Answer Set Programming (Partially based on slides from K. Chvalovsky and T. Eiter)

A Problem with Negation as Failure

- Negation in Prolog: "not A" is true if we fail to prove A.
- How would you interpret a rule such as:

a :- not a.

- If we fail to prove a then a is true but that means it can be proven so the rule should not have fired but then it a would not be proven.... chicken and egg problem.
- (If the above were a classical logic formula with a classical negation then we would have: $a \leftarrow \neg a \equiv a \lor a \equiv a$, so its model would be $\{a\}$ but that is not what we want from negation as failure.)

What will Prolog do?

148 users online	Search		Q	8	25 -
i a				•	
心 Singletor	variables:	[Goal]			
Stack limit Stack size	(0.2Gb) exce s: local: 0.	eded 2Gb, global	L: 23Kb,	trail: 1K	b
Stack dept 1,735,441	h: 3,470,891	, last-call	L: 50%, C	hoice poi	nts:
Probable i [3.470.8	nfinite recu 91l not(a)	rsion (cycl	le):		
[3,470,8	89] not(a)				
?- a					
Examples					

A More Complex Example

man(dilbert).
single(X) :- man(X), not husband(X).
husband(X) :- man(X), not single(X).

(SWISH	File -	Edit -	Examples -				
ا 🥨	\Lambda Program 🗙	+						
1 2	<pre>man(dilbert).</pre>							
3	<pre>single(X) :- man(X), not(husband(X)).</pre>							
4	<pre>husband(X) :- man(X), not(single(X)).</pre>							
5								
6	<pre>not(Goal):-Goal,!,fail.</pre>							
7	not <mark>(Goal).</mark>							
	Singleton v	variables:	[Goal]					

What will Prolog do?

In Classical Logic

- If we interpreted the previous program using classical negation, instead of negation as failure, we would get the following FOL sentence:
 - man(dilbert) $\land \forall x : single(x) \lor married \lor \neg man(x).$
- This sentence has two minimal models over the domain:
 - {man(dilbert), single(dilbert)} and {man(dilbert), married(dilbert)}.
- None of these models is the *least* model. **There is no** *least model* **in this case.** So the minimum model semantics will not help us.

We need different semantics

knowledge-representation perspective...

• Prolog is a nice programming language but it is not fully declarative: the order of rules matters, the order of literals in rules matters, cut is not declarative at all, negation implemented using cut is tricky from the

Stable Model Semantics

- By Gelfond and Lifschitz [1988, 1991].
- Based on the idea of stable models, which agree with minimal model semantics for programs without negation (and also for so-called stratified programs - not too important here).
- (There are other types of semantics for logic programming, such as wellfounded semantics [van Gelder er al, 1991]... but we will not be dealing with them here.)

that is programs without variables, e.g. a :- b, c.

Caution!

In most of what follows we will focus on ground programs,

• **Proposition:** Let \mathcal{M} be the set of all models of a given definite program \mathcal{P} . Let us define $\omega_{least} = \bigcap \omega$. Then ω_{least} is a model of \mathscr{P} (and hence $\omega \in \mathcal{M}$ $\omega_{least} \in \mathcal{M}$). We call ω_{least} the least model of ω .

program and ω be an interpretation. Then the T_P -operator is defined as $T_P(\omega) = \{ h \mid h \leftarrow b_1 \land \dots \land b_m \in \mathscr{P} \text{ and } b_1, \dots, b_m \in \omega \}.$

• Definition (T_P -operator, aka immediate consequence operator): Let \mathscr{P} be a definite

- program and ω be an interpretation. Then the T_P -operator is defined as $T_P(\omega) = \{ h \mid h \leftarrow b_1 \land \dots \land b_m \in \mathscr{P} \text{ and } b_1, \dots, b_m \in \omega \}.$

• Definition (T_P -operator, aka immediate consequence operator): Let \mathscr{P} be a definite

• **Proposition:** The least model of \mathscr{P} is the least fix-point of the sequence $T_P(T_P(\dots,T_P(\emptyset)))$.

- Definition (T_P -operator, aka immediate consequence operator): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_P -operator is defined as $T_P(\omega) = \{ h \mid h \leftarrow b_1 \land \dots \land b_m \in \mathscr{P} \text{ and } b_1, \dots, b_m \in \omega \}.$
- **Proposition:** The least model of \mathscr{P} is the least fix-point of the sequence $T_P(T_P(\dots,T_P(\emptyset)))$. • **Example:** Let $\mathscr{P} = \{a, b \notin a, c \notin a \land b\}$. We have

1. $\omega_0 = \emptyset$

- Definition (T_P -operator, aka immediate consequence operator): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_P -operator is defined as $T_P(\omega) = \{ h \mid h \leftarrow b_1 \land \dots \land b_m \in \mathscr{P} \text{ and } b_1, \dots, b_m \in \omega \}.$
- **Proposition:** The least model of \mathscr{P} is the least fix-point of the sequence $T_P(T_P(\dots,T_P(\emptyset)))$. • **Example:** Let $\mathscr{P} = \{a, b \notin a, c \notin a \land b\}$. We have

1.
$$\omega_0 = \emptyset$$

2. $\omega_1 = T_P(\omega_0) = \{a\}.$

- Definition (T_P -operator, aka immediate consequence operator): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_P -operator is defined as $T_P(\omega) = \{ h \mid h \leftarrow b_1 \land \dots \land b_m \in \mathscr{P} \text{ and } b_1, \dots, b_m \in \omega \}.$
- **Proposition:** The least model of \mathscr{P} is the least fix-point of the sequence $T_P(T_P(\dots,T_P(\emptyset)))$. • **Example:** Let $\mathscr{P} = \{a, b \notin a, c \notin a \land b\}$. We have

1.
$$\omega_0 = \emptyset$$

2. $\omega_1 = T_P(\omega_0) = \{a\}$.
3. $\omega_2 = T_P(\omega_1) = \{a, b\}.$

- Definition (T_P -operator, aka immediate consequence operator): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_P -operator is defined as $T_P(\omega) = \{ h \mid h \leftarrow b_1 \land \dots \land b_m \in \mathscr{P} \text{ and } b_1, \dots, b_m \in \omega \}.$
- **Proposition:** The least model of \mathscr{P} is the least fix-point of the sequence $T_P(T_P(\dots,T_P(\emptyset)))$. • **Example:** Let $\mathscr{P} = \{a, b \leftarrow a, c \leftarrow a \land b\}$. We have

1.
$$\omega_0 = \emptyset$$

2. $\omega_1 = T_P(\omega_0) = \{a\}$.
3. $\omega_2 = T_P(\omega_1) = \{a, b\}$.
4. $\omega_1 = T_P(\omega_1) = \{a, b\}$.

T $w_3 - I p(w_2) - (u, v, c)$.

- Definition (T_P -operator, aka immediate consequence operator): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_P -operator is defined as $T_P(\omega) = \{ h \mid h \leftarrow b_1 \land \dots \land b_m \in \mathscr{P} \text{ and } b_1, \dots, b_m \in \omega \}.$
- **Proposition:** The least model of \mathscr{P} is the least fix-point of the sequence $T_P(T_P(\dots,T_P(\emptyset)))$. • **Example:** Let $\mathscr{P} = \{a, b \notin a, c \notin a \land b\}$. We have

1.
$$\omega_0 = \emptyset$$

2. $\omega_1 = T_P(\omega_0) = \{a\}$.
3. $\omega_2 = T_P(\omega_1) = \{a, b\}$.
4. $\omega_3 = T_P(\omega_2) = \{a, b, c\}$.
5. $\omega_4 = T_P(\omega_3) = \{a, b, c\} = \omega_3$. W

We have reached fix-point, ω_3 is the least model of

- Definition (T_P -operator, aka immediate consequence operator): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_P -operator is defined as $T_P(\omega) = \{ h \mid h \leftarrow b_1 \land \dots \land b_m \in \mathscr{P} \text{ and } b_1, \dots, b_m \in \omega \}.$
- **Proposition:** The least model of \mathscr{P} is the least fix-point of the sequence $T_P(T_P(\dots,T_P(\emptyset)))$. • **Example:** Let $\mathscr{P} = \{a, b \notin a, c \notin a \land b\}$. We have

1.
$$\omega_0 = \emptyset$$

2. $\omega_1 = T_P(\omega_0) = \{a\}$.
3. $\omega_2 = T_P(\omega_1) = \{a, b\}$.
4. $\omega_3 = T_P(\omega_2) = \{a, b, c\}$.
5. $\omega_4 = T_P(\omega_3) = \{a, b, c\} = \omega_3$. W

We have reached fix-point, ω_3 is the least model of

Back to Stable Model Semantics...

Positive and Normal LPs

rules have the form:

h :- b

h:-b1, ..., bm, not c1, ..., not c n.

• **Positive logic program:** a logic program containing no negations, i.e. all

• Normal logic program: a logic program containing rules of the form:

Reduct PM

• Reduct of a program P relative to a set of atoms M: Given a normal logic program P and a set of atoms M, we define the reduct $\mathbf{P}^{\mathbf{M}}$ as

$$P^{M} = \{h := b_{1}, \dots, b_{m} | h := b_{1}, \dots, b_{m}\}$$

- That is P^M is obtained from P by:
 - **1.** removing all rules $h := b_1, \ldots, b_m$, not $c_1, \ldots, not c_n$ where some of the atoms c_1, \ldots, c_n are contained in M (intuition: such a rule would not "fire" under the context of M),
 - 2. removing all negative literals from all the other rules.

 p_m , not c_1, \ldots , not $c_n \in P$ and $\forall i : c_i \notin M$.

Stable Models (1)

- A set of atoms *M* is a stable model (aka answer set) of *P* if *M* is the minimal model of P^M.
- Example 1: $P_1 = \{a \leftarrow a, b \leftarrow not a\}$ has one answer set $\{b\}$.

Stable Models (2)

- A set of atoms M is a stable model (aka answer set) of P if M is the minimal model of **P**^M.

• Example 2: $P_2 = \{a \leftarrow \text{not } b, b \leftarrow \text{not } a\}$ has two answer sets $\{a\}$ and $\{b\}$.

Stable Models (3)

- A set of atoms *M* is a stable model (aka answer set) of *P* if *M* is the minimal model of P^M.
- Example 2: $P_3 = \{a \leftarrow \text{not } a.\}$ has no answer set.

Complexity

- - using the immediate consequence operator until fixpoint. Intuition for hardness (in a moment).
 - **2.** NEXPTIME-complete if the logic program is function-free. up in its size.

• **Theorem:** Deciding whether a normal logic program has an answer set is:

1. NP-complete if the logic program is ground (i.e. has no variables). Intuition for membership in NP: Guess an answer set M and check if M is a minimal model of P^{M} - this can be done in polynomial time

Intuition for membership in NEXPTIME: Same as above but we first need to ground the program which may lead to an exponential blow-

Constraints

- Constraints have the form :- a 1, ..., a m, not c 1, ..., not c n.
- Such a constraint removes all minimal models that contain all of a 1, ..., a_m are true and none of c 1, ..., c n.

SAT in ASP (1)

- problem (thus also proving NP-hardness).
- An observation:

For any ground atom, say a, we can introduce a new ground atom not a (we could call it differently, the prefix not has no special meaning in ASP) and add the following two rules + a constraint:

a :- not not a. not a :- not a. :- a, not a.

Then the answer sets will be: {a}, {not a}.

We will now show how to encode an arbitrary SAT problem as an ASP

SAT in ASP (2)

- problem (thus also proving NP-hardness).
- An observation:

For any ground atom, say a, we can introduce a new ground atom not a (we could call it differently, the prefix not has no special meaning in ASP) and add the following two rules + a constrain:

a :- not not a. not a :- not a. :- a, not a.

Then the answer sets will be: {a}, {not a}.

We will now show how to encode an arbitrary SAT problem as an ASP

SAT in ASP (3)

a :- not not _a. not a :- not a. :- a, not a.

Then the answer sets will be: {a}, {not a}. Why?

Рм	min model of P ^M			
a. not_a.	{a, not_a}			
a.	{a}			
not_a.	{not_a}			
	{ }			

SAT in ASP (4)

- Now we will encode a SAT problem (the construction can be easily generalized):
- Example: $\varphi = (a \lor b) \land (\neg a \lor \neg b)$

 $(\neg a \land \neg b) \equiv \bot \Leftarrow (\neg a \land \neg b)$ $\neg b) \equiv \neg (a \land b) \equiv \bot \Leftarrow (a \land b)$

SAT in ASP (5)

• **Example:** $\varphi = (a \lor b) \land (\neg a \lor \neg b)$

Running clingo

Example

1	a :- not not_a.
2	not_a :- not a.
3	:- a, not_a.
4	<pre>b :- not not_b.</pre>
5	<pre>not_b :- not b.</pre>
6	:- b, not_b.
7	
8	:- not_a, not_b.
9	:- a, b.

Configuration: reasoning

clingo versio Reading from Solving Answer: 1 b not_a Answer: 2 not_b a SATISFIABLE	on S ⁻	5.5.0 tdin				
Models Calls Time CPU Time	: : :	2 1 0.004s 0.000s	(Solving:	0.00s	1st	М

es:	Harry and Sally					
mode	enumerate all 📀	project	statistics			
	► Run!					
Model: 0.00s Unsat: 0.00s)						

Disjunctive Rules

• A disjunctive logic rule r is a rule of the form:

h 1 | h 2 | ... | h k :- b 1, ..., b m, not c 1, ..., not c n. • We define $H(r) = \{h \ 1, h \ 2, ..., h \ k\}, B(r) = \{b \ 1, ..., b \ m, c \ n, n, c \ n, c \ n, c \ n, n, n \ n, n \$..., c n}, $B^+(r) = \{b \ 1, ..., b \ m\}, B^-(r) = \{c \ 1, ..., c \ n\}.$

- it holds: if $B^+(r) \subseteq M$ and $B^-(r) \cap M = \emptyset$ then $H(r) \cap M \neq \emptyset$.

• A set of atoms M is a model of a disjunctive program P if for all rules $r \in P$

Minimal Models

- minimal models (even without negation).
- Example:

This program has two minimal models: $\{a, c\}, \{b, c\}$.

 Unlike normal logic programs without negation as failure, which have a single minimal (least) model, disjunctive logic programs can have multiple

Reduct of a Disjunctive Program

- Similar to reduct of a normal program...
- **P^M** is obtained from **P** by:
 - **1.** removing all rules $h_1 \mid \ldots \mid h_k := b_1, \ldots, b_m$, not $c_1, \ldots, not c_n$ where some of the atoms c_1, \ldots, c_n are contained in M (intuition: such a rule would not "fire" under the context of M),
 - **2.** removing all negative literals from all the other rules
- M is an answer set of a program P if M is a (non-unique) minimal model of P^{M} (same as for normal programs).

Complexity

- Deciding whether a disjunctive logic P has an answer set is \bullet
 - NP^{NP}-complete if *P* is ground.
 - NEXPTIME^{NP}-complete if P is function-free (but not ground).

source: Gebser et al. 2012

Intermezzo: Grounding (2)

Naive grounding: Use all substitutions.

giant (john). elf(bob). tall(X) :- giant(X).small(X) :- elf(X). taller(X, Y) :- tall(X),small(Y).

• There are also more intelligent grounding mechanisms (see, e.g., the GrinGo grounder).

elf(bob). tall(john) :- giant(john). tall(bob) :- giant(bob). small(john) :- elf(john). small(bob) :- elf(bob). taller(john, john) :- tall(john), small(john).

taller(john,bob) :- tall(john), small(bob).

•••

Graph Coloring using ASP (1)

set of colors.

• Recall that a coloring of a given graph is an assignment of colors to its vertices in such a way that no two vertices connected by an edge have the same color. We are typically interested in coloring a graph with a given

Graph Coloring using ASP (2)

set of colors.

node (1). node (2). node (3)edge(1, 2). edge(1, 4). edgeedge(X, Y) := edge(Y, X).

 $red(X) \mid blue(X) :- node(X)$. :- red(X), blue(X).

- :- red(X), edge(X,Y), red(Y).
- :- blue(X), edge(X,Y), blue(Y).

• Recall that a coloring of a given graph is an assignment of colors to its vertices in such a way that no two vertices connected by an edge have the same color. We are typically interested in coloring a graph with a given

Graph Colorir

```
1 node(1). node(2). node(3). node(4).
2 edge(1,2). edge(1,4). edge(2,3). edge(3,4)
3 edge(X,Y) :- edge(Y,X).
4
5 red(X) | blue(X) :- node(X).
6
7 :- red(X), blue(X).
8 :- red(X), edge(X,Y), red(Y).
9 :- blue(X), edge(X,Y), blue(Y).
```

Configuration: reasoning mo

edge(4,3) edge(3,2) edge(4,1) edge(2,1) node(1)

edge(4,3) edge(3,2) edge(4,1) edge(2,1) node(1)

t Model: 0.00s Unsat: 0.00s)

ng using ASP ((3)
4).	
de enumerate all 📀 🗌 project 🗌 statistics	
► Run!	
) node(2) node(3) node(4) blue(1) red(2) blue(3) red(4)	
) node(2) node(3) node(4) red(1) blue(2) red(3) blue(4)	

Graph Coloring using ASP (4)

set of colors.

node (1). node (2). node (3)edge(1, 2). edge(1, 4). edgeedge(X, Y) := edge(Y, X).

red(X) | blue(X) :- node(X).

:- red(X), edge(X,Y), red(Y).

:- blue(X), edge(X,Y), blue(Y).

 Recall that a coloring of a given graph is an assignment of colors to its vertices in such a way that no two vertices connected by an edge have the same color. We are typically interested in coloring a graph with a given

:- red(X), blue(X). \leftarrow this can be removed... do you see why?

- NP-complete.
- NP^{NP}.

Note

 Graph coloring can be also expressed and solved using normal logic programs (not disjunctive) since the ASP problem with normal programs is

• Disjunctive programs can express more complex problems from the class

Modelling

Choice Rules

• A choice rule:

The meaning is that any subset of {h_1,...,h_k} can be added to the answer set if the body is satisfied.

• Example:

a. :- a.

This program has two answer sets: {a}, {a,b}.

{h_1;...;h_k} :- b_1, ..., b_m, not c_1, ..., not c_n.

Choice Rules (Meaning)

A choice rule r can be replaced by normal rules

 $h' \leftarrow b_1, \ldots, b_n, \operatorname{not} c_1, \ldots, \operatorname{not} c_m$. $h_i \leftarrow h', \operatorname{not} \overline{h_i}.$ $\overline{h_i} \leftarrow \operatorname{not} h_i.$

same stable models if we ignore the newly introduced atoms.

- {h_1;...;h_k} :- b_1, ..., b_n, not c_1, ..., not c_m.

for $1 \leq i \leq k$ if we introduce new atoms $h', \overline{h_1}, \ldots, \overline{h_k}$. The resulting program has the

Cardinality Constraints

• Cardinality constraints have the form:

The meaning is that at least I and at most u atoms from {b_1; ..., b_n; not c_1; ...; not c_m} are true in a stable model. If I or u is missing, respectively, then there is no lower or upper bound, respectively. Cardinality constraints can be used in heads and bodies.

l{b 1; ..., b n; not c 1; ...; not c m}u

There are also other modelling constructs that we have not covered, such as weight constraints and aggregate atoms, weak constraints...

Consequence Relations for Answer Sets

Brave and Cautious Consequence

- An atom a is a brave consequent
 of P.
- An atom a is a cautious consequence of P.

• An atom a is a brave consequence of P if $M \models a$ for some answer set M

• An atom a is a cautious consequence of P if $M \models a$ for all answer sets M

Non-Monotonicity

- Both brave and cautious consequence relations are non-monotonic.
- In classical logic when we add more rules to a theory T, everything that could have been derived from T can also be derived from the new larger theory - this is called **monotonicity**.
- Consider the following program P:

bird(tweety). flies(X) :- bird(X), not penguin(X).

longer be a consequence of P (neither brave not cautious).

- Then flies (tweety) is both a brave and cautious consequence of P.
- However, if we add penguin (tweety) to P then flies (tweety) will no