
Advanced algorithms

topological ordering,

minimum spanning tree,

Union-Find problem

Jiří Vyskočil, Radek Mařík

2012

Advanced algorithms
2 / 75

Subgraph

 subgraph
 A graph H is a subgraph of a graph G, if the following two inclusions

are satisfied:

 In other words, a subgraph is created so that:

 Some vertices of the original graph are removed.

 All edges incident to the removed vertices and possible some other edges are

removed.

𝑉 𝐻 ⊆ 𝑉 𝐺

𝐸(𝐻) ⊆ 𝐸(𝐺)⋂
𝑉(𝐻)

2

Advanced algorithms
3 / 75

DFS for the entire graph recursively

 input: Graph G.
1) procedure DFS (Graph G) {

2) for each Vertex v in V(G) { state[v] = UNVISITED; p[v] = null; }

3) time = 0;

4) for each Vertex v in V(G)

5) if (state[v] == UNVISITED) then DFS-Walk(v);

6) }

7) procedure DFS-Walk(Vertex u) {

8) state[u] = OPEN; d[u] = ++time;

9) for each Vertex v in Neighbors(u)

10) if (state[v] == UNVISITED) then {p[v] = u; DFS-Walk(v); }

11) state[u] = CLOSED; f[u] = ++time;

12) }

 output: array p pointing to predecessor vertex, array d with
times of vertex opening and array f with time of vertex closing.

Advanced algorithms
4 / 75

Topological ordering

 topological ordering (topological sorting) of graph vertices

 Let graph G be DAG. Let’s define binary relation R of topological

ordering over vertices of graph G such as R(x,y) is valid iff there

exists a directed path from x to y, that is, whenever y is reachable

from x.

 In other words: All vertices of graph G are assigned with numbers

so that x ≤ y holds for every pair of vertices x and y iff there is a

directed path from x to y.

 Then relation ≤ is a topological ordering over graph G with

numbered vertices.

 an implementation using the previous DFS algorithm

 The numbering vertices through array f with relation ≤ is a

topological order.

Advanced algorithms
5 / 75

Other uses of modified DFS

 Testing graph acyclicity

 Testing graph connectivity

 Searching for graph connected components

 Transformation of a graph to a directed forest.

Advanced algorithms
6 / 75

Connected component

 A connected component of graph G =(V,E) with regard to
vertex v is a set

 C(v) = {u ∈ V | there exists a path in G from u to v }.

 In other words: If a graph is disconnected, then parts from
which is composed from and that are themselves
connected, are called connected components.

a

b

d

c

e

C(a)=C(b)={a,b}

C(c) =C(d) =C(e)={c,d,e}

Advanced algorithms
7 / 75

Spanning tree

 graph spanning tree
 Let G=(V,E) be a graph. A Spanning tree of the graph G is such a

subgraph H of the graph G that V(G)=V(H) and H is a tree.

Advanced algorithms
8 / 75

Minimum spanning tree

 Minimum spanning tree
 Let G=(V,E) be a graph and w : Eℝ be its weight function.

 A minimum spanning tree of the graph G is such a tree K=(V,EK) of

the graph G, that

 is minimal.

 𝑤 𝑒 = 𝑤(𝐾)

𝑒∈𝐸𝐾

2 3

2 1

3

1

2

2

2 3

2 1

3

1

2

2

Advanced algorithms
9 / 75

Cut of graph
 cut

 A cut of graph G = (V,E) is a subset of edges F ⊆ E such that

 ∃U ⊂ V : F = {{u,v }∈ E | u ∈ U, v ∉ U}.

 Lemma: Let G be a graph, w be its injective real-valued
weight function, F be a cut of graph G and f be its
lightest edge of cut F (crossing), then every minimum
spanning tree K of graph G contains f ∈E(K).
 Proof by contradiction: Let K be a minimum spanning tree and

f = {u,v } ∉ E(K). Then there is a path P ⊆ K connecting u and v.

The path has to cross the cut at least once. Therefore there is an

edge e ∈ P ∩ F and furthermore w(f) < w(e). Let’s consider

K’ ′ = K − e + f. This graph is also a spanning tree of graph G,

because the graph splits into two components by removing of

the edge e and it merges back by adding of the edge f .
Then w(K’) = w(K − w(e) + w(f) < w(K). K’ is also a minimum

spanning tree.

Advanced algorithms
10 / 75

Jarník (Prim)’s algorithm

 input: A graph G with a weight function w : G(E)→ℝ.

1) Select an arbitrary vertex v0∈V(G).

2) K := ({v0}, ∅).

3) while |V(K)| ≠ |V(G)| {

4) Select edge {u,v }∈E(G),

 where u ∈V(K) and v ∉V(K) so that

 w({u,v }) is minimum.

5) K := K + edge {u,v }.

6) }

 output: a minimum spanning tree K.

Advanced algorithms
11 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
12 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
13 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
14 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
15 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
16 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
17 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
18 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
19 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
20 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
21 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
22 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
23 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
24 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
25 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
26 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
27 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
28 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
29 / 75

Jarník (Prim)’s algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
30 / 75

Jarník (Prim)’s algorithm

 Lemma: Jarník’s algorithm stops after maximum |V(G)|
steps and the result is a minimum spanning tree of the
graph G.
 In every iteration just one vertex is added to K, so the loop must

stop after |V(G)| iteration in maximum.

 The result graph K is a tree because only a leaf is always added

to the tree. Furthermore, K has |V(G)| vertices – it is a spanning

tree.

 The edges among vertices of the tree K and the rest of the

graph G determines a cut. The algorithm always adds the

lightest edge of this cut to K. Following the previous lemma, all

edges of K must belong to every minimum spanning tree. As K

is a tree, then it must be a minimum spanning tree.

Advanced algorithms
31 / 75

Jarník (Prim)’s algorithm

 implementations:
 „straightforward”

 Maintain which vertices and edges belong to the tree K and which not.

 The time complexity is O(n⋅m) where n=|V(G)| and m=|E(G)|.

 improvements

 Store D(v) = min{w({u,v }) | u ∈ K } for v ∉ V (K) . During every iteration
of the main loop we search through all D(v) (it takes O(n) time) and
we check all neighbors D(s) for {v,s } ∈ E when a vertex v is added to
K and its value is decreased if necessary (O(1) for each edge).

 Time complexity is improved to O(n2+ m) = O(n2).

 The time complexity might be further improved using a suitable type of

heap up to O(log (n)⋅m) (technically up to O(m + log (n)⋅n) with so

called Fibonacci heap).

Advanced algorithms
32 / 75

Borůvka’s algorithm

 input: A graph G with a weight function w : G(E)→ℝ,
 where all weights are different.

1) K := (V G , ∅).

2) while K has at least two connected components {

3) For all components Ti of graph K

 the light incident edge 1 ti is chosen.

4) All edges ti are added to K.

5) }

 output: a minimum spanning tree K.

1 A light incident edge is an edge connecting a connected component Ti with another

connected component while a weight of this edge is the lowest.

Advanced algorithms
33 / 75

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Borůvka’s algorithm

Advanced algorithms
34 / 75

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Borůvka’s algorithm

Advanced algorithms
35 / 75

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Borůvka’s algorithm

Advanced algorithms
36 / 75

Borůvka’s algorithm

 theorem: Borůvka’s algorithm stops after max. ⌈log2 |V(G)|⌉ and

the result is a minimum spanning tree of the graph G.

 After k iterations all components of the graph K have at least 2k

vertices.

 induction: Initially, all components consist of just one vertex.

 In each iteration, each component is merged with at least another

neighboring one so that the size of components is at least doubled.

 Therefore, after ⌈log2 |V(G)|⌉ iterations, the size of any component must

be at least a number of all vertices of graph G and then the algorithm

stops.

 The edges between each connected component and the rest of graph

determines a cut. Then all edges added to K must belong to a unique

minimum spanning tree. Graph K ⊆ G is always a forest (= a set of

trees disconnected to each other) and when the algorithm stops it will

be equal to a minimum spanning tree.

Advanced algorithms
37 / 75

Borůvka’s algorithm

 Iteration implementation:
 The forest is decomposed to connected components using DFS.

Each vertex is assigned to a number of its component.

 For each edge we find out to which component it belongs and we

store the lightest edge only.

 Therefore each iteration takes O(|E(G)|) time and the entire

algorithm running time is O(|E(G)| log|V(G)|).

Advanced algorithms
38 / 75

Kruskal’s („greedy“) algorithm

 input: A graph G with a weight function w : G(E)→ℝ.

1) Sort all edges e1,…, em=|E(G)| from E(G) so that

 w(e1) ≤ … ≤ w(em).

2) K := (V G , ∅).

3) for i := 1 to m {

4) if K+edge {u,v } is an acyclic graph then

 K := K+edge {u,v }.

5) }

 output: a minimum spanning tree K.

Advanced algorithms
39 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
40 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
41 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
42 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
43 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
44 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
45 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
46 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
47 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
48 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
49 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
50 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
51 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
52 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
53 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
54 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
55 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
56 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
57 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
58 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
59 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
60 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
61 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
62 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
63 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
64 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
65 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
66 / 75

Kruskal’s („greedy“) algorithm

8 15 13 7 11

12 14 17 10 5

21 4 1 16 6

18

22

27

 9

 2

23

26

24

 3

25

20

19

Advanced algorithms
67 / 75

Kruskal’s („greedy“) algorithm

 theorem: Kruskal’s algorithm stops after |E(G)| iterations
and returns a minimum spanning tree.
 Each iteration of the algorithm processes just one edge, so the

number of iterations is |E(G)| .

 By induction we prove that K is always a subgraph of a

minimum spanning tree: the empty initial K is a subgraph of

anything (including a minimum spanning tree). Each added edge

has the lowest weight in the cut separating a component of K

from the rest of the graph (the remaining unprocessed edges of

this cut are heavier). In opposite way, no edge that is not added

to K cannot belong to a minimum spanning tree because it

creates a cycle with edges already assigned to a minimum

spanning tree.

Advanced algorithms
68 / 75

Kruskal’s („greedy“) algorithm

 implementation
 Sorting time is O(|E(G)| log|E(G)|) = O(|E(G)| log|V(G)|).

 We can stop the main loop earlier. When we successfuly add

|V(G)| -1 edges to K then we can stop the algorithm because

K has already reached a spanning tree.

 We need to maintain connected components of graph K so that

we can recognize quickly if the current processed edge creates a

cycle.

 Thus we need a structure for connected component

maintenance which we can ask |E(G)|-times if two vertices

belong to the same component (operation Find), and we merge

just (|V(G)| −1)-times two components to a single one

(operation Union).

Advanced algorithms
69 / 75

Union-Find problem

 Let’s have graph G =(V,E).

 Question: „Do vertices u and v belong to the same connected component of
graph G?”.

 Sometimes the problem is called as incremental connected components or
equivalence maintenance.

 One representative is selected in each connected component. For sake of
simplicity the representative of component C(v) is labeled as r (v).
If u and v belong to the same component then r (u) = r (v).
The task might be accomplished using the following operations:

 FIND(v) = r (v), the operation returns the representative of connected
component C(v).

 UNION(u, v) merges connected components C(u) and C(v). This reflects
adding edge {u, v } into the graph.

Advanced algorithms
70 / 75

Union-Find problem

 A simple solution:

 Let’s assume all vertices are assigned with a number from 1 to n.

Let’s use an array R [1..n], whereR [i] = r (i), i.e. the number of

component C (i) representative.

 Operation FIND(v) just returns value R [v] and so it takes O(1).

 To perform UNION(u, v) we find representatives

 r (u) = FIND(u) and r (v) = FIND(v).

 If they are different then we process all items of array R . Any value

of r (u) is rewritten to r (v). It takes O(n) time.

Advanced algorithms
71 / 75

Union-Find problem

 An improved solution (using a directed tree):
 Each component is stored as a tree directed towards the root –

every vertex has a pointer to its father, every root stores the

size of the component. The root of each component serves as its

representative.

 Operation FIND(v) climbs from vertex v to the root that is

returned.

 To perform UNION(u, v) we find representatives

 r (u) = FIND(u) and r (v) = FIND(v).

 If they different then the root of smaller component is merged to

the root of the bigger component. The size of new component is

updated in its root.

Advanced algorithms
72 / 75

Union-Find problem

Advanced algorithms
73 / 75

Union-Find problem

 An improved solution (using a directed tree):
 lemma: Union-Find tree of a depth h has at least 2h items.

 By induction: If UNION merges a tree of the depth h with another

tree of a depth smaller than h, then a depth of the result tree

remains h. If two trees of the same depth h are merged, then the

result tree has a depth h+1. By induction assumption we know that

a tree of depth h has at least 2h vertices. Therefore the result tree

of a depth h+1 has at least 2h+1 vertices.

 A consequence: Time complexity of operation UNION and FIND is

O(log|V |).

 The best known solution is O(α|V |) for both operations,
where function α is inverse Ackermann function.

Advanced algorithms
74 / 75

Kruskal’s („greedy“) algorithm

 Kruskal’s algorithm complexity:
 Sorting takes time: O(|E(G)| log|E(G)|) = O(|E(G)| log|V(G)|).

 Then we need a structure for connected component

maintenance which we can ask |E(G)|-times if two vertices

belong to the same component (operation Find), and we merge

just (|V(G)| −1)-times two components to a single one (operation

Union).

 If the simple solution is used then the complexity of the

algorithm is:

 O(|E(G)|log|V(G)| + |E(G)| + |V(G)|2) = O(|E(G)|log|V(G)| + |V(G)|2)

 If the improved solution using a directed tree is used then the

complexity of the algorithm is:

 O(|E(G)|log|V(G)| + |E(G)|log|V(G)| + |V(G)|log|V(G)|) =

O(|E(G)|log|V(G)|)

Advanced algorithms
75 / 75

References

 Matoušek, J.; Nešetřil, J. Kapitoly z diskrétní matematiky.
Karolinum. Praha 2002. ISBN 978-80-246-1411-3.

 Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford (2001). Introduction to Algorithms (2nd ed.). MIT
Press and McGraw-Hill. ISBN 0-262-53196-8.

