
Electric Vehicle Routing Problem

David Woller (DW)
Tuesday 14:30 - 16:00

Computer Science
wolledav@cvut.cz

Václav Vávra (VV)
Thursday 14:30 - 16:00
Artificial Intelligence
vavravac@fel.cvut.cz

Viktor Kozák (VK)
Thursday 14:30 - 16:00

Artificial Intelligence and Biocybernetics
viktor.kozak@cvut.cz

I. ASSIGNMENT

A. Problem Statement

This semestral project is motivated by the IEEE WCCI-2020 Competition on Evolutionary Computation for the Electric
Vehicle Routing Problem (EVRP) [Mav20]. The content of Section I is, therefore, mostly taken over from the provided technical
report [MMT+20].

The EVRP can be described as follows: given a fleet of EVs, we need to find the best possible route for each EV within
their battery charge level limits. The EVs must start and end at the central depot and serve a set of customers. The objective
is to minimize the total distance traveled, while each customer is visited exactly once, for every EV route the total demand
of customers does not exceed the EV’s maximal carrying capacity and the total energy consumption does not exceed the EV’s
maximal battery charge level. All EVs begin and end at the depot, EVs always leave the charging station fully charged (or fully
charged an loaded, in case of the depot), and the charging stations (including the depot) can be visited multiple times by any
EV.

The EVRP can be mathematically formulated as follows:

min
∑

i∈V,j∈V,i 6=j

dijxij , (1)

s.t. ∑
j∈V,i 6=j

xij = 1,∀i ∈ I, (2)

∑
j∈V,i 6=j

xij ≤ 1,∀i ∈ F ′, (3)

∑
j∈V,i6=j

xij −
∑

j∈V,i 6=j

xji = 0,∀ ∈ V, (4)

uj ≤ ui − bixij + C(1− xij),∀i ∈ V,∀j ∈ V, i 6= j, (5)

0 ≤ ui ≤ C,∀i ∈ V, (6)

yj ≤ yi − hdijxij +Q(1− xij),∀i ∈ I, ∀j ∈ V, i 6= j, (7)

yj ≤ Q− hdijxij ,∀i ∈ F ′ ∪ {0},∀j ∈ V, i 6= j, (8)

0 ≤ yi ≤ Q,∀i ∈ V, (9)

xij ∈ {0, 1},∀j ∈ V, i 6= j, (10)

where V = {0 ∪ I ∪ F ′} is a set of nodes and A = {(i, j)|i, j ∈ V, i 6= j} is a set of arcs in the fully connected weighted
graph G = (V,A). Set I denotes the set of customers, set F ′ denotes set of βi node copies of each charging station i ∈ F
(i.e., |F ′| =

∑
i∈F βi) and 0 denotes the central depot. Then, xij is a binary decision variable corresponding to usage of the

arc from node i ∈ V to node j ∈ V and dij is the weight of this arc. Variables ui and yi denote, respectively, the remaining
carrying capacity and remaining battery charge level of an EV on its arrival at node i ∈ V . Finally, the constant h denotes the
consumption rate of the EVs, C denotes their maximal carrying capacity, Q the maximal battery charge level, and bi the demand
of each customer i ∈ I .

B. Problem Categorization

The EVRP is a challenging NP-hard combinatorial optimization problem as it is an extension of the ordinary shortest path
problem incorporating additional constraints. It can be viewed as a combination of two variants of the classical Vehicle Routing
Problem (VRP) - the Capacitated Vehicle Routing Problem (CVRP) and the Green Vehicle Routing Problem (GVRP). In the
VRP, the goal is to minimize the total distance traveled by a fleet of vehicles/agents, while visiting each customer exactly once. In
the CVRP, the customers are assigned an integer-valued positive demand, and the vehicles have limited carrying capacity. Thus,
an additional constraint of satisfying all customers’ demands while respecting the limited vehicle capacity is added to the VRP.
Concerning the GVRP, the terminology is not completely settled, but the common idea among different formulations aims at
minimizing the environmental impact, typically by taking into consideration the limited driving range of alternative fuel-powered
vehicles and the possibility of refueling at rarely available Alternative Fuel Stations (AFSs).

The EVRP as formulated in [Mav20] has the same objective as the VRP, while incorporating the additional constraints from
CVRP and GVRP. It is sometimes alternatively named CGVRP, while the name is EVRP often used for other variants of the
GVRP (e.g., with considering the non-linear time characteristic of the recharging process or the influence of carried load on the
energy consumption).

II. RELATED WORKS

According to the [MMT+20], the EVRP variant solved was first formulated in [GSS11]. So far, only three papers are dealing
with this problem, and for each one of them, the exact problem formulation slightly varies. The first one is [ZGA18], which
limits the maximum number of routes in addition to the previously introduced constraints. It presents the following solution
method based on the ant colony system (ACS) algorithm. Initially, a Travelling Salesman Problem-like (TSP) route visiting all
customers is constructed. This route is then turned into a valid EVRP route by a newly proposed fixing method. Then, the
ACS modifies the underlying TSP route according to the solution fitness score, and the whole process repeats. The second
one is [NYBS19], which also considers the maximum total delivery time. The initial valid EVRP tour is constructed from the
nearest neighbor based TSP tour visiting all customers. The solution is then improved in a local search phase while using four
different neighborhood operators (swap, insert, insert AFS, and delete AFS). The proposed algorithm uses a simulated annealing
mechanism to allow for accepting non-improving moves with a certain probability, thus preventing premature convergence to
a local optimum. Finally, [Pen19] proposes a novel construction method and a memetic algorithm consisting of a local search
and an evolutionary algorithm. Similarly to [NYBS19], the local search combines the Variable Neighborhood Search (VNS)
with Simulated Annealing (SA). The operators used in the local search are 2-opt, swap, insert, and inverse. Unlike the previous
approaches, the proposed memetic algorithm maintains a whole set of solutions. In each iteration, all solutions are individually
improved by the local search, and the set is then split into elite and non-elite solutions. The elite solutions are kept to the next
iteration, while the non-elite are partially crossbred with the elite ones and partially discarded.

Various other approaches were successfully applied to the numerous variants of the VRP, and many of these can be adapted
to the EVRP formulation solved. For example, a recent survey [ECLR19] focused only on the variants of EVRP, and GVRP
presents a total number of 79 papers.

III. PROBLEM SOLUTION

A set of 17 testing instances ranging from 22 to 1000 customers was provided in the competition. As the problem is
NP-hard, it is impossible to solve the larger instances to optimality in a reasonable time. Therefore, a metaheuristic approach
with polynomial time complexity is to be deployed. The EVRP is a constrained variant of the VRP, for which many effective
methods were proposed over the years. In such a case, an efficient strategy is to select such a metaheuristic that yields state
of the art performance on the original VRP problem and, at the same time, can be easily adapted to respect the additional
constraints of the EVRP. These two criteria are met by the metaheuristics performing neighborhood-oriented search such as
(Randomized) Variable Neighborhood Descent - (R)VND, Variable Neighborhood Search (VNS), Greedy Randomized Adaptive
Search Procedure (GRASP), Iterated Local Search (ILS) and others. From these, VND, RVND, and VNS were chosen for
addressing the EVRP and are described in Section III-A.

An integral part of these metaheuristics is local search, which enables systematic search in a neighborhood of a current
solution using so-called local search operators. Most of the operators commonly used can be efficiently used in the EVRP, given
that a solution validity checking function and an operator cost update function is designed. These functions typically have linear
time complexity in a naive implementation, but can often be evaluated in constant time and without an actual application of the

operator. As the competition does limit only the total number of fitness evaluations and not the total running time, it is sufficient
to design a constant time cost update function for all of the operators. Local search operators are described in Section III-B.

Another subtask to be addressed is designing a method for the construction of a valid initial solution. Multiple construction
methods were developed and compared. Some of these are modified variants of constructions proposed for different variants of
the VRP, while others are newly designed specifically for the EVRP. Construction methods are described in Section III-C.

For the purposes of formal components description, let’s define an EVRP tour T as a sequence of nodes T = {v0, v1, ..., vn−1},
where vi is a customer, a depot or an AFS and n is the length of the tour T . Then, let eij be an edge from node vi to node vj
and wi,j be its weight.

A. Metaheuristics

1) (Randomized) Variable Neighborhood Descent - (R)VND: VND is a simple metaheuristic used here as a local search
method in a more complex metaheuristic VNS (Section III-A2). It has a deterministic variant (VND) and a stochastic one
(RVND). Both variants are described in Algorithm 1. The input is a valid EVRP tour T , a sequence of local search operators
N , corresponding to different neighborhoods in the search space, and a maximal number of fitness evaluations evalsmax. The
operators passed in N are described in Section III-B.

Both of the variants perform the local search (according to the best-improvement scenario) sequentially in the neighborhoods
in N . In the case of the RVND, the order of the neighborhoods is randomly shuffled first (line 3), whereas in the VND, the
order remains fixed. Each time and improvement is made, the local search is restarted (line 1). The VND then starts again from
the first neighborhood in N , while the RVND randomly reshuffles the neighborhoods first. The algorithm terminates either when
no improvement is achieved in any of the neighborhoods or when a stop condition is met. In the EVRP competition, the stop
condition is defined by a maximal number of allowed fitness evaluations, which is checked in between changing neighborhoods
(line 6).

Algorithm 1: (Randomized) Variable Neighborhood Descent - (R)VND
input: T ,N , evalsmax

1 i← 1
2 stop← false
3 Randomly shuffle N // RVND only
4 while i ≤ |N | do
5 T ′ ← argmin Cost(T̃)

T̃ ∈Ni(T)

6 if Cost(T ′) < Cost(T) then
7 T ← T̃
8 i← 1
9 Randomly shuffle N // RVND only

10 else
11 i← i+ 1
12 Get the total no. of fitness evaluations evals
13 if evals ≥ evalsmax then
14 stop← true
15 break
16 return T , stop

2) Variable Neighborhood Search (VNS): VNS is a metaheuristic method proposed by [MH97], and it is commonly used
for approximating solutions of optimization problems such as the VRP. It systematically changes the searched neighborhood
in two phases: an exhaustive local search reaching a local optimum and a perturbation phase, which serves to get out of the
corresponding valley. The process is described in Algorithm 2.

Algorithm 2: Variable Neighborhood Search (VNS)
1 T ∗ ← Construction()
2 while stop = false do
3 T ← Perturbation(T ∗)
4 T , stop← Local search(T)
5 if Cost(T) < Cost(T ∗) then
6 T ∗ ← T
7 return T ∗

First, an initial solution is constructed using one of the construction methods described in Section III-C (line 1). Then,
the following process repeats. The best known solution T ∗ is modified by a randomized perturbation, resulting in a possibly

non-improving current solution T (line 3). The current solution T is then subject to a systematic local search, which uses the
operators described in Section III-B passed in the N structure. These operators in the local search phase are applied according to
the VND or RVND (Section III-A1) metaheuristics. If the cost of the current solution T is better than the cost of T ∗, it replaces
it as the new best solution (line 5). The search process terminates when a stop condition is met. The EVRP competition defines
it as a maximal number of fitness function evaluations. When this number is reached within the local search, it terminates and
sets the stop flag to true, thus terminating also the VNS loop.

The perturbation operator applied at line 3 is intended to move the search process out of the reach of the local search
operators while keeping most of the properties of the current best solution T ∗. This follows the assumption of the VNS, that
local minima with respect to different neighborhoods are relatively similar. For this purpose, the Double-Bridge perturbation,
first introduced in [MOF97] for the Travelling Salesman Problem, is used. The Double-Bridge splits the best known solution T ∗
into p+1 subroutes, according to p randomly selected indices. These subroutes are randomly shuffled, inverted, and reconnected,
producing a possibly invalid tour. This tour is then repaired if necessary by the SSF construction described in III-C and passed
to the local search as a valid tour T .

B. Local search

A description of individual local search operators corresponding to different neighborhoods follows. The cost update functions
δ provided are expressed as a difference between the sum of removed edges weights and the sum of newly added edges weights.
Thus, a positive value of the cost update corresponds to an improvement in fitness and vice versa. Two standard modes were
tested in the local search - best improvement and first improvement. In the best improvement mode, all possible combinations of
input parameters are tested, and the tour with the highest cost update is returned from the current operator-defined neighborhood.
In the first improvement, the first improving tour found is accepted, and the search in the current neighborhood is terminated.
In both cases, only valid tours are accepted.

1) 2-opt: This is an operator commonly used in many variants of classical planning problems such as TSP or VRP. It takes
a pair of indices i, j, and a tour T as an input and returns a modified tour T ′, where the sequence of nodes from i-th to j-th
index is reversed. It must hold, that i < j, i ≥ 0 and j < n.

The cost update function δ2−opt can be evaluated as

δ2−opt = wi−1,i + wj,j+1 − wi−1,j − wi,j+1, (11)

where the indices are expressed w.r.t. to the tour T .

2) 2-string and its variants: This operator is a generalized version of several commonly used operators, which can be obtained
by fixing some of the 2-string parameters. The 2-string operator takes five parameters: a tour T , a pair of indices i, j valid w.r.t.
to T , and a pair of non-negative integers X,Y . It returns a modified tour T ′, where the sequence of X nodes following after
the i-th node in T is swapped with the sequence of Y nodes following after the j-th node. It must hold, that i ≥ 0, j ≥ i+X
and j + Y ≤ n− 1. The following operators can be derived by fixing the values of X and Y :

• 1-point: X = 0, Y = 1

• 2-point: X = 1, Y = 1

• 3-point: X = 1, Y = 2

• or-opt2: X = 0, Y = 2

• or-opt3: X = 0, Y = 3

• or-opt4: X = 0, Y = 4

• or-opt5: X = 0, Y = 5

When performing the local search, the complementary variants of these operators (e.g. 1-point with X = 1, Y = 0) are considered
as well.

The cost update function δ2−string can be evaluated as

δ2−string = cut1 + cut2 + cut3 + cut4 − add1 − add2 − add3 − add4, (12)

where cut1 corresponds to the edge weight after i-th node in T , cut2 to the edge after i+X , cut3 to the edge after j and cut4
to the edge after j+Y . Then, add1 is the weight of the edge added after the index i-th node in T , add2 of the edge added after
the reinserted block of Y nodes, add3 of the edge added after j and add4 of the edge added after the reinserted block of the X
nodes. For some combinations of the parameters, some of these values evaluates to zero, which must be carefully treated in the
implementation. For example, if X 6= 0, then cut2 = wi+X,i+X+1, otherwise cut2 = 0.

3) AFS reallocation: This is an operator specifically designed for the GVRP problem and works on individual capacitated
subroutes separated by visits to the depot. Since the constructions base the AFS insertion only on the last nodes, where we run
out of the battery capacity, their placement is often suboptimal. Moreover, most of the other local search operators only work
over the set of nodes already included in the constructed EVRP path and do not allow for the insertion of different AFSs.

An example depicting the reallocation process can be seen in Figure 1. We start by inserting AFSs into the original capacitated
subroute similarly as in the Relaxed ZGA construction. By running the insertion algorithm for both directions on the subroute
we determine a set of valid insertion edges limited by the last nodes before the AFS insertion. We define the insertion cost for
AFS k inserted between nodes i and j as

I Costk,i,j = wi,k + wj,k − wi,j (13)

Fig. 1: AFS reallocation

We iterate over the set of insertion edges and determine the AFS with minimal insertion cost. Since the length of the traversed
path is directly influenced by the insertion cost, any AFS that is inserted with a lower cost than the original is valid. If there is
at least one AFS with a lower insertion cost, we can define the cost update function δrealloc as

δrealloc = I Costoriginal − I Costnew (14)

C. Initial constructions

1) Two phase constructions starting with a TSP feasible instance: These constructions are split into two phases, first of which
creates a feasible solution to a TSP problem disregarding the AFS nodes and the load and energy constraints. This phase is
usually implemented with the nearest neighbor algorithm. However, in general this splitting into two phases allows for convenient
modularization in the sense that different methods in each phase can be used independently. Specifically, besides the nearest
neighbor algorithm we also tried constructions of the initial TSP feasible solution based on the minimal spanning tree (MST) of
the graph and based on Clarke-Wright Savings(CWS) method. That being said the output of the first phase is typically an invalid
EVRP tour; therefore, the second phase can be seen as a repair procedure. Several examples of generated TSP and EVRP tours
are presented in Figure 3.

a) Separate Sequential Fixing (SSF): In the examples shown, the initial TSP feasible solution was created according to
the nearest neighbor rule. The second phase of SSF works is also split in two subphases. In the first subphase, the load constraint
is sequentially checked, and whenever the next customer cannot be satisfied, a depot is inserted. Thus, the constraints on the
load are fixed in this phase. In the second subphase, the constraints on the battery charge level are fixed, which is slightly more
complicated. The current tour is again sequentially checked, and if the next customer is reachable from the current node and the
vehicle will not get stuck in it (meaning that it can still reach the closest AFS), the customer is added to the final valid tour.
Otherwise, SSF adds the AFS closest to the current customer, the AFS closest to the next customer, and any intermediate AFSs
in between, if necessary. After that, the next customer can be safely added. An example of a valid EVRP tour constructed by
this method is shown in Figure 3b.

b) Relaxed ZGA: We tried a construction proposed in [ZGA18]. The second phase of the construction adds AFS nodes to
the route so that it’s feasible in terms of EVRP. It iterates through the TSP route and inserts AFS nodes or depot when needed.
It first checks whether the demand of the next customer will be satisfied. If not, the depot is inserted to the route at the current
place. If the demand of the next customer is satisfied, then it’s checked whether the depot can be reached via the next customer.
If not, the nearest AFS is inserted to the route at the current position. If even the nearest AFS cannot be reached, the algorithm
backtracks - it goes back in the route being constructed. The suggested algorithm for the second phase is visualized by Figure
4. However, we found out that it doesn’t work in general as it can get stuck on some instances. It happens when a) the demand
is satisfied, but b) the depot can’t be reached via the next customer, c) the closest AFS can be found and after d) adding the

closest AFS this sequence repeats for the same customer. This can happen if there exists a node in the instance such that a
route from closest AFS via this node and straight to the depot is too long (demands more energy than the battery charge level).
This is actually not a very strong property. It’s proved to be a sufficient condition for the infinite cycle to happen if the triangle
inequality for the distances among nodes holds. We modified this algorithm so that for energy constraints we checked whether
the closest AFS from the next customer can be reached via the next customer (unlike originally when we checked if the depot
can be reached) and also for the returns to depot we also counted with routes via AFSs if the depot was not directly reachable.
See Figure 5.

c) Method proposed in [Pen19]: We also tried method for construction of an initial feasible solution proposed in [Pen19].
However, here again we found that in general it doesn’t work as it can get stuck on some instances, because originally it has
the same shortcomings as the ZGA method, namely that sometimes it tries to return straight to depot (in this case when the
demand of the next customer cannot be satisfied) disregarding the AFS nodes. Generally it tends to happen when there is a
path in the initial TSP tour n1, n2, ...nk, nk+1 such that distance(depot, n1, n2, .., nk, depot) is larger than the battery capacity
allows, but distance(depot, n1, n2, .., nk) is not larger than that and demand(n1, ...nk) can be satisfied without returning to the
depot, but demand(n1, ...nk, nk+1) cannot. For the algorithm to really get stuck it also needs to insert depot before n1 during
the execution. To simplify the situation, the algorithm will positively get stuck on an instance with the only nodes n1, ...nk, nk+1

with the properties as above. Practically the same fix as to the original ZGA method can be applied to this method to make it
work (i.e. make the route return to the depot via AFS when needed).

2) Other constructions:

a) One Route Each (ORE): This construction is meant to be a simple baseline method intended primarily for comparison.
It takes a list of all customers to be served as an input. The order of the customers in the input list does not matter, as a separate
route from the depot and back is planned for each customer. If the customer cannot be satisfied without recharging, an AFS
closest to the customer is added to the route before and after visiting the customer. It is assumed here that all AFSs are directly
reachable from the depot, which holds for all of the provided instances. An example of a valid EVRP tour constructed by this
method is shown in Figure 3a.

b) Modified Clarke-Wright Savings algorithm (CWS): This method was originally developed for the classical VRP. The
initial construction can be likened to ORE where an individual route is created for each customer. The algorithm starts with a
node that is furthest from the depot and individual routes are then merged while utilizing the saving distance Si,j defined in
equation 15 as a difference between the original and resulting routes.

Si,j = wi,j − wdepot,j − wdepot,i (15)

The original CWS algorithm intended for VRP was modified for CVRP by stopping the route merging procedure when there
are no more customers that could be connected to the current route without exceeding the maximal capacity, a new route is
then created from the remaining customers. The output of this algorithm is a valid CVRP tour, however, the satisfaction of the
battery level constraints is not guaranteed, therefore AFSs generally have to be inserted afterward. Since this is not implemented
directly in the modified CWS algorithm, AFSs can be inserted using one of the previously developed methods. An example of
a valid EVRP tour constructed using CWS initialization can be seen in Figure 3d.

c) Density-based clustering (DBC): This heuristic exploits the spatial properties of VRP and considers the distribution of
nodes over space. This allows us to divide the original set of nodes V into several sub-sets and downsize the original planning
problem. The implemented DBC algorithm builds on concepts from the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) proposed in [EKSX96]. The algorithm separates nodes based on a given neighborhood radius ε and a density
threshold minPts. We define the ε-Neighborhood Nε(vi) as a set of nodes within a radius of ε from vi and introduce the
condition |Nε(vi)| ≥ minPts for potential cluster core candidates, wherein all nodes in the ε-Neighborhood of a core candidate
node vi are considered as directly density-reachable from vi. Initial clusters are formed by identifying sets of density-reachable
nodes based on the core candidates. Nodes outside of these initial clusters are typically considered as outliers and can be treated
as separate entities or assigned to the nearest cluster.

The algorithm generates a number of cluster sets corresponding to each pair of (ε,minPts) parameter combinations. Values
of the ε parameter are largely dependent on the problem definition, therefore the potential values are set as fractions of the
maximal distance that can be traveled by a vehicle on a fully charged battery. Potential values of the minPts parameter are set
as integers in an interval < minPtsmin,minPtsmax >. The generated cluster sets Vi are subsequently augmented with a depot
and AFSs as V ′i = {Vi ∪ 0 ∪ F} and used as an input for the developed methods for EVRP tour construction.

IV. EXPERIMENTS

A. Benchmark Settings

A benchmark set of 17 EVRP instances was provided in the competition. These instances are split into two sets - small (E)
and large (X). The number of customers ranges from 21 to 100 in the E-instances and from 142 to 1000 in the X-instances. All
of the instances contain exactly one depot, while the number of AFSs varies. A more detailed description of the instances can

be found in [MMT+20]. Section IV-B provides an overall evaluation of developed methods as well as evaluations for both set
E and X separately since the results vary significantly for smaller and larger instances.

Concerning the competition evaluation criteria - in case that the implemented (meta)heuristic is stochastic, which is our case,
20 independent runs with random seeds from 1 to 20 are to be performed for each instance. The final ranking is then based on the
average of final tour fitness values across the 20 independent runs. The stop condition for each run is defined by the maximum
number of fitness evaluations w.r.t. the problem size as evalsmax = 25000n evaluations, where n is the problem size. For this
reason, the algorithm was extensively tuned to obtain the best possible solution after this fixed no. of fitness evaluations and
properties such as performance/execution time or time-to-target were not observed. The focus was on finding the best possible
selection and configuration of components, which by itself is not an easy task.

The tuning process is documented in detail in Section IV-B. Ideally, all construction methods would be tested with all possible
subsets of the implemented local search operators, together with tuning the additional parameters of the VNS metaheuristic.
However, such an exhaustive systematic approach is not feasible due to the computational requirements. After combining all
separate components and considering both randomized and deterministic variants, there are 17 different constructions in total.
Then, the full set of the 10 implemented local search operators have 210 = 1024 subsets, all of which should be tested with every
possible construction, resulting in 17 × 1024 = 17408 different methods. As the largest instance with 1000 customers requires
circa 5 minutes of computer time and it needs to be solved 20 times for each instance, we would need 5×20×17408 = 1740800
minutes of CPU time, or 1208 days, for solving only this instance (while neglecting the remaining instances, VNS parameters,
and the fact, that the order of LS operators in the VND can influence the performance).

Therefore, a decoupled approach to algorithm tuning was deployed. First, all constructions were compared without the local
search phase (Section IV-B1). Then, all of the constructions were tested in the VNS metaheuristic, while using the full set of
the local search operators (Section IV-B2). Finally, the best performing subset of the operators was selected and the additional
parameters of the VNS were tuned (Section IV-B3). Additionally, the complexity of the individual components w.r.t. the problem
size n, no. of AFSs, and no. of fitness evaluations are discussed in Section IV-B4.

B. Results and discussion

Benchmark values of tour fitness were provided for the E-instances, however, these values are not guaranteed to be optimal.
In fact, our developed methods proved to generally outperform the provided values. A new set of values was generated to provide
benchmark values for both the E and X instances. New benchmark values were chosen as best results from the first 20 runs of
the ORE method combined with the full set of the implemented local search operators. The results provided in this section are
given as a ratio of the computed fitness in relation to its benchmark value.

1) Constructions comparison: Table I shows a comparison of generated EVRP route scores for individual construction methods
averaged over all testing instances. All 17 construction methods generate valid solutions for all instances. Although we could
simply rank all construction methods based on scores, we will try to provide more in-depth evaluation, since the selection of
the best method can be influenced by several other factors, such as the complexity of said methods (presented in Table V).

Constructions only Local search
ID Construction method avg. score avg. score
c0 ORE 7.8082 1.0131
c1 Random-seed NN-based SSF 1.3348 1.0020
c2 Fixed-seed NN-based SSF 1.3091 1.0018
c3 Random-seed Random SSF 4.3478 1.0146
c4 Fixed-seed Random SSF 4.3093 1.0152
c5 Random-seed NN-based ZGA 1.2858 1.0023
c6 Fixed-seed NN-based ZGA 1.2526 1.0023
c7 Random-seed Random ZGA 4.0181 1.0127
c8 Fixed-seed Random ZGA 4.0076 1.0114
c9 CWS-based SSF 1.2430 1.0031
c10 CWS-based ZGA 1.1900 1.0015
c11 NN-based SSF from DBC 1.2857 1.0004
c12 NN-based ZGA from DBC 1.2421 1.0007
c13 CWS-based SSF from DBC 1.1843 1.0003
c14 CWS-based ZGA from DBC 1.1453 0.9997
c15 MST-based SSF 1.3839 1.0027
c16 MST-based ZGA 1.3317 1.0018

TABLE I: Initial constructions with and without local search. Average score over all instances.

Table I shows that solutions generated by several methods such as ORE and Random SSF and Random ZGA are far from
optimal due to the approach used in their initial construction. These methods are clearly inferior in the initial construction phase
but will become significant later when combined with local search operators. We can separate the remaining construction methods
by two main aspects. First is the method used to generate the TSP tour (NN, CWS, and MST), second is the tour repair procedure
that creates a valid EVRP tour from the original TSP (SSF or ZGA).

Methods using the TSP tour generated by CWS generally tend to produce better results. A possible reason for this is that
CWS is the only method that directly incorporates the depot position and the carrying capacity during the TSP tour creation.
Regarding the difference between NN and MST based methods, it is our belief that NN-based TSP is generally more suitable
for VRP.

The ZGA tour repairing method proved to generate better results. One of its advantages over SSF is its approach in regard
to the carrying capacity, while SSF divides the tour according to the carrying capacity in its first step, ZGA updates the current
capacity dynamically during the whole tour repairing process. This means that ZGA sometimes picks depot as the nearest AFS
to charge battery, but at the same time it loads the vehicle. This case is not counted for in the SSF method. There is also a slight
difference in the AFS selection during the process.

Lastly, we can see that initial constructions originating from clusters generated by the DBC method have a significant chance
for improvement over the initial construction methods. Although the improvement is clear this comes at the cost of higher
computation complexity. Values for the ε and minPts parameters used for the DBC method are shown in Table II. Where the
ε parameter is problem specific and set using fractions of the maximal distance that can be traveled by a vehicle on a fully
charged battery, which we define here as reach.

Parameter Values

ε [12 , 1
3 , 1

4 , 1
6 , 1

8 , 1
10 , 1

15 , 1
20] ×reach

minPts 2, 3, 4, 5

TABLE II: Parameter values for the DBC method

2) Pairing construction with local search: Results of initial constructions paired with local search operators are shown in
Table I. An overall improvement can be seen and differences between generated EVRP routes are within 2% in the average score
values. This is in direct contrast with EVRP route scores prior to the local search, where several methods could be considered
vastly inferior to others. The importance of combining all initial construction methods with local search indiscriminately can
be further demonstrated using tables III and IV, wherein scores for E and X instances are shown separately. The c14 method
proved to be reliable on both small and large instances and was judged to have the best overall performance.

ID avg. score best score
c0 1.0106 1.0
c11 1.0114 1.0029
c13 1.0114 1.0027
c12 1.0121 1.0037
c14 1.0124 1.0022

TABLE III: Top 5 results on all E-instances

We can see that the ORE method combined with local search generates the best results for smaller instances. By generating
individual subroutes for each customer, the initial EVRP route generated by ORE poses fewer restrictions on local search
operators and leaves more space for random improvement. Nevertheless, it is not suitable for larger problems since it takes a
lot of iterations to get the route close to the optimal solution and the final result shows no advantages when compared to more
complex methods.

ID avg. score best score
c14 0.9907 0.9806
c2 0.9918 0.9807
c13 0.9925 0.9851
c12 0.9927 0.9824
c15 0.9927 0.9842

TABLE IV: Top 5 results on all X-instances

Creating the initial EVRP route with more complex methods seems advantageous for larger problems, where these outperform
less complex methods by a large margin. Meanwhile, these methods might not show the best performance on smaller problems,
since initial constructions might lead to local optima and do not leave much operating space for local search operators.

3) Final method tuning: The results shown in Section IV-B2 compare all possible constructions paired with an identical local
search procedure. For obtaining these, the VNS metaheuristic with several fixed parameters was used. The results indicates,
that the construction c14 (CWS-based ZGA from DBC) migth be the best choice, but the remaining parameters of the VNS
were only estimated. As the competition deadline is within one week after this semestral report deadline, the computationally
demanding testing process is still in progress. For this reason, only two parameters were separately tuned so far, while the rest
is described in Section VI. The two tuned parameters are merge ∈ {true, false} and firstImprove ∈ {true, false}. The
merge parameter determines, if the algorithm should merge two identical AFSs or two occurences of the depot, if they appear in
the EVRP tour next to each other during the search. This can happen, when an AFS becomes redundant or when all customers
from one subroute are distributed among other subroutes. As the distance from a node to itself is equal to zero, these redundant
occurrences do not increase the solution cost and can be used somewhere else later in the search. On the other hand, having
numerous duplicated neighboring nodes increases the tour length and makes the search space larger, which is not desirable. The
firstImprove parameter determines, whether a search in an operator-defined neighborhood terminates after reaching the first
improving solution, or whether the whole neighborhood is searched exhaustively and the most improving solution is returned.
This is a commonly used operator in many metaheuristics addressing classical problems such as the TSP or the VRP.

Each of the parameters has only two admissible values, so they could be easily tested together in all 4 possible combinations.
The average relative performance of each setup is shown in Figure 2. Clearly, the best setup is c:14 ls:255 m:1 f:0 (yellow
line), which stands for c14 construction, full local search (=with all operators), merge = true and firstImprove = false.

Fig. 2: Pameters tuning - merge, firstImprove

4) Complexity: This section provides a complexity analysis of individual components. Defining the problem as V = {0∪I∪F}
where I denotes the set of customers and F denotes the set of charging stations, we can define n = ‖V ‖, i = ‖I‖ and f = ‖F‖
as the size of the problem, number of customers and number of charging stations respectively. Additionally, we define x as an
unknown non-negative integer that depends on the specific problem. In our complexity estimates, we work with the assumption
that i is significantly higher than f and x. The algorithm stop condition is defined as a maximum number of fitness evaluations
evalsmax = 25000n of the whole EVRP tour and not e.g., time or lower bound on solution quality. Therefore, we do not provide
formulas for time complexity, but for the complexity w.r.t. the number of requests for a distance between nodes a and b. One
fitness evaluation then corresponds to determining the length of a whole EVRP tour and is estimated as requesting a single
distance between two nodes n times.

The complexity of individual initial construction methods can be seen in Table V. The complexity for constructions initiating
from DBC depends on the spatial distribution of nodes in the problem and the underlying construction method, generally
k ∈ (10, 17).

evals
evalsmax

× 107

Type Methods (min-max) Complexity
ORE c0 4 i× f

Random c3, c4, c7, c8 47-54 x× i× f
NN-based c1, c2, c5, c6 199-203 i2

MST-based c15, c16 202-206 i2.log(i)
CWS-based c9, c10 443-446 i2

generated from DBC c11, c12, c13, c14 5184-6204 k × complexity

TABLE V: Initial constructions evaluation demand

The complexity of individual local search operators is given in table VI. Given an EVRP tour T and an operator O, let us
define a neighborhood NO(T) as a space of EVRP tours, that are reachable by a single application of the operator O on tour
T . The provided values then correspond to the complexity of searching through the whole neighborhood NO(T) w.r.t. to the no.
of requests for a distance between two nodes.

Operator Complexity
2-opt n2

2-string (all variants) n2

AFS reallocation i× f

TABLE VI: Local search operators - complexity

As for the metaheuristics, they generally consist of single or multiple calls of a construction method and repeated use of
one or more local search operators. Therefore, their complexity is determined by the most expensive component, which, in our
case, is one of the O(n2) local search operators. The perturbation operator used in the VNS does not contribute to the resulting
complexity, as it does not perform any fitness evaluations.

V. CONCLUSION

Currently, the best method available consists of the c14 (CWS-based ZGA from DBC) construction and a RVND local
search with all of the implemented operators. The construction and the local search are paired in the VNS metaheuristic, which
repeatedly performs the Generalized Double Bridge perturbation and the RVND local search until the stop condition is reached.
However, the parameter tuning for the competition is still in progress. Various other constructions were also implemented and
tested during the design. Some lower bound estimates were provided for the small competition instances. Our method surpassed
all of them, which gives us hope for a good result. All team members significantly contributed to the final method. Moreover,
some theoretical results were achieved as well, as it was shown that two construction methods proposed in literature do not
generally work without unmentioned assumptions about the problem instances, and one of them was made more robust.

VI. FUTURE WORKS

As explained in Section IV-B3, the process of parameter tuning is still in progress, to make the most of the time remaining
to the competition deadline. Specifically, we are trying to determine the best performing operators subset by testing all possible
combinations. As we employ numerous variants of the 2-string operator, it is possible that omitting some of them will be
beneficial. We intend to test the VND metaheuristic in the local search phase, as we were using only RVND so far. If the set
of useful operators reduces significantly, it may be feasible to determine also their optimal order in the VND. Then, there is a
parameter p, which determines the strength of the perturbation used and is fixed to p = 4 in all of the previous experiments. This
value was not chosen arbitrarily, as it corresponds to the commonly used Double-Bridge move. However, some other value might
prove more suitable. Finally, we run the VNS until the termination condition is reached. Some authors report that restarting the
entire VNS within one run improves the worst-case behavior; therefore, this will be tested as well.

The competition deadline is June 5, 2020, and the results will be publicly available at [Mav20] July 19, 2020. As a paper
describing the implemented method was not submitted to the conference, it will most likely be published later on, depending on
the competition results. This paper will include a comparison with the other competing algorithms, as well as with previously
existing state of the art methods addressing the same EVRP formulation. It will also focus on evaluating the algorithm performance
from other perspectives. In the competition, the only objective is the best possible average score after a fixed number of fitness
evaluations. However, the stop condition may differ depending on the application, and there are more suitable metrics to capture
the algorithm behavior, such as the time-to-target plots.

INDIVIDUAL CONTRIBUTIONS

Constructions and related methods
Relaxed ZGA VV
Method from [Pen19] disproved VV, DW
SSF DW
ORE DW
Nearest Neighbor TSP Init. DW
Minimum Spanning Tree TSP Init. VV
Clarke-Wright VK
Density-based Clustering VK
Local Search
2-string and its variants DW
2-opt DW
AFS reallocation VK
Metaheuristics
(R)VND DW
VNS DW

TABLE VII: Individual contribution of team members

REFERENCES

[ECLR19] Tomislav Erdelic, Tonči Carić, and Eduardo Lalla-Ruiz, A Survey on the Electric Vehicle Routing Problem: Variants and Solution Approaches,
2019.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu, A density-based algorithm for discovering clusters in large spatial databases with
noise, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, AAAI Press, 1996, p. 226–231.

[GSS11] F Goncalves, Cardoso S., and Relvas S., Optimization of distribution network using electric vehicles: A VRP problem, Tech. report, University of
Lisbon, 2011.

[Mav20] Michalis Mavrovouniotis, CEC-12 Competition on Electric Vehicle Routing Problem, https://mavrovouniotis.github.io/EVRPcompetition2020/,
2020, accessed 2020-04-07.

[MH97] N Mladenović and P Hansen, Variable neighborhood search, Computers & Operations Research 24 (1997), no. 11, 1097–1100.
[MMT+20] Michalis Mavrovouniotis, Charalambos Menelaou, Stelios Timotheou, Christos Panayiotou, Georgios Ellinas, and Marios Polycarpou, Benchmark

Set for the IEEE WCCI-2020 Competition on Evolutionary Computation for the Electric Vehicle Routing Problem, Tech. report, KIOS Research
and Innovation Center of Excellence, Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus, 2020.

[MOF97] Olivier Martin, Steve Otto, and Edward Felten, Large-step markov chains for the traveling salesman problem, Complex Systems 5 (1997).
[NYBS19] Nur Mayke Eka Normasari, Vincent F. Yu, Candra Bachtiyar, and Sukoyo, A simulated annealing heuristic for the capacitated green vehicle

routing problem, Mathematical Problems in Engineering 2019 (2019).
[Pen19] A memetic algorithm for the green vehicle routing problem, Sustainability (Switzerland) 11 (2019), no. 21, 516–526.
[ZGA18] Shuai Zhang, Yuvraj Gajpal, and S. S. Appadoo, A meta-heuristic for capacitated green vehicle routing problem, Annals of Operations Research

269 (2018), no. 1-2, 753–771.

(a) One Route Each - EVRP tour (b) Separate Sequential Fixing (NN-based) - EVRP tour

(c) ZGA relaxed (NN-based) - EVRP tour (d) ZGA relaxed (CWS-based) - EVRP tour

(e) MST-based TSP tour (f) NN-based TSP tour

Fig. 3: Construction methods

insert depot to the
EVRP route and mark
it as current customer

Is current customer the last
customer in TSP route?

Does the load carried by the EV
meet the demand of the next

customer?

insert depot to the
EVRP route and mark
it as current customer

Can the vehicle return to depot via
the next customer?

Insert the next customer
from the TSP route
to the EVRP route
and mark it as the
current customer

Can EV reach the nearest AFS?

Change the current
customer to the

previous one in EVRP
route and do the same

in the TSP route

Insert the nearest AFS
as the next customer
and mark it as the
current customer

End

no

no

yes

yes

no

no

yes

Fig. 4: Construction method proposed in [ZGA18] which can end up in an infinite cycle composed of the orange nodes

Insert depot to the
EVRP route and mark
it as current customer

Is current customer the last
customer in TSP route?

Can EV meet the demand of the
next customer?

Insert a route to depot
possibly along some
AFSs to the EVRP
route and mark it

as current customer

Can an AFS be reached via the next
customer?

Insert the next customer
from the TSP route
to the EVRP route
and mark it as the
current customer

Can EV reach the nearest AFS?

Change the current
customer to the

previous one in EVRP
route and do the same

in the TSP route

Insert the nearest AFS
as the next customer
and mark it as the
current customer

End

no

no

yes

yes

no

no

yes

Fig. 5: Modification of the construction method proposed in [ZGA18] which doesn’t end up in an infinite cycle (changes made
to orange nodes)

