Nonograms

April 6, 2021

1 Nonogram Puzzle

Combinatorial Optimization course, FEE CTU in Prague. Created by Industrial Informatics Department.

Nonogram (also called colored puzzle) is a puzzle, which originated in Japan in 1987 (see the
wiki). The goal is to color the individual cells of the grid while respecting the hints given for
each row and column. In a sense, the solving process is quite similar to, e.g., sudoku. However,
the outcome is usually quite more rewarding, since the result of the puzzle is an image. See the
illustration below.

If you are interested in solving the nonograms by hand, visit, e.g., nonograms.org, where you will
find many amusing instances of the problem.

http://industrialinformatics.fel.cvut.cz
https://en.wikipedia.org/wiki/Nonogram
https://www.nonograms.org/

[5]:

The goal of this exercise is to develop a solver, which will be able to solve the nonograms auto-
matically. There exists black-and-white nonograms as well as colored ones. Since you have nearly
finished the whole semester of the Combinatorial Optimization, we will try the more general vari-
ant (i.e., the colored nonograms) directly.

Note that the nonogram puzzle is NP-complete, see NP-completeness Results for NONOGRAM
via Parsimonious Reductions (1996). Despite of that, there exist some approaches/models, that
might be used to solve small (or medium) size instances of the problem more-or-less efficiently,
see the survey.

This time, it is completely up to you, which approach you will use to solve the puzzle. Surely,
you should be able to implement the ILP model of the problem (which is also the approach that
we have been using while preparing this notebook), but it is only one of many possibilities. Some
of you might have already encountered the nonogram puzzle during the ZUI course. There, you
have probably implemented a simple brute-force constraints satisfaction solver (maybe including
the AC-3 for pruning). If you have never heard about the constraints satisfaction problem (CP),
you may look into the last lecture of the KO course, or go through the pages of prof. Bartak from
MFF, who has been teaching the CP for years.

1.1 Input

You are given two numbers n_row and n_col representing the number of rows and columns of
the grid. For each row (column) you are given a list of block sizes (row_sizes, col_sizes), and
list of the colors corresponding to the blocks (row_colors, col_colors). The inidividual colors are
represented by integer numbers (1, 2, etc.). The block sizes are positive numbers.

1.2 Goal

The goal is to assign the blocks to the individual cells of the grid while respecting the order of the
blocks and their colors. Every two consecutive blocks of the same color in each row (column) need
to be separated by at least one space (empty cell); if the two blocks do not have the same color,
there does not need to be a space in between.

1.3 Output

You should produce matrix M (indexed M[row] [column]) containing 0 if the corresponding cell is
empty, or positive integer corresponding to the color of the block occupying the cell. We have
prepared a visualization function, which will take your matrix M and color map (mapping integers
to strings representing the colors) and show you the image.

import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from matplotlib.collections import PatchCollection

def draw_solution(matrix, color_map):

nnn

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5277
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5277
https://webpbn.com/survey/
https://cw.fel.cvut.cz/b182/courses/b4b36zui/uloha2
https://rtime.felk.cvut.cz/~hanzalek/KO/cp_e.pdf
http://ktiml.mff.cuni.cz/~bartak/podminky/
http://ktiml.mff.cuni.cz/~bartak/podminky/

Function to draw the solution.
First argument is the solution matrixz M
Second argument is the mapping from color (numbers) to strings (representing,
~colors)
def get_coords(ir, ic):
return (ic*SIZE, -(ir+1)*SIZE)

n_rows = len(matrix)
n_cols = len(matrix[0])
SIZE = 10

fig = plt.figure(figsize=(8,8))
ax = plt.gcaQ
patches = []

for i_row in range(n_rows):
for i_col in range(n_cols):

if not matrix[i_row] [i_col]:
clr = "white"

else:
clr = color_map[matrix[i_row] [i_col]]

rect = Rectangle(get_coords(i_row, i_col), SIZE, SIZE, fill=True,,

—.color=clr)
ax.add_patch(rect)

ax.set_x1im(0,n_rows*SIZE)
ax.set_ylim(-n_cols*SIZE,0)
plt.axis('equal')
plt.axis('off"')

plt.show()

1.4 Hints for an ILP modeling

Skip this section if you want to think about the model yourself.
A simple ILP model might include

e integer variable for each cell representing the color of the cell (0 = empty)
* binary variable for each cell and each row (column) block indicacting if the row (column)
block “starts” in this cell (i.e., its leftmost/topmost part is in this cell)

The “hard work” is then to link the variables correctly to make the model work.

[384] :

[368]:

[315]:

1.5 Instances

Simple 5xz5, might be useful for debugging
n_row = 5

n_col =5

row_sizes = [[2], [1, 11, [1, 11, [1, 31, [3]1]
col_sizes = [[4], (1], [2], (21, [41]
row_colors = [[1], [1, 11, [1, 11, [1, 11, [1]1]
col_colors = [[1], [11, (171, (11, [11]
color_map = {1: "black"}

dino from ZUI

n_row = 20

n_col = 30

row_sizes = [[6, 11, [3, 4, 11, [9, 21, [2, 2, 3, 21, [1, 2, 3, 3], [2, 5, 4],
-[10, 5], [15], [13], [10], (8], [2, 71, [2, 2, 5], [2, 5], [2, 2], [2, 2], [2,u
=21, [2, 21, [2, 2], [2, 2]]

col_sizes = [[2], [2], [2, 1], [3, 2], [51, [1, 2], (31, (3], [4], [51, [5, 11,
-5, 21, (7, 11, (6, 21, [7]1, [6, 11, [8, 21, [9, 21, [12, 11, [8, 2, 2], [3,L
-4, 2], [4, 41, [3, 2], (4], (3], (3], [2], [2], [2], [3]1]

row_colors = [[1, 11, [t, 1, 11, [1, 11, [t, 1, 1, 11, [1, 1, 1, 11, [1, 1, 11,
~[1, 11, (13, (13, (11, [11, ([1, 11, (1, 1, 11, (1, 11, (1, 11, (1, 11, [z, 11,4
<[1, 11, [1, 11, [1, 11]

col_colors = [[1], [11, [1, 11, (1, 11, (11, [z, 11, [11, (11, C11, (11, [1, 11,.
~[1, 11, [1, 11, [1, 11, (11, [, 131, (1, 13, (1, 13, (1, 131, [, 1, 11, [1, 1,,
-11, [1, 11, [t, 11, (11, (11, (13, (11, [11, (11, (11

color_map = {1: "black"}

krtek - you might remember it from ZUI

Note that by the brute-force + AC3, the solution was obtained in about 90s (as,
wnoted in the original solution).

-> Can you achieve a better result?

n_row = 40

n_col = 40

row_sizes = [[2], [3, 41, [2, 2, 71, [3, 2, 2, 6, 1, 11, [9, 6, 1, 1, 2], [8, 6,
-1, 1,1,1,2]), [7,7,1,1,1,2,2], [9, 8, 1, 3, 2], [9, 15, 2, 4], [8, 7,u
-2, 5, 3,51, [6, 7, 3, 4, 2,51, [6, 1,7, 4, 4, 61, [4, 3,7, 6, 2, 7], [2,,
-5, 6,2,2,2,2,7,10,7,1,3,1,2,7], I[7,7,1,3,1, 2, 6], [14, 2, 1,,
-2, 2, 1, 6], [14, 5, 2, 4, 41, [13, 5, 9, 3], [12, 5, 9, 2], [11, 5, 91, [10,,
-6, 91, (8, 6, 81, [7, 6, 71, [6, 7, 6], [7, 8, 2], [7, 8, 2], [6, 9, 2], [6,,
-9, 21, [7, 9, 21, [7, 9, 21, [7, 9, 21, [7, 8, 3], [8, 7, 2], [7, 6, 3], [9,u
-3, 41, [18], [5, 9, 31, [7, 38, 2, 5], [8, 1, 1, 5]]

[375] :

col_sizes = [[2], [3, 3], [4, 3], [10], [2, 10], [14], [12, 3], [8, 6], [8, 8],u
-[4, 8], [8, 2], [8, 5, 3], [8, 12, 3], [5, 21, 3], [31, 3], [33, 3], [35, 2],,
-[36, 11, [25, 6, 71, [22, 11, 4], [8, 5, 8, 13, 31, [3, 2, 27, 2], [2, 2, 2,,
-3, 3, 20, 31, [3, 3, 4, 2, 4, 19, 41, [1, 2, 4, 2, 2, 19, 3, 2], [1, 5, 22, 3,,
-3], [21, 7, 5, 3], [3, 2, 25, 3], [3, 15, 21, [2, 7], [8], [8], [8], [5, 6],,
~[14, 4], [16], [12], [11], [8], [4]]

row_colors = [[1], [1, 2], [1, 1, 2], [1, 1, 1, 2, 2, 2], [1, 2, 3, 2, 11, [1,.
-2, 2,3, 2, 2,11, [1, 2, 2, 3, 2, 2, 11, [1, 2, 2, 2, 11, [1, 2, 4, 11, [1,,
-2, 3, 2, 4, 11, [1, 2, 3, 2, 4, 11, [1, 2, 2, 3, 2, 11, [1, 2, 2, 3, 2, 11,
~[1, 2, 2, 3, 2, 3, 2, 11, [2, 2, 3, 2, 3, 2, 11, [2, 2, 3, 2, 3, 2, 11, [2, 3,,
-2, 3, 2, 2, 1], [2, 3, 2, 2, 11, [2, 3, 2, 1], [2, 3, 2, 11, [2, 3, 2], [2, 3,.,
-2], [2, 3, 21, [2, 38, 2], [2, 3, 2], [2, 3, 2], [2, 3, 2], [2, 3, 2], [2, 3,
21, [2, 3, 21, [2, 3, 21, [2, 3, 21, [2, 3, 2], [2, 3, 21, [2, 3, 2], [2, 3,u
<21, [21, [1, 2, 11, [1, 2, 2, 11, [1, 2, 2, 1]]

col_colors = [[11, [1, 11, [1, 11, [11, [1, 11, [11, [1, 21, [1, 21, [1, 21, [1,y
2], [2, 11, [2, 2, 11, [2, 2, 11, (2, 2, 11, [2, 11, [2, 11, [2, 11, [2, 11,.,
-[2, 3, 2], [2, 8, 2], [2, 38, 2, 3, 2], [2, 2, 3, 2], [2, 2, 2, 3, 2, 3, 2],,
~[2, 3, 2, 3, 2, 3, 21, [2, 2, 2, 3, 2, 3, 2, 11, [2, 2, 3, 2, 11, [2, 3, 2,4
11, [2, 4, 2, 11, [4, 2, 11, [4, 21, [2], [21, (2], [1, 21, [1, 21, [11, [1]1,,
~[11, [11, [1]1]

color_map = {1: "black", 2: "brown", 3: "gray", 4: "red"}

The best friend (#32431 monograms.org)

n_row = 42

n_col = 45

row_sizes = [[39], [2,2], [2,33,2], [2,31,2], [2,29,2], [2,29,2], [2,31,2],,

-[2,5,4,2], [2,4,3,2], [2,2,1,1,2,2], [2,2,8,3,2,2], [2,2,1,3,2,1,2,2],,
-[2,3,5,1,1,1,1,4,2,2], [2,3,5,1,1,1,1,2,1,2,2,2,2,2,2],,
-[2,2,3,1,1,1,2,1,1,2,2,2,4,1,1,2], [1,2,1,1,1,1,1,1,2,1,2,2,1,5,2,2,1],,
-[1,2,3,9,4,1,2,1,4,2,2,1], [1,2,1,5,1,1,1,1,1,1,1,1,2,1,3,2,2,1],,
-[1,2,3,1,1,1,1,1,1,1,1,1,1,2,1,1,2,2,1,2,1],,
-[1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,3,1,1],,
~[1,1,1,4,4,1,1,1,1,1,1,1,2,1,2,1,1,1,2,1,1,11,,
-[1,1,3,2,7,1,1,1,2,1,2,1,1,2,2,1,11,,
-[1,2,3,1,2,1,2,1,1,1,5,1,1,2,1,1,3,1,1,11,,
-[1,2,2,3,1,1,2,1,1,1,1,3,1,1,2,1,1,3,1,2,17,,,
-[,2,1,1,3,1,1,1,1,1,1,1,2,2,1,6,2,1], [1,3,1,1,3,1,1,2,1,1,1,4,7,3,1]1,,
-[2,2,1,1,2,1,1,2,1,1,1,3,2,1,1,1,2,1,2,2],,
-[2,2,1,2,1,1,2,1,1,2,3,1,1,1,2,1,3,2], [2,3,6,7,1,5,2,3,2],,
-[2,2,1,1,1,1,10,1,2,2,2], [2,3,2,1,1,1,1,1,4,3,2], [2,3,1,1,1,1,3,2,3,2],,

,7:2]’ [2’8’855:6,2], [2,6,2,7,5,5,2],u
1, [2,21,2], [3,17,3], [4,4], [21]]

col_sizes = [[17], [5,51, [4,11,41, [3,3,7,7,31, [4,2,5,1,6,2], [1,4,6,1,4,1,2],,
-~[1,1,2,8,3,2,2,2,2], [1,2,3,1,2,2,1,1,1,1,3,2], [1,7,3,5,1,1,1,1,4,2],,
~[1,6,1,3,3,3,1,3,5,21, [1,6,5,2,5,1,1,6,2]1, [1,5,5,2,2,4,1,1,1,4,2],,
-[1,5,3,3,2,1,2,1,1,1,1,7,21, [1,5,2,2,1,1,1,1,1,2,1,7,2],,
-~[,5,2,1,2,1,1,1,1,1,1,1,3,3,1], [1,5,1,1,1,3,1,1,2,1,1,1,1,2,2,2,1],,
-[1,5,2,1,1,2,1,1,1,1,1,2,1,2,2,2,1], [1,5,2,1,1,1,2,1,2,1,1,1,1,3,3,1],,,
-~[1,5,4,1,1,2,1,4,2,2,8,1], [1,5,1,1,1,1,1,1,1,2,5,2,1,1,8,1],,,
-[1,5,1,1,3,1,1,1,1,3,2,1,1,1,1,1,7,11,.
-~[,5,1,1,1,1,1,1,1,1,1,4,2,1,1,1,1,1,7,1], [1,5,2,2,2,1,1,1,1,2,2,2,1,1,7,1],,
-[1,5,1,1,1,1,1,1,1,1,1,2,2,2,1,1,2,4,2,1],,,
~[1,5,1,2,1,1,1,1,1,2,1,3,1,1,1,8,1]1, [1,5,2,1,1,2,2,1,1,1,1,1,4,1],,,
-~[,5,1,1,1,2,1,1,1,1,3,3,1], [1,5,1,1,1,1,1,1,2,1,1,1,3,2,1],,
-[1,5,3,1,4,1,1,1,1,5,2,1], [1,5,1,2,3,2,2,1,5,2,1], [1,5,2,2,2,1,2,3,3,1],,
-[1,5,1,2,1,2,1,1,2,1,3,2], [1,5,1,2,1,2,1,1,1,1,1,7,2],,,
-[1,5,1,1,1,2,1,1,1,1,1,1,2,6,2], [1,5,1,1,1,3,1,1,2,1,1,1,2,6,2],,
-[1,6,1,1,1,2,1,1,2,1,4,5,2], [1,6,1,1,3,1,1,2,1,2,4,2],,
-[1,2,3,1,1,2,1,1,1,1,1,3,2]1, [1,1,2,3,1,2,1,1,2,2,2,2], [1,4,4,1,1,1,3,5,1,2],,
~[4,2,4,2,1,6,2], [3,3,7,6,3], [4,11,4], [5,5], [17]1]

row_colors = [[1], [1,1], [1,2,1], [1,2,1]1, [1,2,11, [1,2,1], [1,2,1],,
-[1,2,2,11, [1,2,2,1], [1,2,2,2,2,1]1, [1,2,2,2,2,1], [1,2,2,2,4,2,2,1],,

q[1,2,2,4,7,4,3,4,2,1],

[1’2’2’2’4’7’4’6’3’4’5’6’4’2:1],U
'—>[1,2,2,4,6,4,6,4,3,4’,5;6;
~[1,2,2,4,3,4,5,6,7,4,2,1],

754:251]: [1,2,2,4,5,4,5,4,5,3,4,5,6,7,4,2,1],u
[1:2,2,4,5,5,5,7,5,6,5,4,5,6,7,4,2,1],u

-[,2,4,7,5,7,5,5,5,7,5,6,5,4,5,6,7,4,2,2,1],,
-[1,2,4,6,5,6,5,7,5,7,5,7,5,6,5,3,4,5,6,7,4,2,2,11,,
-[1,2,2,4,5,6,5,6,5,6,5,6,5,3,4,5,6,7,4,2,2,1],,,
-~[1,2,4,6,5,6,5,6,5,3,4,5,6,7,4,2,1],,
-[1,2,4,5,6,4,3,4,5,4,5,4,3,4,5,6,7,4,2,1],,
-~[1,2,4,5,4,3,1,3,4,5,4,5,4,3,4,5,6,7,4,2,1],,,
-[1,2,3,4,5,3,1,3,1,3,5,4,5,4,3,4,2,11, [1,2,3,4,5,3,2,3,2,3,5,4,3,2,1],,,
-~[1,2,3,4,5,4,3,2,3,4,5,4,3,4,5,6,7,3,2,1],,
-[1,2,3,4,5,4,3,4,5,4,3,4,5,6,7,3,2,11, [1,2,3,4,3,3,2,2,1]1,,
-[1,2,3,5,4,3,3,2,2,2,11, [1,2,3,3,4,5,6,3,2,2,1]1, [1,2,3,6,7,3,2,2,2,1],,
-[1,1,3,1,1,1,1], [1,1,1,1,1,1,1], [1,1,1,1,1,1]7, [1,1,1,1,1,1,1],,
-[1,1,1,1,1,1,1], [1,1,1,1,1,1], [1,1,1], [1,1,1], [1,1], [1]1]

col_colors = [[1], [1, 11, [1, 2, 11, [1, 1, 2, 2, 11, [1, 1, 2, 2, 2, 11, [1,,
(_>1’ 2’ 2’ 2’ 1’ 1]’ [1, b 2’ 3’ 2’ 1) 1]! [1’ 2’ 2’ 2, 4’ 3’ 3, 5’ 3’ 2’_’

2,1, 2

-1, 11, [1, 2, 2, 4, 3, 3, 4, 3, 1, 11, [1, 2, 2, 2, 4, 5, 4, 3, 1, 11, [1, 2,,
-2, 4, 5, 4, 3, 1, 11, [1, 2, 2, 4, 6, 5, 4, 3, 1, 1, 11, [1, 2, 2, 4, 6, 4, 3,
-4, 5, 4, 3, 1, 11, [1, 2, 4, 5, 4, 3, 1, 2, 3, 4, 3, 1, 11, [1, 2, 4, 6, 5, 3,
-1, 3,2,3,4,3,1,1, 11,10, 2,2, 4, 7,5,3,1, 3,2, 3, 43,1, 1, 1,,
-11, [1, 2, 4, 5, 6, 5, 4, 3, 1, 2, 3, 4, 3, 1, 1, 1, 11, [1, 2, 4, 7, 5, 6, 5,
-4, 3, 4, 5, 4, 3,1, 1, 1], [1, 2, 4, 5, 7, 5, 4, 5, 4, 3, 1, 11, [1, 2, 4, 6,
-5, 4, 5, 5, 6,5, 4,3, 4,3,1,1], [1, 2, 4,7, 4,5, 7, 5, 6, 5, 4, 3, 3,4
-6, 6, 3, 1, 11, [1, 2, 4, 7, 4, 6, 5, 4, 5, 5, 6, 5, 4, 3, 3,6, 7, 3,1, 11,,
[, 2, 4, 6, 4, 5, 7,5, 6,5, 4,3,3,3,1,1], [1, 2, 3, 6, 4, 5, 4, 5, 7,4,
-6, 6, 5, 4, 3, 4, 3,3, 1, 1,11, [1, 2, 2, 3,5, 4, 7, 5, 6, 5, 4, 3, 4, 5,
-3, 1, 11, [1, 2, 38, 5, 6, 5, 3, 3, 5, 6, 3, 1, 1, 1], [1, 2, 3, 6, 5, 3, 3, 6,
-7, 3,1, 1,11, [1, 2, 2, 3,5, 4, 3,3,7,3,2,1,1, 1,11, [1, 2, 2, 3, 4,
-3, 7, 3,2, 1,1, 11, [1, 2, 2, 4, 5, 4, 3, 2, 1, 1, 11, [1, 2, 4, 5, 6, 5, 4,
-1, 1, 11, [1, 2, 4, 5, 6, 7, 6, 5, 4, 1, 1, 1], [1, 2, 4, 5, 6, 7, 4, 7, 6, 5,
-4, 1, 11, [1, 2, 4, 5, 6, 7, 4, 4, 7, 6, 5, 4, 2, 1, 1], [1, 2, 4, 5, 6, 7, 4,
-4, 7, 6, 4, 2, 2,1, 1], [1, 2, 4, 5, 6, 7, 4, 4, 7, 4, 2, 1, 11, [1, 2, 4, 6,
o7, 4, 4,7, 4, 2,1, 11, [1, 2, 2, 4, 6, 7, 4, 4, 7, 4, 2, 1, 11, [1, 2, 1, 2,,
-4, 7, 4, 2, 4,2, 1,11, [1, 1, 2, 4, 7, 4, 2, 2, 1, 11, [1, 1, 2, 4, 2, 2,,
-11, 1, 1, 2, 2, 11, [1, 2, 11, [1, 11, [1]]

color_map = {1: "c", 2: "paleturquoise", 3: "black", 4: "maroon", 5:
~"orangered", 6: "darkorange", 7: "yellow"}

[381]: | # The riddle, can you solve %t?
n_row = 30
n_col = 29
row_sizes = [[7, 1, 1, 1, 1, 2, 7], [1, 1, 1, 1, 4, 1, 1], [1, 3, 1, 1, 1, 1, 1,4
-3, 11, [1, 3, 1, 1, 2, 4, 1, 3, 11, [1, 3, 1, 1, 2, 1, 1, 3, 11, [1, 1, 3, 2,,
-1, 1,1, (7, 1, 1,1, 1,1, 1,1,7]), [1, 1, 2], [3, 5, 1, 1, 1, 2, 1], [3,4
-1, 1,1, 3,2,1, 1,1, 1], [1, 5, 3, 1, 1, 1, 3, 3], [1, 1, 4, 4, 1, 1, 1,,

-11, [8, 2,1, 1,1, 1,1,2], [3,1,2,2,1,1, 3,1, 1], [3, 3, 2, 1, 3, 1,,
-1, 21, [2, 2,1, 2,1,5,1, 1], [3, 7,1, 2, 3,1, 2], [1, 1, 2, 3, 2, 5, 2,,
-11, [1, 2, 1, 2, 2,1, 1, 3, 2], [1, 1,1, 4,1, 1,1, 2, 1], [1, 2, 1, 4, 1,,
-1, 61, [1, 1, 1, 3, 1, 31, [7, 2, 1, 4, 1, 2, 2], [1, 1, 4, 3, 2, 2, 1], [1,,

» 1, 3, , 4,1, 2, 2], , 1]

-3, 1,1,1,1, 2,5, 11, [1, 3, 1, 3, 2, 2, 3], [1, 3, 1,1, 3,1, 4, 3, 11,,
<[, 1, 2, 4, 1, 2, 3, 11, [7, 2, 1, 1, 1, 2, 3, 2], [1]]

col_sizes = [[7, 2, 4, 1, 1, 71, [1, 1, 3, 5, 1, 1, 1], [1, 3, 1, 2, 1, 2, 1, 1,,
-1, 1, 3,11, [1, 3, 1, 1, 1, 1, 3, 11, [1, 3, 1, 3, 1, 2, 1, 3, 11, [1, 1, 1,,
-3, 4, 1,11, [7, 1, 1, 1, 1, 1, 1, 1, 71, [9, 11, [1, 1, 3, 2, 1, 3, 5, 31,,
-1, 2,1,1,1,3,1,2,2], 01, 2,7,2, 2,11, [1, 1,1, 2, 2,1, 2, 2, 1,4
-2, 11, [1, 4, 4, 4, 4, [1, 2,1, 1, 1,1, 1,1, 1, 11, [1, 2, 4, 4, 3], [1,,
-1, 1, 2,1, 1,11, [1, 2, 1, 2, 2, 3, 11, [2, 1, 3, 2, 2, 2, 6], [2, 1, 1, 1,,
-1, 2, 2,11, [1, 1, 1, 1,1, 1, 4,31, [1, 1,1, 2,2, 1,1, 6, 31, [1, 6, 1,,
-1]1, [7, 6,6, 1, 1, 21, [1, 1, 1, 2, 1, 1, 8], [1, 3, 1, 2, 101, [1, 3, 1, 1,,
-6, 1,2, 1,11, [1, 3, 1,1, 1,1, 1,11, [1, 1, 3, 3, 2, 2, 1, 21, [7, 2, 3,,
-3, 6, 111

row_colors = [[1, 2, 1, 2, 3, 1, 1], [1, 1, 1, 1, 1, 1, 11, [1, 1, 1, 1, 1, 1,,
-1, 1,1, 1,1, 1,1,1,3,1,1,1], [1, 1,1, 1,1, 1,1, 1, 1], [1, 1, 1,,
-1, 1, 1,131, [1, 1,1, 1,1, 3, 1,1, 1], [1, 1, 3], [1, 1, 1, 3, 1, 1, 1]1,,
-, 1,1,1,1,3,1,1,1, 1], 01,1, 1,1, 1, 1,1, 1], [1, 1, 1, 1, 1, 1,,
-1, 1], [, 1,1, 1,12,1,1, 1], [, 1, 1,1, 1,1, 1,1, 1], [1, 1, 1, 1
-1, 1, 11, 4, 1, 1, 1, 4, 1, 1, 13, [1, 1, 1, 21, 1, 1, 17, [1, 1, 1, 1, 1, 1,,

1, 1,1, 1, 1 1 i1, i, i 1, 1
1, 1, 1, 1 1 1 1

<1, 11, [1, 1, , 1, 11, [1, , 1,1, 1, 11, [1,
<1, 1, 11, [1, , 11, [1, 1, 1, 1, , 11, [1, 1, 1, 1, 1,
(1, 1, 1,1, 1,1, 1,1, 1], (1, 1, 1, 1, 1, 1, 17, [1, 1, 1, 1, 1, 1, 1, 1,,
1], [, 1, 1, 1, 1, 1, 1, 17, [1, 1, 1, 1, 1, 1, 1, 11, [2], 1]

col_colors = [[1, 1, 1, 1, 1, 11, [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1,,
o1, 1,1, 1,11, 01,1, 1,1, 1,1, 1,11, 01,1, 1,1, 1,1, 1, 1, 11, [1, 1,,
w1, 1, 1, 1, 11, [1, 1, 1, 1, 1, 1, 1, 1, 11, [1, 11, [2, 1, 1, 1, 1, 1, 1, 11,
o[, 1, 1, 1,1, 1,1, 1, 11, [1, 1, 1, 1, 1, 11, [1, 1, 1, 1, 1, 1, 1, 1, 1,,
1, 11, [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 1, 1, 1, 11, [1,_
-1, 1,1, 1,1, 11, [1, 3,1, 1, 1, 1, 11, [1, 3, 3, 1, 1, 1, 11, [1, 3, 1, 3,,
-1, 1, 1, 11, [1, 3, 1, 1, 1, 1, 1, 11, [1, 3, 1, 1, 1, 1, 1, 1, 11, [1, 1
11, 1, 1, 1,1, 1, 11, [, 1, 1, 1, 1, 1, 11, [t, 1, 1, 1, 11, [1, 1, 1, 1,,
-1, 1, 1,1, 2], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 13, [1, 1, 1,,
~1, 1, 11 1]

color_map = {1: "black", 2: "white", 3: "black"}

3 B B

N e

3

[EES

) 1:I_J

1.6 Solver

[1]: # TODO : implement your solver here

1.7 Visualize solution

[8]: | # Just call the function ‘draw_solution’, first arqgument s the matriz M, the,
—~second s the color map
draw_solution([[1,0,1,0,1,1,1],[1,1,0,0,1,0,1],[1,0,1,0,1,1,1], [0,0,0,0,0,0,0], [2,2,2,2,2,2,2]]
~{1: "black", 2: "red"})

	Nonogram Puzzle
	Input
	Goal
	Output
	Hints for an ILP modeling
	Instances
	Solver
	Visualize solution

