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Obtaining UAV state for feedback control and autonomous navigation?

Closing the loop

� How to obtain

� position r,
� velocity ṙ,
� acceleration r̈,
� orientation R,
� angular velocity ω.

Multirotor UAV dynamics model (Lecture 02)

Problems with measurements

� Some system states can not be measured at all.

� Some system states can not be measured directly.

� Sometimes, the measurement rate is not high enough for control loop.

� Measurements tend to be noisy.

� Measurement precision might not be sufficient.

State estimator
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Introduction

Obtaining UAV state for feedback control and autonomous navigation?

� State estimator is often called state observer in the context of control systems.
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Probabilistic state estimation and localization

Robot’s current state

� Robot’s belief of its current state.

� Probability Distribution Function (PDF), often multivariate normal distribution.

Robot’s motion model

� Allows to predict robot’s future state based on the current state and input.

� Transforms the current state distribution, based on input.

Robot’s sensor model

� Allows to incorporate measurements into the current state probabilistically.

� Allows to create artificial measurements based on the world model and the robot’s state.

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.: MIT Press, 2005
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State estimators and Filters

Linear Kalman Filter

Probabilistic state estimation and localization

� All three models are considered to be stochastic.
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Probabilistic generative laws

Robot’s state is complete

� Robot’s state at the time step k is all we need to predict the future:

p(x[k]|x[0:k−1],u[1:k], z[1:k−1])→ p(x[k]|x[k−1],u[k−1]). (1)

� The measurement of robot’s state is conditionally independent on the previous states:

p(z[k]|x[0:k−1],u[1:k], z[1:k−1])→ p(z[k]|x[k]). (2)

Gauss-Markov assumption for stochastic systems
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State estimators and Filters

Linear Kalman Filter

Probabilistic generative laws

� Gauss-Markov assumption states that the future and past states are decorrelated given the current state.
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Probabilistic state estimation — illustration

Current state at the sample k
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State estimators and Filters

Linear Kalman Filter

Probabilistic state estimation — illustration

� Current state is all we need to capture the past.

� Current state yields the prediction of the future state.

� The future states is measured.

� The prediction and the measurement are combined to form the estimate of the future state.
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Báča
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Báča

Introduction

State
estimators
and Filters

Linear
Kalman
Filter

Extended
Kalman
Filter

Unscented
Kalman
Filter

Attitude
estimation

Odometry

Localization

Global
localization

Local
localization

Probabilistic state estimation — illustration

Measurement of the robot’s state z
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Linear Kalman Filter (LKF)

� Developed in ≈ 1960 at NASA.

� Optimal state estimator for linear models.

� Minimum Mean-Square Error estimator.

Models

� State: Multivariate Gaussian

� Sensor model: added noise N (0,R)

� Motion model: linear model with added noise
N (0,Q)

Two-stage algorithm

� Prediction: propagation of robot’s state and its
uncertainty through the model.

� Correction: update of the robot’s state and its
uncertainty using measurements.

How to derive it?

� B3M35OFD, Estimation, filtering and detection
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Estimator for the Linear Time Invariant (LTI) system

Discrete stochastic LTI System

� State at the time step k: x[k] ∈ Rn.

� Input at the time step k: u[k] ∈ Rm.

x[k+1] = Ax[k] + Bu[k] + w[k], (3)

where:

� System matrix: A ∈ Rn×n,

� Input matrix: B ∈ Rn×m,

� Process noise w[k] ∼ N (0,Q),

� Process covariance matrix: Q ∈ Rn×n>0 .

Measurement model

� Vector of measurements: z ∈ Rp.

z[k] = Hx[k] + v[k], (4)

where:

� Measurement-state mapping: H ∈ Rp×n,

� Measurement noise: v[k] ∼ N (0,R),

� Measurement noise covariance: R ∈ Rp×p>0 .

Goal of the estimator

To estimate the tuple x∗
[k]
,P[k], where

� x∗
[k]

is the state vector estimate,

� P[k] ∈ Rn×n is the state covariance.
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Linear Kalman Filter

Estimator for the LTI system
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Linear Kalman Filter (LKF)

Prediction

� Given x∗
[k]
,P[k],u[k]:

x∗[k+1] = Ax∗[k] + Bu[k] (5)

P[k+1] = AP[k]A
ᵀ + Q (6)

Correction

� Given P[k], calculate the Kalman gain:

K[k] = P[k]H
ᵀ (HP[k]H

ᵀ + R
)−1

. (7)

� Given x∗
[k]
,P[k], z[k],K[k], update the state and

its covariance:

x∗[k] := x∗[k] + K[k]

(
z[k] −Hx∗[k]

)
, (8)

P[k] :=
(
I−K[k]H

)
P[k], (9)
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Linear Kalman Filter

LKF



Lecture 3:
UAV local-

ization

Tomáš
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Linear Kalman Filter (LKF)

The “synchronous” LKF cycle

Calculate the Kalman gain

K[k] = P[k]H
ᵀ(HP[k]H

ᵀ + R)−1

Correction

x∗
[k] = x∗

[k] + K[k](z[k] − Hx∗
[k])

Calculate the error covariance

P[k] = (I − K[k]H)P[k]

Prediction

x∗
[k+1] = Ax∗

[k] + Bu[k]

P[k+1] = (AP[k]A
ᵀ) + Q

k := k + 1

initial conditions

x∗
[0],P[0]

measurement cov.

R[k]

measurement

z[k]

The cycle evaluation rate?

� At the mercy of the incoming measurements.
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Linear Kalman Filter (LKF)

The “asynchronous” LKF cycle

� Prediction step executed at fixed rate. � Correction step executed on demand.

Calculate the Kalman gain

K[k] = P[k]H
ᵀ(HP[k]H

ᵀ + R)−1

Correction

x∗
[k] = x∗

[k] + K[k](z[k] − Hx∗
[k])

Calculate the error covariance

P[k] = (I − K[k]H)P[k]

Prediction

x∗
[k+1] = Ax∗

[k] + Bu[k]

P[k+1] = (AP[k]A
ᵀ) + Q

k := k + 1

current hypothesis

x∗
[k],P[k]

measurement cov.

R[k]

measurement

z[k]
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Linear Kalman Filter (LKF)

� More often, the prediction and correction happen asynchronously.

� Corrections can be even caused by variety of sources at different rate.

� The prediction step is often being evaluated at fixed rate. The state obtained at the prediction step is used for control.
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Example LTI system, ∆t = 0.01 s

x =

[
r
ṙ

]
,u =

[
ṙd
]
,A =

[
1.0 0.01
0.0 0.99

]
,B =

[
0

0.01

]
(10)

Measurement

� Measurement: rmes = r +N (0, σ2)
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Báča

Introduction

State
estimators
and Filters

Linear
Kalman
Filter

Extended
Kalman
Filter

Unscented
Kalman
Filter

Attitude
estimation

Odometry

Localization

Global
localization

Local
localization

Linear Kalman Filter (LKF) — Example

Example LTI system, ∆t = 0.01 s

x =

[
r
ṙ
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0.0 0.99
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[
0

0.01
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(11)

Measurement

� Measurement vector: z = [rmes]ᵀ.

� Measurement mapping:

z = Hx, where H ∈ Rp×n. (12)

The system with LKF

What if z = [ṙmes, rmes]?

� Measurement mapping matrix:

H =

[
0 1
1 0

]
. (13)
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� Measurement mapping matrix:

H =

[
0 1
1 0

]
. (13)

Tomáš Báča (CTU in Prague) Lecture 3: UAV localization October 7th, 2024 12 / 54

Linear Kalman Filter (LKF) — Example

Example LTI system, ∆t = 0.01 s

x =

[
r
ṙ
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� Measurement mapping matrix:

H =

[
0 1
1 0

]
. (13)

2
0

2
4

-1
0

-0
7

Lecture 3: UAV localization

State estimators and Filters

Linear Kalman Filter

Linear Kalman Filter (LKF) — Example



Lecture 3:
UAV local-

ization

Tomáš
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� Measurement mapping matrix:

H =

[
0 1
1 0

]
. (14)

2
0

2
4

-1
0

-0
7

Lecture 3: UAV localization

State estimators and Filters

Linear Kalman Filter

Linear Kalman Filter (LKF) — Example



Lecture 3:
UAV local-

ization

Tomáš
Báča

Introduction

State
estimators
and Filters

Linear
Kalman
Filter

Extended
Kalman
Filter

Unscented
Kalman
Filter

Attitude
estimation

Odometry

Localization

Global
localization

Local
localization

Linear Kalman Filter (LKF) — Example

Example LTI system, ∆t = 0.01 s

x =

[
r
ṙ
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ṙd
]
,A =

[
1.0 0.01
0.0 0.99

]
,B =

[
0

0.01

]
(11)

Measurement

� Measurement vector: z = [rmes]ᵀ.

� Measurement mapping:

z = Hx, where H ∈ Rp×n. (12)

� Measurement mapping matrix:

H =
[
1 0

]
. (13)

The system with LKF

What if z = [ṙmes, rmes]?
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Linear Kalman Filter (LKF) — Example

� The r state measurement exhibits added noise.

� LKF can estimate the state while removing the
noise.

Example LTI system

−1 0 1 2 3 4 5 6 7 8 9 10

−0.2

0

0.2

0.4

time[s]

r[
−

]

r measured

r true value
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Linear Kalman Filter (LKF) — Example

� The ṙ state is not a measured variable.

� LKF can estimate/observe the variable.

Example LTI system

−1 0 1 2 3 4 5 6 7 8 9 10

−0.1

0

0.1

time[s]

ṙ
[−

]

ṙd (input)

ṙ true value
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ṙ
[−

]
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−1 0 1 2 3 4 5 6 7 8 9 10

−0.1

0

0.1

time[s]

ṙ
[−

]

ṙd (input)

ṙ true value

ṙ∗ LKF
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Linear Kalman Filter (LKF) — Example 2

Estimating hidden states

� Hidden states are often used to model sensor biases.

� LKF can estimate them if they are observable.

LTI System diagram

Bias

Example LTI system, ∆t = 0.01 s

x =


r
ṙ
ṙb
ṙi

 ,u =
[
ṙd
]
, (15)

A =


1.0 0.01 0.0 0.0
0.0 0.0 1.0 1.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.99

 ,B =


0
0
0

0.01

 . (16)
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� Sensor bias estimation is heavily used to estimate nonzero offsets of sensors such as gyroscopes and accelerometers.

� Wind speed can be estimated as a bias in UAV acceleration.
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Extended Kalman Filter (EKF) (EKF)

What if we have a non-linear model?

� UAV Rotational dynamics.

� Ackermann vehicle.

� Differential car-like model.

� ... almost anything engineering-related in the real world.

Linearization?

� Needs an operation point.

� A single operation point is hard-to-find with most models.

Let’s linearize more

� Extended Kalman Filter (EKF).

� De-facto standard in aviation and inertial navigation.
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Extended Kalman Filter (EKF)

Discrete stochastic system

� State at the time step k: x[k] ∈ Rn.

� Input at the time step k: u[k] ∈ Rm.

x[k+1] = f(x[k],u[k]) + w[k], (17)

where:

� f() is differentiable,

� Process noise w[k] ∼ N (0,Q),

� Process covariance matrix: Q ∈ Rn×n>0 .

Measurement model

� Vector of measurements: z ∈ Rp.
z[k] = h(x[k]) + v[k], (18)

where:

� Measurement-state mapping: h() : Rp → Rn is differentiable,

� Measurement noise: v[k] ∼ N (0,R),

� Measurement noise covariance: R ∈ Rp×p>0 .
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Prediction

� Given x∗
[k]
,P[k],u[k]:

x∗[k+1] = f(x∗[k],u[k]) (19)

P[k+1] = F[k]P[k]F
ᵀ
[k]

+ Q, (20)

where

F[k] =
∂f

∂x

∣∣∣∣
x∗
[k]
,u[k]

(21)

is the Jacobian of f() evaluated at the x∗
[k]
,u[k].

Correction

� Given P[k], calculate the Kalman gain:

K[k] = P[k]H
ᵀ
[k]

(
H[k]P[k]H

ᵀ
[k]

+ R
)−1

. (22)

� Given x∗
[k]
,P[k], z[k],K[k], update the state and

its covariance:

x∗[k] := x∗[k] + K[k]

(
z[k] − h(x∗[k])

)
, (23)

P[k] :=
(
I−K[k]H[k]

)
P[k], (24)

where

H[k] =
∂h

∂x

∣∣∣∣
x∗
[k]

(25)

is the Jacobian of h() evaluated at the x∗
[k]

.
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Extended Kalman Filter (EKF) — properties

EKF Properties

� Optimality? no

� Stability? not guaranteed

� Ease of use? far from it

EKF Problems

� f(), and h() needs to be differentiable.

� f(), and h() are linearized blindly in each state.

� EKF is sensitive to model inaccuracies.

� EKF is sensitive to poor initialization.

EKF mind-set problem

� How EKF deals with non-linearity? EKF works with the original state Probability Distribution Function (PDF) and a
degraded model description.

� What about we swap it around? Let’s transform a degraded state PDF through the original model.
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Unscented Kalman Filter (UKF)

Unscented Kalman Filter

� Published in early 2000s by Uhlmann et al.

� Uses the full nonlinear model f(), h().

� Does not linearize, therefore, f(), h() can be arbitrary.

� More elegant solution than EKF.

� More robust than EKF.

[2] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear estimation,” in Adaptive
Systems for Signal Processing, Communications, and Control Symposium, IEEE, IEEE, 2000, pp. 153–
158
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Unscented Transform

Unscented transform — original Gaussian Probability Distribution Function
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Unscented Transform

Unscented transform — sampling of 2n + 1 sigma points
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Unscented transform — transforming sigma points through h()
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Unscented Transform

Unscented transform — reconstruction of the transformed Gaussian PDF

� UT preserves 1st, 2nd and 3rd moment of the Gaussian PDF.

� The new mean (x) is obtained by weighted sum of the sigma points using first-order weights.

� The new covariance (P) is obtained by weighted sum of the sigma points using second-order weights.
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Unscented Kalman Filter (UKF) — Algorithm

Prediction step

1. Calculate the sigma points for
x∗
[k]
,P[k].

2. Propagate the sigma points through
f().

3. Reconstruct x∗
[k+1]

,P[k+1]

Correction step

1. Calculate the sigma points for x∗
[k]
,P[k].

2. Propagate the sigma points through h() to obtain the
expected measurement z∗.

3. Reconstruct the mean and covariance of the expected
measurement.

4. Calculate cross-covariance between the measurement z and
the expected measurement z∗.

5. Calculate the Kalman gain using the cross-covariance.

6. Update the mean and covariance x∗,P.

[2] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear estimation,” in Adaptive
Systems for Signal Processing, Communications, and Control Symposium, IEEE, IEEE, 2000, pp. 153–
158
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Báča

Introduction

State
estimators
and Filters

Linear
Kalman
Filter

Extended
Kalman
Filter

Unscented
Kalman
Filter

Attitude
estimation

Odometry

Localization

Global
localization

Local
localization

Unscented Kalman Filter (UKF) — properties

UKF Properties

� Optimality? still no

� Stability? still not guaranteed, but much better than EKF

� Ease of use? yes

UKF Benefits

� No need to derive Jacobians.

� h() and f() can be arbitrary.

� Only the implementation of h() and f() needs to be supplied.

UKF Problems

� Does not have many.

� Mathematical soundness of operations needs to be checked (square rooting of P).
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Unscented Kalman Filter (UKF) — example

State vector

The state vector is

x =
[
rᵀ, ṙᵀ, η, η̇

]ᵀ
, (26)

where

� rW : the 2D position in the world frame,

� ṙB: the 2D velocity in the body frame,

� η: the heading,

� η̇: the heading rate.

Measurement vector

z =
[
rᵀ, ṙᵀ, η̇

]ᵀ
(27)

System illustration
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Unscented Kalman Filter (UKF) — example

Motion model, ∆t

x[k+1] =


r
ṙ
η
η̇


[k+1]

=


r[k] + ∆tR[k]ṙ[k]

ṙ[k]
η[k] + ∆tη̇[k]

η̇[k]

 , (26)

where

R[k] =

[
cos η[k] −sin η[k]
sin η[k] cos η[k]

]
. (27)

Observation model

z[k] =

r[k]
ṙ[k]
η̇[k]

 (28)

System illustration
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Unscented Kalman Filter (UKF) — example

Video: https://youtu.be/HVVgLxYqvcI
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Unscented Kalman Filter (UKF) — example 2

State estimation of a car

� Nonlinear car-like model
(similar to the previous
example).

� Unscented Kalman Filter.

� Car observed by a single
camera.

Video: https://youtu.be/BSNUOd61teY

[3] T. Baca, P. Stepan, B. Spurny, D. Hert, R. Penicka, M. Saska, et al., “Autonomous Landing on a Moving
Vehicle with an Unmanned Aerial Vehicle,” Journal of Field Robotics, vol. 36, pp. 874–891, 5 2019
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UAV Attitude estimation

Rotation+translation Dynamics model

τ = Jω̇ + ω × Jω (29)

Ṙ = RΩ (30)

r̈W =
1

m
RFBt + gW (31)

What do we need?

� Angular velocity: ωB.

� Orientation: R.

State estimator

� a) Complementary filter

� b) EKF

� Often based on quaternions.

� Bias estimation for all the sensors.

UAV Onboard Sensors

� Gyroscope:

� 3-axis MEMS.
� Measured intrinsic angular rate.
� Sufficient for attitude rate control.

� Accelerometer:

� 3-axis MEMS.
� Measures proper acceleration.
� Gravity model might be needed for precise

navigation.

� “Magnetometer”:

� 3-axis
� Measures external magnetic field.
� Magnetic field model needed for precise

navigation.

� All above are often part of the Inertial
Measurement Unit (IMU).

� All above need calibration.

� All above benefit from temperature stabilization.
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Etymology

Odo-metry = Measuring of steps → measuring of where we are based on the steps we took.

Ground robot analogy

� Ground robots have encoders in theirs wheels.

� Encoders’ outputs represent intrinsic velocity.

� Integrating encoders from the last known position is called dead reckoning.

Can we do odometry using the IMU

� Not in general: double-integration of acceleration will drift with increasing velocity.

� Can be done with very precise instruments and models: in aerospace.

� Definitely not with the consumer-level sensors in most UAVs: would not lead to a stable flight.

How can we do odometry then?

� We need to go derivative higher from acceleration: to velocity.
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� To be complete: double integration of acceleration will lead to quadratic drift in position, if the accelerometer exhibits
non-zero bias.
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Odometry on UAVs — Optical Flow

Optical flow

� Means of calculating velocity from RGB camera
footage.

� Downwards-facing camera.

� Requires distance measurement to fix the
absolute velocity.

� Very common on most commercial platforms.

� Parrot AR Drone (2010)

� Relatively robust.

� Not very accurate.

PX4 Flow

� Ultrasound
rangefinder

� GreyScale
camera

� Embedded
µcontroller

Flowdeck v2

� IR ToF
rangefinder

� GreyScale
camera

� Embedded
µcontroller
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Odometry on UAVs — Optical Flow

Optic Flow

Video: https://youtu.be/tIKHGiI0s2w
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Odometry on UAVs — Optical Flow

Optic Flow

Video: https://youtu.be/tIKHGiI0s2w
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Báča
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Odometry on UAVs — Feature-based visual odometry

Visual Inertial Odometry
� Combination of feature matching and IMU

predictions.

� Does not require a rangefinder.

� Requires proper camera calibration.

� Requires high-resolution and high-rate cameras.

� Global shutter is necessary.

� Robustness is still to be desired (for UAVs).

Features detectors:

� Invariance in transformations and lighting.

� Edges, Corners, Blobs.

� SURF, FAST, SIFT, MSER (Matas et al. [4]).

Feature descriptors:

� SURF, SIFT, BRIEF.

Feature matching [5]
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Báča
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Odometry on UAVs — Feature-based visual odometry

Showcase of VIO

Video: https://youtu.be/EVreW6VDT6U
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Odometry on UAVs — Feature-based visual odometry

Showcase of VIO in low-light conditions

Video: https://youtu.be/fOOV9fnvnEw
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Odometry on UAVs — LiDAR odometry

LiDAR

� 2D or 3D.

� Active sensor: Infra-red.

� Scans the environment in stacked rings.

� Has mechanical parts.

� Requires obstacles to be close.

PointCloud data structure

� Organized/unorganized list of 3D points.

� Can contain meta information (reflectivity,
color).

PointCloud features

� 3D corners, 3D edges.

� Facets of polyhedra.

Ouster LiDAR Field of View

Figure 1: source: http://ouster.com
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Odometry on UAVs — LiDAR odometry

Iterative Closest Point (ICP)

� Pointcloud registration method.

� Assumption: Not that many points
have changed between two
consecutively-measured point clouds.

� Minimizing sum of squares of the
closest points on two pointclouds.

� Many variants and implementations
exist.

� Outlier rejection is important.

� Algorithm:

1. compute point-to-point
correspondences,

2. optimize for the rotation and
translation,

3. move the pointcloud,
4. repeat.

Showcase of LiDAR odometry

Video: https://youtu.be/veBnoqIqPZQ

Tomáš Báča (CTU in Prague) Lecture 3: UAV localization October 7th, 2024 35 / 54

Odometry on UAVs — LiDAR odometry

Iterative Closest Point (ICP)

� Pointcloud registration method.

� Assumption: Not that many points
have changed between two
consecutively-measured point clouds.

� Minimizing sum of squares of the
closest points on two pointclouds.

� Many variants and implementations
exist.

� Outlier rejection is important.

� Algorithm:

1. compute point-to-point
correspondences,

2. optimize for the rotation and
translation,

3. move the pointcloud,
4. repeat.

Showcase of LiDAR odometry

Video: https://youtu.be/veBnoqIqPZQ2
0

2
4

-1
0

-0
7

Lecture 3: UAV localization

Odometry

Odometry on UAVs — LiDAR odometry

https://youtu.be/veBnoqIqPZQ
https://youtu.be/veBnoqIqPZQ


Lecture 3:
UAV local-

ization

Tomáš
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Localization

The means of obtaining the 3D position of the robot in the world coordinate fame.

Why?

� Global localization is needed for global navigation:

� for building accurate 3D maps of the environment,
� for using the maps for navigation.

� Localization is needed for any meaningful interaction of a robot with its world.

Where is the state of the art?

� Depends heavily on the use case.
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Global outdoor UAV Localization — GNSS

Global Navigation Satellite System

� Earth’s satellite constellations.

� GPS, GLONAS, Galileo, BeiDou.

Properties

� Most-often 10 Hz 3D position output.

� Needs clear sky view.

� Beware of Solar activity (Ionosphere).

� Beware of reflections (buildings).

� Requires magnetometer.

Influence of ionosphere on GNSS

Upgrade: Realtime Kinematics (RTK)

� Works directly with the GPS carrier wave signal.

� Fixed base-station on a tripod for relaying carrier
wave phase.

� The UAV is equipped with RTK-compatible
antenna and radio receiver.
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� Sensitive to El-Mag interference (USB 3.0).
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Global indoor UAV Localization — Motion capture

Marker-based localization

� Pre-set IR camera system.

� IR lighting.

� Retro-reflective markers.

� Popular for control theory research.

Qualisys motion capture cameras

Motion capture output

� Rigid body’s position and velocity, 200 Hz.

� Almost no noise, can be used directly for
feedback.

UAV equipped with retro-reflective markers
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Global indoor UAV Localization — Motion capture

Vijay Kumar’s TED talk

Video: https://youtu.be/4ErEBkj_3PY
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Global UAV Localization — Indoor GPS

Ultrasound beacons

� Pre-set environment with ultrasound beacons.

� Known beacon locations.

Marvelmind ultrasound beacons

Figure 2: Source: Marvelmind

Radio beacons

� Pre-set environment with radio beacons.

� Known beacon locations.

Terabee RTPS radio beacons

Figure 3: Source: Terabee
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� These systems are very unreliable and are more suitable for ground vehicles.

� Ground vehicles do not need constant precise localization for stabilization, therefore, they cope much better with measure-
ment outages than UAVs.



Lecture 3:
UAV local-

ization

Tomáš
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Global UAV Localization — Indoor GPS

Showcase of local beacon positioning system

Video: https://youtu.be/SGB4MWCZuAM
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Local UAV Localization — SLAM

SLAM — Simultaneous Localization and Mapping

� Creating a map of a priori unknown environment while being localized in the same map.

� Chicken-and-egg problem.

� The holy grail problem in mobile robotics.

� Two options:

� Online SLAM — computes the current robot pose.
� Full SLAM — recovers the whole history of the robot poses.

Popular approaches

� EKF SLAM,

� Fast SLAM (Particle filter),

� PoseGraph SLAM (Bundle Adjustment),

� Factor Graph SLAM.
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Local UAV Localization — EKF SLAM

EKF SLAM

� Online SLAM.

� The first SLAM solution, now mostly history.

� The LKF state vector contains:

� The robot’s state (rx, ry, rη),
� The map of landmarks (lx,n, ly,n).

� Assumption: landmark association is solved.

� Capable of loop closure (revisiting places should
help).

� Computationally intractable for large maps.

2D EKF SLAM Illustration

Video: https://youtu.be/vCVS9WAffi4

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.: MIT Press, 2005
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Algorithm

1. The state vector and the map are initialized.

2. Prediction step:

� the robot moves,
� landmarks are static.

3. Calculation of the expected measurement: which
landmarks should be observed and where.

4. Measurement: landmark association.

5. Correction step.

6. Repeat.

2D EKF SLAM Illustration

Video: https://youtu.be/vCVS9WAffi4

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.: MIT Press, 2005
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Particle filter

� Monte-Carlo localization method.

� Many particles representing the robot’s model.

� Does not need landmark association.

� The robot’s state hypothesis is statistically
drawn from the set of particles.

Particle filter — Illustration

� The initial distribution of the particles is random (uniform).

� The robot recognizes a door, but it does not know which door is it.

Figure 4: Source: Probabilistic robotics, Thrun et al. [1].
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Particle filter — Illustration

� Weight is put to the particles which could generate such measurements.

� Particles move to next generation: weighted particles have higher chance to survive and to multiply.

Figure 4: Source: Probabilistic robotics, Thrun et al. [1].
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Particle filter — Illustration

� The robot moves in the physical world.

� We apply the control input to each particle and move it as well.

Figure 4: Source: Probabilistic robotics, Thrun et al. [1].
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Báča

Introduction

State
estimators
and Filters

Linear
Kalman
Filter

Extended
Kalman
Filter

Unscented
Kalman
Filter

Attitude
estimation

Odometry

Localization

Global
localization

Local
localization

Local UAV Localization — Fast SLAM

Particle filter — Illustration

� Robot, again, observes a door, but it does not know which door is it.

� Weight is put to the particles which could generate such measurements.

Figure 4: Source: Probabilistic robotics, Thrun et al. [1].
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� The robot moves in the physical world.

� We apply the control input to each particle and move it as well.

Figure 4: Source: Probabilistic robotics, Thrun et al. [1].
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2D Fast SLAM Illustration

Video: https://youtu.be/-hXEYh0O_XA
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Pose graphs

� Special case of a Bayes network.

� Constructed as bi-parted graph.

� Two types of nodes:

� poses,
� landmarks.

� Edges:

� motions: constraints between poses,
� observations constraints between poses and

landmarks.

� Inference from the graph forms a nonlinear
least-squares optimization.

� Mostly used by visual SLAMs.

� E.g., ORB-SLAM [6], LSD-SLAM [7].

Pose graph illustration
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Factor graphs

� Special case of a Bayes network.

� Constructed as bi-parted graph.

� Two types of nodes:

� variables,
� factors.

� Edges: always connect variable and a factor.

� More types of constraints than in Pose Graph.

� Constraints originating from IMU,
� Loop closure constraints,
� Global navigation constraints (Global

Navigation Satellite System (GNSS)).

� Inference from the graph forms a nonlinear
least-squares optimization.

� Often used with LiDAR Simultaneous
Localization and Mappings (SLAMs).

� E.g., LIO-SAM, MILIOM, LVI-SAM,
VIRAL-SLAM.

Factor graph illustration

robot pose landmark
absolute

measurement
factor

odometry
factor

loop
closure
factor

[8] F. Dellaert, M. Kaess, et al., “Factor graphs for robot perception,” Foundations and Trends in Robotics,
vol. 6, no. 1-2, pp. 1–139, 2017
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List of SOTA Visual SLAM algorithms [9]
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� The research field of visual SLAMs is huge and also very popular.

� Almost everyone can contribute, because you only need a camera to start working.

� Rarely anything works in the real world and onboard a UAV.
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Showcase of Visual SLAM — RTAB-Map

Video: https://youtu.be/G-5jesjNfLc
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Showcase of Visual SLAM — RTAB-Map

Video: https://youtu.be/G-5jesjNfLc
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� The video showcases RGBD SLAM.

� RTAB-Map can also utilize other sources of data to build a map, e.g., LiDAR pointclouds.

https://youtu.be/G-5jesjNfLc
https://youtu.be/G-5jesjNfLc
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Showcase of LiDAR SLAM — A-LOAM SLAM

Video: https://youtu.be/w_62XWc6W7w
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Showcase of LiDAR SLAM — A-LOAM SLAM

Video: https://youtu.be/w_62XWc6W7w
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� The field of LiDAR SLAMs is also very active and rich.

� Similarly, true SLAMs are rarely used on UAVs, mostly due to the SLAMs’ computational demands.

https://youtu.be/w_62XWc6W7w
https://youtu.be/w_62XWc6W7w


Lecture 3:
UAV local-

ization

Tomáš
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Coupled Odometry + Localization

Visual odometry and Particle filter re-localization

Video: https://youtu.be/Mq10Fu_KqJQ
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Visual odometry and Particle filter re-localization

Video: https://youtu.be/Mq10Fu_KqJQ
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� Open-VINS odometry for fast state estimation.

� Particle filter for re-localization in a known height map.

https://youtu.be/Mq10Fu_KqJQ
https://youtu.be/Mq10Fu_KqJQ
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Localization — Summary

� UAVs most commonly operate outdoors, therefore, GNSS localization the most common.

� Commercial platforms are capable of onboard odometry (most often visual), however, that is used for
stabilization and to aid human pilots with control in GNSS-denied environments.

� SLAMs are mostly the subject of research and are not reliable enough to use the UAVs to their full
potential.

� Multi-modal SLAMs and geometries are probably the future. Fusion of different sensor modalities (Visual,
LiDAR, Radar, InfraRed) will increase the reliability and robustness.
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Thanks for listening.
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