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Subgraph  

 subgraph 
 A graph H  is a subgraph  of a graph G, if the following two inclusions 

are satisfied: 

 

 

 

 In other words, a subgraph is created so that:  

 Some vertices of the original graph are removed. 

 All edges incident to the removed vertices and possible some other edges are 

removed.  

 

𝑉 𝐻 ⊆ 𝑉 𝐺  

𝐸(𝐻) ⊆ 𝐸(𝐺)⋂ 
𝑉(𝐻)

2
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DFS for the entire graph recursively 

 input:  Graph G. 
1) procedure DFS (Graph G) {     

2)     for each Vertex v  in V(G)  { state[v ] = UNVISITED;  p[v ] = null; } 

3)      time = 0; 

4)      for each Vertex v  in V(G) 

5)            if (state[ v ] == UNVISITED) then   DFS-Walk(v );  

6) } 

 

7) procedure DFS-Walk(Vertex u ) { 

8)       state[u ] = OPEN; d[u ] = ++time; 

9)       for each Vertex v  in Neighbors(u )   

10)            if (state[v ] == UNVISITED) then   {p[v ] = u;  DFS-Walk(v ); } 

11)       state[u ] = CLOSED; f[u ] = ++time; 

12) } 

 output:   array p pointing to predecessor vertex, array d with 
times of vertex opening and array  f with time of vertex closing. 
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Topological ordering 

 topological ordering (topological sorting) of graph vertices 

 Let graph G be DAG. Let’s define binary relation R of topological 

ordering over vertices of graph G such as R(x,y) is valid iff there 

exists a directed path from x to y, that is, whenever y is reachable 

from x. 

 In other words: All vertices of graph G are assigned with numbers 

so that x ≤ y holds for every pair of vertices x and y iff there is a 

directed path from x to y.  

 Then relation ≤ is a topological ordering over graph G with 

numbered vertices. 

 an implementation using the previous DFS algorithm 

 The numbering vertices through array f with relation ≤ is a 

topological order. 
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Other uses of modified DFS 

 Testing graph acyclicity 

 Testing graph connectivity 

 Searching for graph connected components 

 Transformation of a graph to a directed forest. 
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Connected component 

 A connected component of graph G =(V,E ) with regard to 
vertex v  is a set 

 C(v ) = {u ∈ V | there exists a path in G from u  to v }. 

 In other words: If a graph is disconnected, then parts from 
which is composed from and that are themselves 
connected, are called connected components. 

  

a 

b 

d 

c 

e 

C(a)=C(b)={a,b} 

C(c) =C(d) =C(e)={c,d,e} 
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Spanning tree  

 graph spanning tree 
 Let G=(V,E) be a graph. A Spanning tree of the graph G is such a 

subgraph H of the graph G that V(G)=V(H) and H is a tree.  
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Minimum spanning tree  

 Minimum spanning tree  
 Let G=(V,E ) be a graph and w : Eℝ be its weight function.  

 A minimum spanning tree of the graph G is such a tree K=(V,EK) of    

the graph  G, that  

 

 

  

 is minimal. 

 𝑤 𝑒 = 𝑤(𝐾)

𝑒∈𝐸𝐾
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Cut of graph 
 cut 

 A cut of graph G = (V,E ) is a subset of edges F ⊆ E  such that 

 ∃U ⊂ V : F = {{u,v }∈ E | u ∈ U, v ∉ U}. 

 Lemma: Let G be a graph, w  be its injective real-valued 
weight function, F  be a cut of graph G and f  be its 
lightest edge of cut F  (crossing), then every minimum 
spanning tree K of graph G contains f ∈E(K). 
 Proof by contradiction: Let K be a minimum spanning tree and    

f  = {u,v } ∉ E(K). Then there is a path P ⊆ K connecting u and v. 

The path has to cross the cut at least once. Therefore there is an 

edge e  ∈ P  ∩ F  and furthermore w(f  ) < w(e ). Let’s consider     

K’ ′ = K − e + f. This graph is also a spanning tree of graph G, 

because the graph splits into two components by removing of 

the edge e  and it merges back by adding of the edge f .                        
Then w(K’) = w(K  − w(e ) + w(f ) < w(K). K’ is also a minimum 

spanning tree. 
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Jarník (Prim)’s algorithm 

 input: A graph G with a weight function w : G(E )→ℝ. 

1) Select an arbitrary vertex v0∈V(G). 

2) K := ({v0}, ∅). 

3) while   |V(K)| ≠ |V(G)|   { 

4)   Select edge {u,v }∈E(G),  

   where u ∈V(K) and v ∉V(K) so that 

                  w({u,v }) is minimum. 

5)   K := K + edge {u,v }. 

6) } 

 output:  a minimum spanning tree K. 
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Jarník (Prim)’s algorithm 

 Lemma: Jarník’s algorithm stops after maximum |V(G)| 
steps and the result is a minimum spanning tree of the 
graph G. 
 In every iteration just one vertex is added to K, so the loop must 

stop after |V(G)| iteration in maximum. 

 The result graph K  is a tree because only a leaf is always added 

to the tree. Furthermore, K has |V(G)| vertices – it is a spanning 

tree. 

 The edges among vertices of the tree K and the rest of the 

graph G determines a cut. The algorithm always adds the 

lightest edge of this cut to K. Following the previous lemma, all 

edges of K must belong to every minimum spanning tree. As K 

is a tree, then it must be a minimum spanning tree. 
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Jarník (Prim)’s algorithm 

 implementations: 
 „straightforward” 

 Maintain which vertices and edges belong to the tree K and which not. 

 The time complexity is O(n⋅m) where n=|V(G)| and m=|E(G)|. 

 improvements 

 Store D(v ) = min{w({u,v }) | u ∈ K } for v ∉ V (K) . During every iteration 
of the main loop we search through all D(v ) (it takes O(n) time) and 
we check all neighbors D(s ) for {v,s } ∈ E  when a vertex v  is added to 
K and its value is decreased if necessary (O(1) for each edge). 

 Time complexity is improved to O(n2+ m) = O(n2). 

 The time complexity might be further improved using a suitable type of 

heap up to O(log (n)⋅m) (technically up to O(m + log (n)⋅n)  with so 

called Fibonacci heap).  

 



Advanced algorithms 
32 / 75 

Borůvka’s algorithm 

 input:  A graph G with a weight function w : G(E )→ℝ, 
   where all weights are different. 

1) K := (V G , ∅). 

2) while   K has at least two connected components  { 

3)   For all components Ti  of graph K  

                 the light  incident  edge 1 ti   is chosen. 

4)   All edges ti  are added to K. 

5) } 

 output:  a minimum spanning tree K. 

 
1 A light incident edge  is an edge connecting a connected component Ti  with another 

connected component while a weight of this edge is the lowest. 
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Borůvka’s algorithm 

 theorem: Borůvka’s algorithm stops after max. ⌈log2 |V(G)|⌉  and 

the result is a minimum spanning tree of the graph G. 

 After k  iterations all components of the graph K have at least 2k 

vertices. 

 induction: Initially, all components consist of just one vertex. 

 In each iteration, each component is merged with at least another 

neighboring one so that the size of components is at least doubled. 

 Therefore, after ⌈log2 |V(G)|⌉ iterations, the size of any component must 

be at least a number of all vertices of graph G and then the algorithm 

stops. 

 The edges between each connected component and the rest of graph 

determines a cut. Then all edges added to K must belong to a unique 

minimum spanning tree. Graph K ⊆ G is always a forest (= a set of 

trees disconnected to each other) and when the algorithm stops it will 

be equal to a minimum spanning tree. 
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Borůvka’s algorithm 

 Iteration implementation: 
 The forest is decomposed to connected components using DFS. 

Each vertex is assigned to a number of its component. 

 For each edge we find out to which component it belongs and we 

store the lightest edge only. 

 Therefore each iteration takes O(|E(G)|) time and the entire 

algorithm running time is O(|E(G)| log|V(G)| ). 
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Kruskal’s („greedy“) algorithm 

 input: A graph G with a weight function w : G(E )→ℝ. 

1) Sort all edges e1,…, em=|E(G)| from E(G) so that 

 w(e1) ≤ … ≤ w(em). 

2) K := (V G , ∅). 

3) for   i  := 1 to m   { 

4)   if   K+edge {u,v } is an acyclic graph then  

    K := K+edge {u,v }. 

5) } 

 output: a minimum spanning tree K. 
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Kruskal’s („greedy“) algorithm 

 theorem: Kruskal’s algorithm stops after |E(G)| iterations 
and returns a minimum spanning tree. 
 Each iteration of the algorithm processes just one edge, so the 

number of iterations is |E(G)| .  

 By induction we prove that K is always a subgraph of a 

minimum spanning tree: the empty initial K is a subgraph of 

anything (including a minimum spanning tree). Each added edge 

has the lowest weight in the cut separating a component of  K 

from the rest of the graph (the remaining unprocessed edges of 

this cut are heavier). In opposite way, no edge that is not added 

to K cannot belong to a minimum spanning tree because it 

creates a cycle with edges already assigned to a minimum 

spanning tree. 
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Kruskal’s („greedy“) algorithm 

 implementation 
 Sorting time is O(|E(G)|  log|E(G)| ) = O(|E(G)|  log|V(G)| ). 

 We can stop the main loop earlier. When we successfuly add 

|V(G)| -1 edges to K then we can stop the algorithm because     

K has already reached a spanning tree. 

 We need to maintain connected components of graph K so that 

we can recognize quickly if the current processed edge creates a 

cycle. 

 Thus we need a structure for connected component 

maintenance which we can ask |E(G)|-times if two vertices 

belong to the same component (operation Find), and we merge 

just (|V(G)| −1)-times two components to a single one 

(operation Union).  
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Union-Find problem 

 Let’s have graph G =(V,E ).  

 Question: „Do vertices u and v belong to the same connected component of 
graph G?”.  

 Sometimes the problem is called as incremental connected components or 
equivalence maintenance.  

 One representative is selected in each connected component. For sake of 
simplicity the representative of component C(v ) is labeled as r (v ).           
If u and v belong to the same component then r (u ) = r (v ).                 
The task might be accomplished using the following operations: 

 FIND(v ) = r (v ), the operation returns the representative of connected 
component C(v ). 

 UNION(u, v ) merges connected components C(u ) and C(v ). This reflects 
adding edge {u, v } into the graph. 
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Union-Find problem 

 A simple solution: 

 
 Let’s assume all vertices are assigned with a number from 1 to n. 

Let’s use an array R [1..n ], whereR [i ] = r (i ), i.e. the number of 

component C (i ) representative.  

 

 Operation FIND(v ) just returns value R [v ] and so it takes O(1). 

 

 To perform UNION(u, v ) we find representatives   

 r (u ) = FIND(u )   and   r (v ) = FIND(v ).  

 If they are different then we process all items of array R . Any value 

of r (u ) is rewritten to r (v ). It takes O(n ) time. 
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Union-Find problem 

 An improved solution (using a directed tree): 
 Each component is stored as a tree directed towards the root – 

every vertex has a pointer to its father, every root stores the 

size of the component. The root of each component serves as its 

representative. 

 Operation FIND(v ) climbs from vertex v  to the root that is 

returned.  

 To perform UNION(u, v ) we find representatives  

 r (u ) = FIND(u )   and  r (v ) = FIND(v ).  

 If they different then the root of smaller component is merged to 

the root of the bigger component. The size of new component is 

updated in its root. 
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Union-Find problem 
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Union-Find problem 

 An improved solution (using a directed tree): 
 lemma: Union-Find tree of a depth h  has at least 2h items. 

 By induction: If UNION merges a tree of the depth h  with another 

tree of a depth smaller than h, then a depth of the result tree 

remains h. If two trees of the same depth h  are merged, then the 

result tree has a depth h+1. By induction assumption we know that 

a tree of depth h has at least 2h vertices. Therefore the result tree 

of a depth h+1 has at least 2h+1 vertices. 

 A consequence: Time complexity of operation UNION  and FIND is 

O(log|V |). 

 The best known solution is O(α|V |) for both operations, 
where function α is inverse Ackermann function. 
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Kruskal’s („greedy“) algorithm 

 Kruskal’s algorithm complexity: 
 Sorting takes time: O(|E(G)|  log|E(G)| ) = O(|E(G)|  log|V(G)| ). 

 Then we need a structure for connected component 

maintenance which we can ask |E(G)|-times if two vertices 

belong to the same component (operation Find), and we merge 

just (|V(G)| −1)-times two components to a single one (operation 

Union).  

 If the simple solution is used then the complexity of the 

algorithm is: 

 O(|E(G)|log|V(G)| + |E(G)| + |V(G)|2 ) = O(|E(G)|log|V(G)| + |V(G)|2 ) 

 If the improved solution using a directed tree is used then the 

complexity of the algorithm is: 

 O(|E(G)|log|V(G)| + |E(G)|log|V(G)| + |V(G)|log|V(G)| ) = 

O(|E(G)|log|V(G)|) 
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