
e Requires high-resolution and high-rate cameras.
e Global shutter is necessary.

® Robustness is still to be desired (for UAVs).

e Invariance in transformations and lighting.

e Edges, Corners, Blobs.

e SURF, FAST, SIFT, MSER (Matas et al. [4]).
Feature descriptors:

e SURF, SIFT, BRIEF.

Feature matching [5]
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Odometry on UAVs — Feature-based visual odometry
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Video: https://youtu.be/EVreW6VDTEU
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Odometry on UAVs — Feature-based visual odometry

Showcase of VIO in low-light conditions

Video: https://youtu.be/f00V9fnvnEw
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Odometry on UAVs — LiDAR odometry

Lecture 3:
UAV local- A A A
YL : r LIDAR Field of View
o loc LiDAR Ouste eld of Vie
Tomas
Bita e 2D or 3D.
e Active sensor: Infra-red.
e Scans the environment in stacked rings.
e Has mechanical parts.
e e Requires obstacles to be close.
Filter .
Extended
Kalman .
- PointCloud data structure
S o Organized/unorganized list of 3D points.
e Can contain meta information (reflectivity,
color).
Odometry y
S PointCloud features
e e 3D corners, 3D edges.
e Facets of polyhedra. Figure 1: source: http://ouster.com
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Odometry on UAVs — LiDAR odometry

Lecture 3:
UAV local-

fzation Iterative Closest Point (ICP)

Tomas g

Bita e Pointcloud registration method. Showcase of LIDAR Odometry
Tt e Assumption: Not that many points - 5 2 B
S have changed between two ’
S consecutively-measured point clouds.

Linear e Minimizing sum of squares of the

Kalman . .

Filter closest points on two pointclouds.

o e Many variants and implementations

Filter .

Unscented exist.

i o Outlier rejection is important.
s e Algorithm:
AT 1. compute point-to-point

correspondences,

l;;::m" 2. optimize for the rotation and

localization translation,

o 3. move the pointcloud, Video: https://youtu.be/veBnoqIqPZQ

- v

4. repeat.
v
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Localization

Localization

The means of obtaining the 3D position of the robot in the world coordinate fame.

Why?
e Global localization is needed for global navigation:

o for building accurate 3D maps of the environment,
e for using the maps for navigation.

e Localization is needed for any meaningful interaction of a robot with its world.

Where is the state of the art?

e Depends heavily on the use case.
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Global outdoor UAV Localization — GNSS

Lecure 5 Global Navigation Satellite System Upgrade: Realtime Kinematics (RTK)
jocal-
ization e Earth's satellite constellations. e Works directly with the GPS carrier wave signal.
Tomss . . . . .
Bita e GPS, GLONAS, Galileo, BeiDou. e Fixed base-station on a tripod for relaying carrier
/ wave phase.
Introduction H
: Properties e The UAV is equipped with RTK-compatible
tate . .
estimators e Most-often 10 Hz 3D position output. antenna and radio receiver.
and Filters
Uinear o Needs clear sky view.
Kalman
Filter o Beware of Solar activity (lonosphere).
Extended
Kalman e Beware of reflections (buildings).
Filter
Uzt e Requires magnetometer.
/
Attitude Influence of ionosphere on GNSS
estimation
Odometry GPS Satellite ﬁgj‘!
Localization
Global
localization
Local
localization
. v
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e Sensitive to EI-Mag interference (USB 3.0).



capture

Motion capture output
e Rigid body’s position and velocity, 200 Hz.

e Almost no noise, can be used directly for
feedback.

UAV equipped with retro-reflective markers

Global indoor UAV Localization — Motion

Lecture 3: . .
UAV local- Marker-based localization

ization

Tomae e Pre-set IR camera system.

Bica ¢ IR lighting.
Introduction e Retro-reflective markers.
i;‘;mm e Popular for control theory research.
and Filters 7
Linear

Kalman . .

Fiter Qualisys motion capture cameras

Katman

Filter

Unscented

Kalman

Filter
Attitude
estimation
Odometry

Localization
Global
localization

Local
localization
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Global indoor UAV Localization — Motion capture

Lecture 3 Vijay Kumar's TED talk

UAV local-
ization

Tomas
Bata

Global
localization
L

alization

Video: https://youtu.be/4ErEBkj_3PY
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Global UAV Localization — Indoor GPS

Ultrasound beacons Radio beacons

e Pre-set environment with ultrasound beacons. e Pre-set environment with radio beacons.

e Known beacon locations. ) e Known beacon locations. )
Marvelmind ultrasound beacons Terabee RTPS radio beacons

Iy’

Wi rerois

Figure 2: Source: Marvelmind Figure 3: Source: Terabee

Tomds Ba¢a (CTU in Prague)
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Utrasound beacons.

Localization

Global localization
Global UAV Localization — Indoor GPS

I

e These systems are very unreliable and are more suitable for ground vehicles.

e Ground vehicles do not need constant precise localization for stabilization, therefore, they cope much better with measure-
ment outages than UAVs.



Global UAV Localization — Indoor GPS

ey Showcase of local beacon positioning system

UAV local-
ization
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Video: https://youtu.be/SGB4MWCZuAM
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Local UAV Localization — SLAM

Lecture 3:
UAV local-

ization

Tt SLAM — Simultaneous Localization and Mapping

Béata

e Creating a map of a priori unknown environment while being localized in the same map.

Introduction
. e Chicken-and-egg problem.

tate
S e The holy grail problem in mobile robotics.

Linear e Two options:

Kalman

Filter e Online SLAM — computes the current robot pose.

Katman e Full SLAM — recovers the whole history of the robot poses.

Filter v
Unscented

K}a\man

e Popular approaches
Attitude
estimation o EKF SLAM,
ey e Fast SLAM (Particle filter),
‘;;:1“‘““”" e PoseGraph SLAM (Bundle Adjustment),

‘Lm‘l“’ e Factor Graph SLAM.

P w
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Local UAV Localization — EKF SLAM

2D EKF SLAM lllustration

EKF SLAM
e Online SLAM.
e The first SLAM solution, now mostly history.
e The LKF state vector contains:

e The robot’s state (rx,ry, ),
e The map of landmarks (Ixn, ly,n)-

e Assumption: landmark association is solved.

e Capable of loop closure (revisiting places should
help).
e Computationally intractable for large maps.

Video: https://youtu.be/vCVSOWALfid

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.: MIT Press, 2005
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EKF SUAM

20 EKF SUAM Hustrasion
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Loc

Algorithm
1. The state vector and the map are initialized.
2. Prediction step:
e the robot moves,
e landmarks are static.
3. Calculation of the expected measurement: which
landmarks should be observed and where.
4. Measurement: landmark association.

5. Correction step.

[=)]

al UAV Localization — EKF SLAM

2D EKF SLAM lllustration

. Repeat.

(1]

Video: https://youtu.be/vCVSOWALfid

S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.: MIT Press, 2005
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Lecture 3: UAV localization

Local UAV Localization — Fast SLAM

Particle filter

. e Does not need landmark association.
e Monte-Carlo localization method.
e The robot's state hypothesis is statistically

M icl i h ' I .
e Many particles representing the robot's mode drawn from the set of particles.

Particle filter — lllustration
e The initial distribution of the particles is random (uniform).

e The robot recognizes a door, but it does not know which door is it.

bel(x)

Figure 4: Source: Probabilistic robotics, Thrun et al. [1].

October 7th, 2024
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Local UAV Localization — Fast SLAM

Particle filter — lllustration

e Weight is put to the particles which could generate such measurements.

e Particles move to next generation: weighted particles have higher chance to survive and to multiply.

Figure 4: Source: Probabilistic robotics, Thrun et al. [1].

v
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Particle filter — lllustration
e The robot moves in the physical world

e We apply the control input to each pa

Local UAV Localization — Fast SLAM

rticle and move it as well.

L T C T T T T T T T [ T T T [T
T T T T T T T T T T T
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bel(s)

X

»

Figure 4: Source: Probabilistic robotics, Thrun et al. [1].
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Local UAV Localization — Fast SLAM

Lecture 3:
UAV local- o o .
ko Particle filter — lllustration
Té’[*;“ e Robot, again, observes a door, but it does not know which door is it.
aca
e Weight is put to the particles which could generate such measurements.
I Y ) O A I S S Y I Y |
C T T T T T T T T 1 1 C T T T T T T T T [ T T 1 C T T T T 11
I T | I S S Y T T T |
C T T T T T T T T 1 C T T T T T T T T [ T T 1 C T T T T 11
I T Y ) B I S S Y S T T T
1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1
Linear
Kalman
Filter A
Extended p(zlx)
Kalman
Filter
Unscented
Kalman X
Filter
A
bel(x)
LA I x
Global e Sl 111 _— e -
localization
Local
localization

Figure 4: Source: Probabilistic robotics, Thrun et al. [1].
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Local UAV Localization — Fast SLAM

Lecture 3:
UAV local-
ization

Tom33 . . g
Béta Particle filter — Illustration
e The robot moves in the physical world.

e We apply the control input to each particle and move it as well.

Y T Y O Y O O - N O S S S O T
e [ T T T T T T T 11 1 [ T T T T T T T T T T 1
Y T Y Y ) O - ) T S O I
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Extended
Kalman
Filter

Unscented
Kalman
Filter

-

Figure 4: Source: Probabilistic robotics, Thrun et al. [1].
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Video: https://youtu.be/-hXEYhOO_XA
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Local UAV Localization — Pose Graph SLAM

Pose graphs
e Special case of a Bayes network.
e Constructed as bi-parted graph.

e Two types of nodes:
e poses,
e landmarks.
e Edges:
e motions: constraints between poses,

o observations constraints between poses and
landmarks.

Inference from the graph forms a nonlinear
least-squares optimization.

e Mostly used by visual SLAMs.
e E.g., ORB-SLAM [6], LSD-SLAM [7].

Pose graph illustration

2024-10-07
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Local UAV Localization — Factor Graph SLAM

Lecture 3 Factor graphs
local-
fzation o Special case of a Bayes network. Factor graph illustration
Tomss .
Bica e Constructed as bi-parted graph.
Introduction b TWO types Of nOdGS:
et e variables,
ssl;u‘m‘\()'k e factors.
and ilters
Uinear e Edges: always connect variable and a factor.
Kalman
Filter e More types of constraints than in Pose Graph.
Extended
el e Constraints originating from IMU,
— e Loop closure constraints,
famen e Global navigation constraints (Global
P Navigation Satellite System (GNSS)).
Shmen e Inference from the graph forms a nonlinear
Odometry imizati bsolut
t least-squares optimization. @ robot pose landmark [ measmement
e o Often used with LIDAR Simultaneous facr
Global . - . 00
localization Localization and Mappings (SLAMs). | °dfg’c‘:§:“’ O dosire
Local fact
rtastion e E.g., LIO-SAM, MILIOM, LVI-SAM, i )
VIRAL-SLAM. )
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Local UAV Localization — Visual SLAMs

Lecture 3:
UAV local-
fzation List of SOTA Visual SLAM algorithms [9
Ist o Isua algorit S
Tomas
Bata Table 2
Summary of topalagical mapping and 1 Table 5
Summary of topelogical mappingand logalizat ion salutions based on local features
References Camera Map Tasks Environment Dascriptar
| Jucti - Keforences Camera Tasks Environment Feature
ntroduction Winters [16] Omnidir Topo Map + Loc Indaors PA
Gaspar [17] omnidir Topo Map + Lo Indoors oA Kasecka|97-99] Moo Map + Loc Indoors SET
St Ulrich| 18] Omnidir Topo. Map + Lo In+ Out Calour hist. Zhang| 100] Mano Map + Lac Indoors SIFT
- Werner|46] Omnidir Topo SLAM Indaors Calour hist. Zhang| 101] Mano LAM Indoors SIFT
estimators Kosecka[19] Topo Map + Lo Indaors Gradient orien hist. Rybski[102] Omnidir Map + Loc Indoors KL
Eradley [20] Topo Map + Loc Outdoors WEOH He [103] Mono Map + Loc Outdoor SIFT
and Filters Weiss [21] Topo Map - Loc Outdoars well s:nmugw mnmr mp+{x }mm Sﬂ
Li Wang|22] Topo Map + Loc In 4 Oue e Jka el 06,107 O vt I+ Ou PIRF (SIFT
inear Pronobis 23] Topo Loc Indoors Receptive field hist. wewong [106.107] nidi n+ Out (SIFT)
Kalman Singh 48] Tapo Map + Loc Gutdoars Cist Tangprasit | 108] Omnidic feper In-t Ouc
i Murilo |25] Hybrid Map £ Loc 0t out Omai-gist Maoriaka[109] Omnidic SLAM Indoors 30-PIRF (SURF)
ilter - o Andreassan [90] Omnidir Map + Loc. Indoors KLT/M-SIFT
Rituerta [49] Tapo Mapping Indoors Qrni-gist o o o . prsnid
B Sunderhauf [26] Topo SLAM Outdoors BRIEF-gist J mnidir ndoors M-
Kalman Amoo [33] Topo Map + Lo Gurdors LDE ;: o il ﬁmukr
Fil Amoe [35] Topo Map +loc Guedoors D-LDB Ascani [113] Omnidir Lsc In+ Out SIFT/SURF
e Lulol Topo i Gurdoar el Anati [114] Omnidir Map + Loc In+ Out SIF
[t} ted Chapoulie [51] Topo Map + Loc In-+ O Gix Zivkovic [115] Omnidir Nap £ Loc Indoors SET
necente Chapoulie [27] Topo Map + Loc In+ Out Spherical harmanics 6l Omaidir M:* Loc Indoors ST
Kalman Lamon 28] Tope. Loc Indaors Fingerprints i Ot Mag“x ‘"‘TGM SET
Filter Tapus 136371 Topa Map + Loc Indaors fingerprints Dayoud [ 18] omnidir Map + Loc Indoors SURF
E“‘igl '_E“P“ m“""ﬂ }"’“‘" ‘uﬁﬂ o Blanco [119.120] Sterea LAN Indoors SIFT
Attitud u 130] ope Pping ndcors Al ully [121] Omnidir Map + Lac Indoars ST
ttitude Menegatti [31.32] Topo Map + Loc Indaors Founter signatures Tully [122] Omnidir Indoors
estimation PavilE8l Topo Map + Loc Indeors Tourler ignares Seqic 1231 Mano Map + Loc Outdoors SIFI/Hamis/MSER
Ranganathan [59] Topo Mapping Indaors Fourier signatures Tomisa [124] i Nop £ Loe s NSERSTT CLoM
Milford [60] Hybrid SLAM Indoors Colour segmentation Bacine [135] o Nap £ Loc Frhent SURF/U SURF
Odometry Prasser [61] Hybrid SLAM Outdoors Colour hist. Daow 1261 o Map 1 Lo I
Milford |34 Hybrid et Oucdocrs Sean intensity prot Bacca| 127,128 omnidir Map + Loc Indoors SIFT/SURF
Glaver[62] Hybrid SLAM Outdoors Scan intensity prof Bacea | 120] O Inoars
Localization Lui [36.37] Hybrid SLAM In+ Out 2D Haar wavelet dec. Homera [130.131] Omnidic SLAM Outdoors MSER
o e wed Myl G e i oem
lobal - Saedan| 133] Omnidi SLAM indoo Wanelets
localization Lavegahn |39] Hybrid SLat Outdoors I Ressor {134] Ot ndeors e
Nourani [40] Tope Map + Lo In+ Out OFMJOFSC Mashai [135] Omnidir Map + Loc Indoors ASIFT
Local Milford [35.65.66] Tapo SLAM Outdaars Normalized patc hes Garcia-Rdalgo[136] Moo In-+ Out SuRe
e Pepperell [67] Topo SLAM Outdoors Normalized patc hes Garcia-Fidalgo [137] Mono SLAM In+ Out SIFT
localization W [68] Topo Map + Loc Outdoors Binarized patches
4
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e The research field of visual SLAMs is huge and also very popular.
o Almost everyone can contribute, because you only need a camera to start working.

e Rarely anything works in the real world and onboard a UAV.
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Local UAV Localization — Visual SLAMs

Showcase of Visual SLAM — RTAB-Map

RIAB-Map*

Video: https://youtu.be/G-5jesjNfLc
Tom4s Ba¢a (CTU in Prague) Lecture 3: UAV localization
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Local UAV Localization — Visual SLAMs

e The video showcases RGBD SLAM.
o RTAB-Map can also utilize other sources of data to build a map, e.g., LIDAR pointclouds.
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Local UAV Localization — LiDAR SLAMs

Showecase of LiDAR SLAM — A-LOAM SLAM

iy

o
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Video: https://youtu.be/w_62XWc6W7w
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Shacase of LIDAR SLAM — A-LOAM SLAM
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Localization
Local localization
Local UAV Localization — LiDAR SLAMs

e The field of LIDAR SLAMs is also very active and rich.

e Similarly, true SLAMs are rarely used on UAVs, mostly due to the SLAMs’ computational demands.
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Coupled Odometry + Localization

Visual odometry and Particle filter re-localization

e
Flo Fancts tlp

Jaet  BfocaCamen  SMessse S I0PoeEumus  SDWvGosl  Onbismront & = &

No Image

(== MiddeClick: Hove X,

Video: https://youtu.be/Mq10Fu_KqJQ

Tom4s Ba¢a (CTU in Prague)

Lecture 3: UAV localization

2024-10-07

Localization
Local localization

Coupled Odometry + Localization

e Open-VINS odometry for fast state estimation.
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Coupled Odometry + Locaization

Visual odometry and Partice fier relocalzation
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e Particle filter for re-localization in a known height map.
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Introduction
State o UAVs most commonly operate outdoors, therefore, GNSS localization the most common.
estimators
and Filters e Commercial platforms are capable of onboard odometry (most often visual), however, that is used for
e stabilization and to aid human pilots with control in GNSS-denied environments.
Filter
— e SLAMs are mostly the subject of research and are not reliable enough to use the UAVs to their full
e potential.
el e Multi-modal SLAMs and geometries are probably the future. Fusion of different sensor modalities (Visual,

Filter

LiDAR, Radar, InfraRed) will increase the reliability and robustness.
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Thanks for listening.
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Conclusion

Thanks for listening.
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