Masterclass

May 4, 2022

1 Masterclass on Combinatorial Optimization

Combinatorial Optimization course, FEE CTU in Prague. Created by Industrial Informatics Department.

In the first part of today's lab, we will explore vast possibilities offered by Gurobi solver, showing it is much more than an ILP solver. The second part will revisit some of the previously studied problems that we formalized using MILP. This time, we will apply Constraint Programming (CP) and evaluate which method is better for which type of the problem.
[1] :

```
# pip install -i https: // pypi.gurobi.com gurobipy
import gurobipy as g
import matplotlib.pyplot as plt
import numpy as np
import networkx as nx
import itertools as iter
import math
from collections import namedtuple
```


2 1) GUROBI Automated model tuning

Gurobi solver provides a wide variety of model parameters that can be tweaked to improve the solver's performance. While you can tinker with these yourself manually or by writing some sort of grid search, the Gurobi solver provides a way to tweak these parameters much more effortlessly. To demonstrate this, we will revisit the ILP model for Game of Fivers, which, as you might remember, took considerable time to solve for larger board sizes. We will use the auto-tuning tool to improve the solver's execution time (more information about it in video here). Let's start by the building of the model and executing it for some test instance:
[2]:

```
def game_of_fivers(n, params=None):
    m = g.Model()
    # "x" represent if the stone was selected to flip (we add extra border rows\sqcup
    \hookrightarrowand columns to avoid indexation problems when building constraint)
    x = m.addVars(n + 2, n + 2, vtype=g.GRB.BINARY, obj=1)
    # "k" is to help enforce oddness of the number of flips in the neighborhood
@f each stone -> thus ensuring that it is flipped to black side at the end
    k = m.addVars(range(1, n + 1), range(1, n + 1), vtype=g.GRB.INTEGER)
```

```
    # Ensure that every stone (except the ones in border rows and columns which\sqcup
\rightarrow w e r e ~ a r t i f i c i a l l y ~ a d d e d ) ~ w a s ~ f l i p p e d ~ o d d ~ n u m b e r ~ o f ~ t i m e s , ~ s o ~ i t ~ e n d s ~ u p ~ \sqcup ~
\hookrightarrowflipped to black
    for i in range(1, n + 1):
        for j in range(1, n + 1):
            m.addConstr(x[i, j] + x[i + 1, j] + x[i - 1, j] + x[i, j + 1] +b
u[i, j - 1] == 2* k[i, j] + 1)
    # Stones in bordering rows and columns can't be the ones being flipped
    m.addConstr(x.sum(0, "*") + x.sum(n + 1, "*") + x.sum("*", 0) + x.sum("*",\sqcup
\mapsto + 1) == 0)
    # We save the model for the current problem instance
    m.write('fivers_data/fivers_n{}.lp'.format(n))
    # If we have parameters, set them to the model
    if params is not None:
        for param, value in params.items():
            m.setParam(param, value)
        m.params.outputflag = 0 # disable the standard output of the solver
    m.optimize()
    X = [[int(round(x[i, j].X)) for j in range(1, n + 1)] for i in range(1, n +
4)]
    return m.runtime
```

[3] :

```
# Run with default parameters
def_time = game_of_fivers(21) # Save the execution time, so we can later_
    compare it with the tuned version
print('Time with default settings: {}s'.format(def_time))
```

Academic license - for non-commercial use only - expires 2022-09-01
Using license file /Users/novakan9/gurobi.lic
Gurobi Optimizer version 9.1 .2 build v9.1.2rc0 (mac64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads Optimize a model with 442 rows, 970 columns and 2734 nonzeros
Model fingerprint: Oxaa07108c
Variable types: 0 continuous, 970 integer (529 binary)
Coefficient statistics:

Matrix range	$[1 e+00,2 e+00]$
Objective range	$[1 e+00,1 e+00]$
Bounds range	$[1 e+00,1 e+00]$
RHS range	$[1 e+00,1 e+00]$

Presolve removed 1 rows and 96 columns
Presolve time: 0.01s

Presolved: 441 rows, 874 columns, 2533 nonzeros
Variable types: 0 continuous, 874 integer (518 binary)

Root relaxation: objective $9.585736 \mathrm{e}+01$, 1238 iterations, 0.07 seconds

Nodes	Current Node	Objective Bounds	Work	
Expl Unexpl	Obj Depth IntInf	Incumbent BestBd	Gap	It/Node Time

Cutting planes:
Cover: 5
MIR: 166
Flow cover: 22
Zero half: 183
RLT: 3

Explored 1393 nodes (171387 simplex iterations) in 16.80 seconds
Thread count was 12 (of 12 available processors)

Solution count 1: 245

Optimal solution found (tolerance 1.00e-04)
Best objective $2.450000000000 \mathrm{e}+02$, best bound $2.450000000000 \mathrm{e}+02$, gap 0.0000%
Time with default settings: 16.80030608177185 s
Now, let's try to tune parameters based on the saved model representing the instance from the previous execution.

```
# First, we load the model for the problem instance
model = g.read('fivers_data/fivers_n21.lp')
model.params.tuneResults = 1 # How many sets of parameters we want to return
    by the auto tuner
model.params.TuneTimeLimit = 30 # How much time to invest into the tuning
model.tune() # Run the tuning
if model.tuneResultCount > 0:
    model.getTuneResult(0) # Get the best (first) configuration
    model.write('fivers_data/fivers_tuned_params.prm') # Save it into the file
```

In the output above, you can see information about the tuning process, which parameters were tested, if some parameter improved solver's results, etc. Note that the tuning process tries different seeds for the solver to be more robust against randomness in the solving process. When the tuning is done, let us run the same problem instance with the best parameter set found in the tuning process. (Note that we hardcode found parameters based on a longer tuning search since it is possible that in a short time, you will not be able to find any better parameter settings):
[4]:

```
print('Time before tuning: {}s'.format(def_time))
print('Time after tuning: {}s'.format(game_of_fivers(21, {'CutPasses': 10,\sqcup
    ->'PreDual': 1, "Presolve": 2})))
```

Time before tuning: 16.80030608177185 s
Changed value of parameter CutPasses to 10
Prev: -1 Min: -1 Max: 2000000000 Default: -1
Changed value of parameter PreDual to 1
Prev: -1 Min: -1 Max: 2 Default: -1
Changed value of parameter Presolve to 2
Prev: -1 Min: -1 Max: 2 Default: -1
Time after tuning: 10.88615107536316s
We can see that we cut down the execution time roughly to half by using the tuned parameters. However, the parameters were tweaked for one particular instance of the problem, so if we wanted to achieve a general improvement to the model, it would be wise to try multiple instances and choose what would work generally.

3 2) GUROBI Nonlinear (general) constraints

So far, we have focused on modelling problems where constraints over variables always represented one fixed linear relation regardless of the variable's value ($\mathrm{x}<=10$ or $\mathrm{y}<=\mathrm{x}+10$). But imagine a case where we would need to change the function depending on the value of x . Of course, this could be achieved by using the big M trick, but it is not such a convenient and clean solution. Thus, let us consider the concept of the Piece-wise linear (PWL) function. As the name suggests, PWL allows us to change the form of the function/constraint depending on the value of variable x . Consider a simple problem where we are choosing how many products we will manufacture, but the price of the product is different based on how many of them we manufacture (wages, overtime, material discounts etc.):
[5]:

```
# We define lists containing steps (intervals) for number of products (x) and
    \hookrightarrowtheir respective price sum (y)
price_x = [0, 10, 20, 30, 40] # Minimum is O (thousands), maximum is 40\sqcup
    \hookrightarrow(thousands)
price_y = [0, 60, 100, 120, 150] # Making 10 (thousands) products cost 60\
    \hookrightarrow(thousands) units, 20 products }100\mathrm{ units and so on, each interval is
    \hookrightarrowlinearly interpolated
# Let's plot the function to see how it looks
plt.plot(price_x, price_y)
```

[5]: [<matplotlib.lines.Line2D at 0x1242b6e50>]

Imagine that when we produce too little, the non-scalable costs like rent payments for the factory space will make bigger portion of the overall cost making each product more expensive. On the
other hand, if we produce too much, we will have to pay overtime, making products also more costly. So the production cost function's overall shape changes depending on the produced volume, which is illustrated by the graph above.
[6]:

```
# Now let's build model maximizing the profit (while adding constraint for
    \hookrightarrowuying extra machines for increased volume)
m = g.Model()
x = m.addVar(vtype=g.GRB.CONTINUOUS, lb=0, ub=40) # Number of products
y = m.addVar(vtype=g.GRB.CONTINUOUS, lb=0, ub=150) # Cumulative price sum for
    \hookrightarrowpoduction
# The PWL constraint is defined by giving it the related variables and list of\sqcup
    \hookrightarrowintervals
m.addGenConstrPWL(x, y, price_x, price_y, "cost_constraint")
#For each 7 (thousand) products we need to buy extra machine to be able to\sqcup
    ->handle the manufacture process
machine_count = m.addVar(vtype=g.GRB.INTEGER)
m.addConstr(machine_count * 7 >= x)
# The selling price for each product is 10
m.setObjective(x * 10 - y - machine_count * 40, sense=g.GRB.MAXIMIZE)
m.optimize()
print(x.x, y.x)
```

Gurobi Optimizer version 9.1 .2 build v9.1.2rc0 (mac64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads Optimize a model with 1 rows, 3 columns and 2 nonzeros
Model fingerprint: 0x88382a9a
Model has 1 general constraint
Variable types: 2 continuous, 1 integer (0 binary)
Coefficient statistics:

Matrix range	$[1 e+00,7 e+00]$
Objective range	$[1 e+00,4 e+01]$
Bounds range	$[4 e+01,2 e+02]$
RHS range	$[0 e+00,0 e+00]$

Found heuristic solution: objective -0.0000000
Presolve added 3 rows and 5 columns
Presolve time: 0.00s
Presolved: 4 rows, 8 columns, 17 nonzeros
Presolved model has 1 SOS constraint(s)
Variable types: 7 continuous, 1 integer (0 binary)

Root relaxation: objective $2.142857 e+01$, 1 iterations, 0.00 seconds

Cutting planes:
MIR: 1

Explored 1 nodes (3 simplex iterations) in 0.02 seconds
Thread count was 12 (of 12 available processors)

Solution count 3: 1510 -0

Optimal solution found (tolerance $1.00 \mathrm{e}-04$)
Best objective $1.500000000000 \mathrm{e}+01$, best bound $1.500000000000 \mathrm{e}+01$, gap 0.0000% 35.000000000000014135 .00000000000006

We already know that Gurobi can handle more than just linear constraints (for example, quadratic constraints), but what if we want to formulate even more obscure-looking functions? Gurobi has us covered. Let us illustrate an example where the function is some combination of sine and cosine plus some linear element:
[7]:

```
n = 200
t = np.linspace(0, 20, n)
y = 3*np.sin(t) + np.cos(6* t) + 0.5* t + 3
# Plot the final function
plt.plot(t, y)
```

[7]: [<matplotlib.lines.Line2D at 0x1243f4250>]

[8]:

```
m = g.Model()
u = m.addVar(vtype=g.GRB.CONTINUOUS)
v = m.addVar(vtype=g.GRB.CONTINUOUS)
m.addGenConstrPWL(u, v, t, y) # Note that the intervals are sampled points in
    \hookrightarrow"t" and "y"
m.setObjective(v, sense=g.GRB.MINIMIZE)
m.optimize()
plt.plot(t, y)
plt.plot(u.x, v.x, marker='o', markersize=8, color="red")
```

Gurobi Optimizer version 9.1 .2 build v9.1.2rc0 (mac64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads Optimize a model with 0 rows, 2 columns and 0 nonzeros
Model fingerprint: 0x2d9d1a21
Model has 1 general constraint
Variable types: 2 continuous, 0 integer (0 binary)
Coefficient statistics:
Matrix range $\quad[0 e+00,0 e+00]$
Objective range $[1 e+00,1 e+00]$
Bounds range $\quad[0 e+00,0 e+00]$
RHS range $\quad[0 e+00,0 e+00]$
Presolve added 1 rows and 197 columns

Presolve time: 0.00s
Presolved: 1 rows, 199 columns, 199 nonzeros
Presolved model has 1 SOS constraint (s)
Variable types: 199 continuous, 0 integer (0 binary)

Root relaxation: objective $1.364267 \mathrm{e}+00$, 0 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

*	0	0	0	1.3642670	1.36427	0.00\%	-	Os

Explored 0 nodes (0 simplex iterations) in 0.01 seconds
Thread count was 12 (of 12 available processors)

Solution count 1: 1.36427

Optimal solution found (tolerance $1.00 \mathrm{e}-04$)
Best objective $1.364266996602 \mathrm{e}+00$, best bound $1.364266996602 \mathrm{e}+00$, gap 0.0000%
[8]: [<matplotlib.lines.Line2D at 0x12446e6d0>]

In fact there is a huge amount of non-linear functions you can optimize (denoted by "Gen" as general) and the full list can be found here. More general information about constraints is available here.

4 3) GUROBI Solution pool

When tackling a real-world problem, generally, we only care about finding a solution, in some cases requiring an optimal one regarding some objective. However, we usually don't care about suboptimal or other alternatives as long as the problem is solved. But what if you need to get alternative solutions to your problem because there are other preferences that cannot be easily embedded into the model, so you want to have the possibility to choose? Or what if the best solution can fail in real-life execution or become unavailable because of unforeseen events, so you want to have backup alternatives? We can use the Gurobi solution pool to get more solutions to the problem. We will demonstrate it on the shortest path problem using flows-like logic formulation since finding multiple best alternatives for the shortest path problem is something which is not implicitly provided by the shortest path algorithms we discussed.
[9] :

```
# Create random k-out-regular multidigraph representing some network of one-way\sqcup
    coads
dg = nx.DiGraph()
dg = nx.random_k_out_graph(40, 5, 0.4, seed=22) # 40 vertices
# Draw graph
pos = nx.spring_layout(dg)
nx.draw(dg, pos, node_color='k', node_size=3, edge_color='grey',\sqcup
    \hookrightarrowwith_labels=True)
```


[10]:

```
s = 28 # start
t = 4 # target
# Get edges and vertices
E = dg.edges()
E = dict.fromkeys(E)
V = dg.nodes()
np.random.seed(69)
w = np.random.randint(0, 50, len(E)) # weight for edges
m = g.Model()
x = m.addVars(E.keys(), vtype=g.GRB.BINARY, ub=1, obj=w) # Variables
    \hookrightarrowrepresenting the edges with their weight given by "w" array adding intoப
    ->objective
m.addConstr(g.quicksum([x[s, j] for k, j in E if k == s]) == 1) # Exactly onev
    \hookrightarrowedge going from start must be selected.
m.addConstr(g.quicksum([x[i, t] for i, k in E if k == t]) == 1) # Exactly one\sqcup
    \hookrightarrowedge going into target must be selected.
# For every vertex except start and target we want the number of selected
    \hookrightarrowoutgoing edges to be equal to incoming edges
for i in V:
        if i not in [s, t]:
            m.addConstr(g.quicksum([x[i, j] for k, j in E if k == i]) == g.
    Gquicksum([x[j, i] for j, k in E if k == i]))
m.setParam(g.GRB.Param.PoolSolutions, 3) # How many (best) solutions we want 
    \iotato find
m.setParam(g.GRB.Param.PoolSearchMode, 2) # This says that when optimum is\sqcup
    \hookrightarrowfound in the search tree, we will still keep looking for k-best solutions
m.optimize()
sols = [0] * m.solcount
colorlist = ['r', 'g', 'b']
print('Found {} solutions.'.format(m.solcount))
for sol_idx in range(m.solcount):
    print('Sol no. {}'.format(sol_idx + 1))
    sols[sol_idx] = []
    m.setParam(g.GRB.Param.SolutionNumber, sol_idx)
    for i, j in E:
        if x[i, j].xn > 0.5:
                print(i, j)
                sols[sol_idx] += [(i, j)]
```

```
# Draw graph and shortest paths
nx.draw(dg, pos, node_color='k', node_size=3, edge_color='grey',\sqcup
    \hookrightarrowwith_labels=True)
for k in range(m.solcount):
    nx.draw_networkx_edges(dg, pos, edgelist=sols[k], edge_color=colorlist[k],\sqcup
    \leftrightarrowsidth=3)
```

Changed value of parameter PoolSolutions to 3
Prev: 10 Min: 1 Max: 2000000000 Default: 10
Changed value of parameter PoolSearchMode to 2
Prev: 0 Min: 0 Max: 2 Default: 0
Gurobi Optimizer version 9.1 .2 build v9.1.2rc0 (mac64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 40 rows, 174 columns and 331 nonzeros
Model fingerprint: 0x0bb97d12
Variable types: 0 continuous, 174 integer (174 binary)
Coefficient statistics:
Matrix range $\quad[1 e+00,1 e+00]$
Objective range [1e+00, 5e+01]
Bounds range $\quad[1 e+00,1 e+00]$
RHS range $\quad[1 e+00,1 e+00]$
Found heuristic solution: objective 314.0000000
Presolve removed 17 rows and 73 columns
Presolve time: 0.00s
Presolved: 23 rows, 101 columns, 185 nonzeros
Variable types: 0 continuous, 101 integer (101 binary)
Found heuristic solution: objective 43.0000000

Root relaxation: objective $4.100000 \mathrm{e}+01$, 13 iterations, 0.00 seconds

Optimal solution found at node 0 - now completing solution pool...

Explored 80 nodes (76 simplex iterations) in 0.03 seconds
Thread count was 12 (of 12 available processors)

Solution count 3: 414242
No other solutions better than 42

Optimal solution found (tolerance $1.00 \mathrm{e}-04$)
Best objective $4.100000000000 \mathrm{e}+01$, best bound $4.100000000000 \mathrm{e}+01$, gap 0.0000%
Found 3 solutions.
Sol no. 1
1926
254
2632
2819
3225
Sol no. 2
932
199
254
2819
3225
Sol no. 3
920
199
2032
254
2819
3225

5 THEORETICAL INTERMEZZO - Introducing Constraint Programming

The CP is one of the alternatives to ILP in the sense that it provides a framework for solving NP problems. While the CP model excels at some problems (typically problems involving Cmax like objectives), it does perform poorly on more complex objectives like sums. Thus, it is usually a good idea to first consider the type of the problem before rushing into its formulation, and if scalability and speed are a goal, formulating the problem in multiple ways might also be a good idea.

For our purposes we will use CP Optimizer by IBM which is also free for academic purposes accessible here.

6 4) $1 \mid r$, đ|Cmax revisited - Different approaches to the same problem

When we started the semester, we formalized problem 1|r, $đ \mid C m a x ~(m i n i m i z i n g ~ t i m e ~ o f ~ o n e ~ m a-~$ chine executing tasks with release and deadline times) using MILP programming. We called it "Catering problem". However, we noticed that the scalability of the approach is not so good. Thus, recently you were asked to program Bratley's algorithm solving the same, dramatically improving the scalability but in exchange forcing you to write one purpose piece of code. But what happens when we apply CP? First let's initiate the problem:
[11]:

```
# Visualization
def plot_solution(s, p):
    """
    s: solution vector
    p: processing times
    """
    fig = plt.figure(figsize=(10, 2))
    ax = plt.gca()
    ax.set_xlabel('time')
    ax.grid(True)
    ax.set_yticks([2.5])
    ax.set_yticklabels(["oven"])
    eps = 0.25 # just to show spaces between the dishes
    ax.broken_barh([(s[i], p[i] - eps) for i in range(len(s))], (0, 5),
                facecolors=('tab:orange', 'tab:green', 'tab:red', 'tab:
↔blue', 'tab:gray'))
```

[12]:

```
# You can either load one of the provided instances
path = "./bratley_data/instances/test.txt"
with open(path, "r") as f_in:
    lines = f_in.readlines()
```

```
    n = int(lines[0].strip())
    r, d, p = [], [], []
    for i in range(n):
        (pi, ri, di) = list(map(int, lines[1 + i].split()))
        r.append(ri)
        p.append(pi)
        d.append(di)
print("r", r, "d", d, "p", p, sep="\n")
```

r
$[0,16,82,85,99,102,120,128,146,171,181,203,227,239,251,262,274$,
276, 277, 279, 306, 307, 323, 326, 327, 350, 364, 448, 457, 462, 488, 498, 532,
$568,581,588,589,600,602,632]$
d
[2892, $3397,5375,2624,4367,8087,2947,10234,1373,737,330,11679,4897$,
1400, 3918, 11945, 9839, 918, 2004, 1923, 4202, 6561, 2203, 4694, 3710, 11943,
$1474,472,855,3012,3656,4438,10359,1681,3114,12961,2734,720,11207$,
5065]
p
$[73,13,6,1,29,28,72,76,86,48,94,18,32,24,33,63,11,16,69,40$,
$38,20,45,78,61,30,80,16,57,50,2,32,97,86,27,35,76,51,66,54]$
[]:

```
# Or you can also use this data generator for more experimenting
if True:
    from numpy import random as rnd
    import numpy as np
    rnd.seed(15)
        n = 500
        p = [rnd.randint(1, 100) for i in range(n)]
        r = [0 for i in range(n)]
        for i in range(1, n):
            r[i] = int(round(r[i - 1] + rnd.exponential(0.5 * sum(p) / len(p))))
        d = [int(round(r[i] + p[i] + rnd.exponential(100* sum(p) / len(p)))) for i}\mp@subsup{i}{\sqcup}{
    ->in range(n)]
        print("r", r, "d", d, "p", p, sep="\n")
```


6.1 ILP model

Let's start with the ILP model. The model should be nothing new for you since you programmed it at the start of the semester. We will execute the model on the loaded instance and see how well it will do.
[]:

```
m = g.Model()
    # - add variables
    s = m.addVars(n, vtype=g.GRB.CONTINUOUS, lb=0)
x = {}
for i in range(n):
        for j in range(i + 1, n):
                x[i, j] = m.addVar(vtype=g.GRB.BINARY)
Cmax = m.addVar(vtype=g.GRB.CONTINUOUS, obj=1)
    # - add constraints
    for i in range(n):
        m.addConstr(s[i] + p[i] <= Cmax)
        m.addConstr(s[i] >= r[i])
        m.addConstr(s[i] + p[i] <= d[i])
M = max(d)
for i in range(n):
        for j in range(i + 1, n):
            m.addConstr(s[i] + p[i] <= s[j] + M * (1 - x[i, j]))
            m.addConstr(s[j] + p[j] <= s[i] + M * x[i, j])
m.params.TimeLimit = 15
    # call the solver -----------------------------------------------------
m.optimize()
print()
if m.SolCount > 0:
    starts = [s[i].X for i in range(n)]
else:
    print("No solution was found.")
print("Done")
```

[]: plot_solution(starts, p)

6.2 CP model

Now let's take a look at CP model. As we said above, in CP, we don't use only mathematical constraints. We also have a collection of expressions and constraints which we can use. In fact, using CP Optimizer, we could program our own constraints and expressions and use them as well, but this is far beyond the scope of this demonstration. Let's take a look at what we will use today: - Interval variable: An interval variable represents some task/activity spanning in the final solution. Its size is given by the instance description, while its start (and thus also end) in the solution is found by the CP solver. - Start_of predicate: This predicate points us to the point in the solution where the interval variable starts. Thus, using this predicate, we can, for example, enforce the
release time of the activity by setting the Start_of larger or equal to the given release time of the activity. - End_of predicate: Same as the predicate above but for the end of the activity in the solution. - Min/Max/Pow/Log...: In CP, often used mathematical functions are directly accessible, and we do not need to think about how to encode them in a different way. - Sequence_var: We can think of Sequence_var as a wrapper for interval variables saying that they are part of the same sequence of activities. Then we can apply constraints working with this wrapper. - No_overlap: If applied on Sequence_var, we enforce that all the tasks in the sequence must not overlap. Thus, we can think of it as creating a chain of activities on one machine.
[13]:

```
import docplex.cp.model as cp
from docplex.cp.model import CpoModel
# Create model
m = CpoModel()
# - add variables
tasks = [m.interval_var(name="task{:d}".format(i), optional=False, size=p[i])}
    \hookrightarrowfor i in range(n)]
seq = m.sequence_var(tasks, name='seq')
# - set objective
m.add(m.minimize(m.max([m.end_of(tasks[i]) for i in range(n)]))) # minimize\sqcup
    G_max
# - add constraints
for i in range(n):
    m.add(m.start_of(tasks[i]) >= r[i]) # release time
    m.add(m.end_of(tasks[i]) <= d[i]) # deadline
m.add(m.no_overlap(seq)) # one task executed at one time
# Solve the model
msol = m.solve(TimeLimit=10, LogVerbosity="Normal", LogPeriod=1, Workers=1)
# Print the solution
print()
if msol.is_solution():
    starts = [msol.get_value(tasks[i])[0] for i in range(n)]
    print(*starts, sep="\n")
else:
    print("No solution found.")
print("Done")
```

```
! ------------------------------------------------------ CP Optimizer 22.1.0.0 --
! Minimization problem - 41 variables, }81\mathrm{ constraints
! TimeLimit = 10
! Workers = 1
```


1841	299	18	1045	$=$ startOf (task34)
1841	300	17	1072	$=$ start0f(task38)
1841	301	16	1138	$=$ startOf (task23)

! Time $=0.03 \mathrm{~s}$, Average fail depth $=3$, Memory usage $=994.5 \mathrm{kB}$
! Current bound is 686 (gap is 62.74\%)

!	Best	Branches	Non-fixed		Branch decision
	1841	302	15		1216 = start0f(task7)
	1841	303	14		1292 = start0f(task30)
	1841	304	13		1294 = start0f(task12)
	1841	305	12		1326 = start0f(task20)
	1841	306	11		1364 = start0f(task24)
	1841	307	10		1425 = start0f(task15)
	1841	308	9		1488 = start0f(task18)
	1841	309	8		1557 = start0f(task25)
	1841	310	7		1587 = start0f(task14)
	1841	311	6		1620 = start0f(task21)
	1841	312	5		1640 = start0f(task5)
	1841	313	4		1668 = start0f(task11)
	1841	314	3		1686 = start0f(task31)
	1841	315	1		1718 = start0f(task22)
	1841	316	41	F	1763 = start0f(task36)
	1841	317	1	F	-
	1839	317	41		-
*	1839	317	0.03 s		(gap is 62.70\%)
	1839	318	40		$0=\operatorname{startOf}(\mathrm{task} 0)$
	1839	319	39		73 = start0f(task1)

! Time $=0.03 \mathrm{~s}$, Average fail depth $=5$, Memory usage $=1.0 \mathrm{MB}$
! Current bound is 686 (gap is 62.70\%)
! Best Branches Non-fixed

Best Branches	Non-fixed	
1839	320	38

$1839 \quad 321 \quad 39$
183932240
1839323

38
37
36
35
34
33
32
31
30
29
28
27
26
25
24

Branch decision

```
F 86 = startOf(task2)
```

F
$0=$ start0f(task0)
73 = start0f(task1)
$181=\operatorname{start0f}($ task10)
$448=$ start0f(task27)
$600=$ start0f(task37)
275 = start0f(task9)
$464=$ start0f(task28)
323 = start0f(task17)
$339=$ start0f(task8)
521 = start0f(task13)
651 = start0f(task26)
731 = start0f(task33)
$817=$ start0f(task32)
$914=$ start0f(task23)
$992=$ start0f(task7)
1068 = start0f(task36)
$1144=$ start0f(task6)

! Search speed (br. / s) : 36900.0

0
73
86
92
99
1640
128
1216
358
294
200
1668
1294
528
1587
1425
444
342
1488
970
1326
1620
1718
1138
1364
1557
552
455
471
823
1292
1686
873
683
1045
1010
1763
632
1072
769
Done
[14]: plot_solution(starts, p)

7 5) Travelling Salesman Problem revisited - Different approaches to the same problem 2

We showed that CP scales incredibly well in $1|\mathrm{r}, \mathrm{d}|$ Cmax problem, but it is a perfect problem for it. We can try to solve a problem that might be less suitable for it. We pick the Travelling Salesman Problem (TSP) as it was discussed in-depth in lectures. First let us build initial structure for the problem:
[18]:

```
Point = namedtuple("Point", ['x', 'y'])
def length(point1, point2):
    return int(round(math.sqrt((point1.x - point2.x) ** 2 + (point1.y - point2.
    \hookrightarrowy) ** 2))) # CP works with int only
class TSP:
    def __init__(self):
        D = None # distance matrix
        points = None # vertices
    def load_instance(self, path):
        input_data_file = open(path, 'r')
        input_data = ''.join(input_data_file.readlines())
        # parse the input
        lines = input_data.split('\n')
        nodeCount = int(lines[0])
        points = []
        for i in range(1, nodeCount + 1):
            parts = lines[i].split()
            points.append(Point(float(parts[0]), float(parts[1])))
        # distance matrix
```

```
    D = [[0 for _ in range(nodeCount + 1)] for _ in range(nodeCount + 1)] ப
\hookrightarrow# Add dummy vertex last
```

for i in range(nodeCount):
for j in range(nodeCount):
$\mathrm{D}[\mathrm{i}][\mathrm{j}]=$ length (points[i], points[j])
\# the last vertex is the same as the first one
for i in range(nodeCount):
$D[i][-1]=D[i][0]$
$\mathrm{D}[-1][\mathrm{i}]=\mathrm{D}[0][\mathrm{i}]$
self.D = D
self.points = points
return self
[19]:

```
instances = [
    {"inst": TSP().load_instance("./tsp_data/tsp_5_1"),
        "init": [0, 1, 2, 4, 3]},
    {"inst": TSP().load_instance("./tsp_data/tsp_51_1"),
        "init": [0, 5, 2, 28, 10, 9, 45, 3, 46, 8, 4, 35, 13, 7, 19, 40, 18, 11,\sqcup
42, 37, 20, 25, 1, 31, 22, 48, 32, 17, 49,
        39, 50, 38, 15, 44, 14, 16, 29, 43, 21, 30, 12, 23, 34, 24, 41,\sqcup
427, 36, 6, 26, 47, 33]},
    {"inst": TSP().load_instance("./tsp_data/tsp_70_1"),
            "init": [0, 35, 50, 11, 57, 2, 56, 27, 21, 49, 58, 53, 41, 36, 38, 52, 6,\sqcup
\hookrightarrow5, 7, 51, 55, 68, 46, 67, 24, 16, 44, 39,
                22, 1, 14, 15, 20, 29, 28, 45, 12, 31, 18, 26, 3, 59, 9, 25, 4,ь
\hookrightarrow10, 61, 43, 32, 8, 64, 54, 48, 62, 13, 19,
                60, 42, 37, 66, 40, 17, 30, 23, 69, 33, 65, 34, 47, 63]},
    {"inst": TSP().load_instance("./tsp_data/tsp_100_1"),
            "init": [0, 6, 69, 61, 76, 35, 84, 11, 9, 26, 72, 47, 40, 94, 81, 60, 64,\sqcup
๑66, 8, 23, 70, 59, 33, 67, 43, 37, 65,
                    71, 19, 15, 75, 14, 53, 46, 5, 29, 80, 38, 91, 57, 41, 50, 12,\sqcup
455, 98, 39, 24, 68, 2, 28, 73, 87, 48, 85,
                    21, 96, 42, 77, 16, 7, 10, 74, 30, 18, 17, 34, 22, 99, 93, 51, 3,ь
\hookrightarrow89, 13, 31, 44, 62, 25, 82, 86, 54, 1,
                    27, 45, 88, 79, 97, 49, 90, 20, 63, 52, 92, 95, 78, 83, 32, 4,\sqcup
456, 58, 36]},
    {"inst": TSP().load_instance("./tsp_data/tsp_200_1"),
            "init": [0, 103, 62, 192, 5, 48, 89, 148, 117, 9, 128, 83, 136, 23, 37,\sqcup
\hookrightarrow108, 177, 181, 98, 106, 35, 160, 125, 131,
                            123, 58, 73, 20, 145, 71, 111, 46, 97, 22, 114, 112, 178, 59, 61,\sqcup
↔163, 119, 154, 141, 34, 85, 26, 11, 19,
    146, 130, 166, 76, 164, 179, 60, 24, 80, 101, 134, 68, 167, 129,\sqcup
\hookrightarrow188, 158, 102, 172, 88, 168, 41, 30, 79,
```

```
    55, 199, 132, 144, 96, 180, 196, 3, 64, 65, 195, 25, 186, 151,\sqcup
\hookrightarrow110, 183, 147, 69, 21, 15, 87, 143, 162,
    93, 150, 115, 17, 78, 52, 165, 18, 191, 198, 118, 109, 74, 135,\sqcup
\hookrightarrow156, 173, 7, 113, 91, 159, 57, 176, 50,
    86, 56, 6, 8, 105, 153, 174, 82, 54, 107, 121, 33, 28, 45, 116,\sqcup
4124, 133, 189, 42, 2, 13, 197, 157, 40,
    70, 99, 187, 47, 127, 138, 137, 170, 29, 171, 182, 161, 84, 67,\sqcup
\hookrightarrow72, 122, 49, 43, 169, 175, 190, 193, 194,
    149, 38, 185, 95, 155, 51, 77, 104, 4, 142, 36, 32, 75, 12, 94,\sqcup
481, 1, 63, 39, 120, 53, 140, 66, 27, 92,
    126, 90, 44, 184, 31, 100, 152, 14, 16, 10, 139]}
```

]
[20]:

```
inst_id = 4 # Which instance to pick
inst = instances[inst_id]["inst"]
init_order = instances[inst_id]["init"]
```

[21]:

```
INITIALIZE = False # If we want to provide the "init" warm start to the Gurobi
```

\rightarrow solver

7.1 ILP model

This ILP formulation was discussed in the lectures, so it should not be completely new to you.
[22]:

```
nodeCount = len(inst.points)
points = inst.points
# Create model
m = g.Model("tsp")
# - add variables
x = m.addVars(nodeCount, nodeCount, vtype=g.GRB.BINARY, name="x")
u = m.addVars(nodeCount, vtype=g.GRB.INTEGER, lb=0, name="u")
# - set objective
obj = g.quicksum(g.quicksum(inst.D[i][j] * x[i, j] for j in range(nodeCount))
    for i in range(nodeCount))
m.setObjective(obj, g.GRB.MINIMIZE)
# - add constraints
m.addConstrs((1 == g.quicksum(x[i, j] for j in range(nodeCount)) for i in
    \hookrightarrowrange(nodeCount)))
m.addConstrs((1 == g.quicksum(x[j, i] for j in range(nodeCount)) for i in 
    ->range(nodeCount)))
for i in range(1, nodeCount):
    for j in range(1, nodeCount):
```

```
        m.addConstr(u[i] - u[j] + < <= nodeCount * (1 - x[i, j]))
# Initialization
if INITIALIZE:
    for i, order in enumerate(init_order):
        u[order].start = i
m.Params.TimeLimit = 10
m.optimize()
# Print the solution
print()
if m.SolCount > 0:
    obj = m.objVal
    print("Objective {}".format(obj))
    order = [u[i].X for i in range(nodeCount)]
    indices = range(nodeCount)
    s = sorted(zip(order, indices), key=lambda x: x[0])
    print([x[1] for x in s])
else:
    print("No solution was found.")
print("Done")
```

Changed value of parameter TimeLimit to 10.0
Prev: inf Min: 0.0 Max: inf Default: inf
Gurobi Optimizer version 9.1 .2 build v9.1.2rc0 (mac64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 40001 rows, 40200 columns and 198405 nonzeros
Model fingerprint: Oxceefc9da
Variable types: 0 continuous, 40200 integer (40000 binary)
Coefficient statistics:
Matrix range $\quad[1 e+00,2 e+02]$
Objective range [1e+01, 4e+03]
Bounds range $\quad[1 e+00,1 e+00]$
RHS range [1e+00, 2e+02]
Presolve removed 199 rows and 200 columns
Presolve time: 0.31s
Presolved: 39802 rows, 40000 columns, 197808 nonzeros
Variable types: 0 continuous, 40000 integer (39801 binary)

Deterministic concurrent LP optimizer: primal and dual simplex
Showing first log only...

Concurrent spin time: 0.00 s

Solved with dual simplex

7.2 CP model

We already explained most of the CP concepts used in the previous example. There are only two new constraints used, First and Last. These constraints ensure, that for a given sequence and interval_var, interval_var will be either the first one or the last one in the sequence. We use this to ensure that the travelling salesman starts and ends in the same city.
[23]:

```
import docplex.cp.model as cp
from docplex.cp.model import CpoModel
node_count = len(inst.points)
points = inst.points
# Create model
m = CpoModel()
# - add variables
cities = [m.interval_var(name="city{:d}".format(i), optional=False, size=1) for
->i}\mathrm{ in range(node_count + 1)]
seq = m.sequence_var(cities, name='seq', types=([i for i in range(node_count)]}
    ๑+ [0]))
# - set objective
m.add(m.minimize(m.max([m.end_of(cities[i]) for i in range(len(cities))]) -七
    \hookrightarrowlen(cities)))
# - add constraints
m.add(m.first(seq, cities[0])) # start from city 0
m.add(m.last(seq, cities[-1])) # repeat the same city last
```

```
m.add(m.no_overlap(seq, inst.D, True))
# Solve the model
msol = m.solve(TimeLimit=10, LogVerbosity="Terse", LogPeriod=1000, Workers=1)
# Print the solution
print()
if msol.is_solution():
    ovals = msol.get_objective_values()
    print("Objective {}".format(ovals[0]))
    starts = [msol.get_value(cities[i])[0] for i in range(len(cities) - 1)]
    indices = range(len(cities) - 1)
    s = sorted(zip(starts, indices), key=lambda x: x[0])
    print([x[1] for x in s])
else:
    print("No solution found.")
print("Done")
```


*	36243	34528	0.82s	(gap is 46.33\%)
*	36169	38446	0.93s	(gap is 46.22\%)
*	36128	40406	1.00 s	(gap is 46.16\%)
*	36093	40779	1.02s	(gap is 46.11\%)
*	36038	42294	1.12 s	(gap is 46.03\%)
*	35989	46657	1.21s	(gap is 45.95\%)
*	35976	46883	1.21s	(gap is 45.93\%)

! Time $=1.21 \mathrm{~s}$, Average fail depth $=140$, Memory usage $=3.8 \mathrm{MB}$
! Current bound is 19451 (gap is 45.93%)
! Best Branches Non-fixed Branch decision

* 3575347734 1.24s (gap is 45.60%)
* 3568649696 1.28s (gap is 45.49%)
* 3566052046 1.33s (gap is 45.45%)
* 3557554489 1.41s (gap is 45.32%)
* 3541355232 1.42s (gap is 45.07%)
* 3536756032 1.45s (gap is 45.00%)
* 3533459987 1.55s (gap is 44.95%)
* 3514863571 1.62s (gap is 44.66%)
* 3498266568 1.72s (gap is 44.40%)
* 3497567903 1.79s (gap is 44.39%)
* 3495375883 2.09s (gap is 44.35%)
* 3483276662 2.11s (gap is 44.16%)
* 3448878594 2.18s (gap is 43.60%)
* $34480 \quad 81746$ 2.27s (gap is 43.59%)
* 3435883524 2.34s (gap is 43.39%)
* 3432685762 2.41s (gap is 43.33%)
* 3428386776 2.50s (gap is 43.26%)
* $34150 \quad 91104$ 2.62s (gap is 43.04%)
* $34090 \quad 93490$ 2.72s (gap is 42.94\%)
* 3403593737 2.74s (gap is 42.85\%)
! Time $=2.74 \mathrm{~s}$, Average fail depth $=124$, Memory usage $=3.8 \mathrm{MB}$
! Current bound is 19451 (gap is 42.85\%)
! Best Branches Non-fixed Branch decision
* 3398195188 2.79s (gap is 42.76%)
* 33976 (gap is 42.75%)
* 33921 (gap is 42.66%)
* 33898 121k 3.06s (gap is 42.62%)
* 33506 122k 3.09s (gap is 41.95%)
* 33457 123k 3.13s (gap is 41.86%)
* 33280 (gap is 41.55%)
* 33147 124k 3.21s (gap is 41.32%)
* 33130 133k 3.66s (gap is 41.29%)
* 33104 136k 3.75s (gap is 41.24\%)
* 33028 139k 3.84s (gap is 41.11%)
* 32885 141k 3.90s (gap is 40.85%)
* 32850 141k 3.91s (gap is 40.79%)
* 32830 144k 4.03s (gap is 40.75\%)
* 32772 (gap is 40.65%)


```
! Search speed (br. / s) : 43815.0
Objective 31348
[0, 103, 62, 192, 5, 48, 89, 148, 117, 9, 128, 83, 136, 23, 37, 108, 177, 181,
106, 98, 125, 160, 35, 131, 123, 58, 73, 20, 145, 71, 111, 31, 184, 44, 97, 22,
114, 112, 178, 59, 61, 163, 119, 154, 141, 34, 85, 26, 11, 19, 146, 130, 166,
76, 164, 179, 60, 24, 80, 101, 134, 68, 167, 129, 158, 102, 172, 88, 168, 41,
30, 79, 55, 199, 132, 144, 96, 180, 196, 3, 64, 65, 195, 25, 186, 151, 110, 183,
147, 69, 21, 15, 87, 143, 162, 93, 150, 115, 17, 78, 52, 165, 18, 118, 198, 191,
109, 74, 135, 156, 173, 7, 113, 91, 159, 57, 176, 50, 86, 56, 6, 8, 105, 153,
174, 82, 54, 107, 121, 33, 28, 45, 2, 42, 116, 124, 189, 133, 157, 70, 40, 99,
197, 13, 187, 47, 127, 138, 137, 170, 29, 171, 182, 161, 84, 67, 72, 122, 43,
49, 190, 193, 194, 149, 38, 185, 95, 77, 155, 51, 104, 4, 142, 36, 32, 75, 12,
94, 81, 175, 169, 1, 63, 39, 120, 53, 188, 140, 66, 27, 92, 126, 90, 100, 152,
14, 16, 10, 139, 46]
Done
```


7.3 Comparison

Best objective found by ILP and CP model under 10s timelimit. (without initialization)

instance	ILP	CP
5	3	3
50	496	441
70	994	710
100	-	22247
200	-	31962

Interesting result. So isn't CP actually just superior to ILP? Well, no. In this case, even though TSP is technically a sum of the path travelled by the salesman, we managed to reformulate it as a Cmax problem. Also, the representation of the problem constraints is very natural in this case. However, remember that ILP has one more trick in its sleeve, lazy callbacks. If you ran the lazy constraints model instead, it would beat CP in this case.

8 6) CP Sudoku

Lastly, let's revisit the practical test assignment. While the MILP model was not so hard to formulate, it becomes a trivial problem to formulate using CP.
[24]:

```
def load_data(file_name):
    AB, numbers = {"A": [], "B": []}, {}
    for id_row, line in enumerate(open(file_name).readlines()):
        for id_column, char in enumerate(line):
            if char == "A" or char == "B":
                AB [char].append((id_row, id_column))
```

```
elif char.isdigit():
```

 numbers [(id_row, id_column)] = int(char)
 return $A B$, numbers

```
variant = "A"
size, rect_c = 9, 3
AB, numbers = load_data("sudoku_data/input_" + variant + ".txt")
# MODEL AND VARIABLES
model = cp.CpoModel()
cells = cp.integer_var_dict([(i, j) for i, j in iter.product(range(size),\sqcup
    \hookrightarrowrepeat=2)], min=0, max=size - 1)
# BASE SUDOKU CONSTRAINTS
model.add([cp.all_diff([cells[i, j] for j in range(size)]) for i in
    \hookrightarrowrange(size)]) # Rows
model.add([cp.all_diff([cells[j, i] for j in range(size)]) for i in
    \hookrightarrowrange(size)]) # Columns
model.add([cp.all_diff([cells[r_r * rect_c + i, r_c * rect_c + j] for i, j in
    \hookrightarrowiter.product(range(rect_c), repeat=2)])
    for r_r, r_c in iter.product(range(rect_c), repeat=2)]) # Rectangles
model.add([cells[pos] == val for pos, val in numbers.items()]) # Fixed numbers
# CONDITIONS A/B
for pos in AB["A"]: # Cond A - The sum of elements in 4-neighborhood of each
    (i,j) from A is an integer multiple of 3
        neighborhood = [e for e in [(pos[0] - 1, pos[1]), (pos[0] + 1, pos[1]),\sqcup
    \hookrightarrow(pos[0], pos[1] - 1), (pos[0], pos[1] + 1)]
                            if 0 <= e[0] < size and 0 <= e[1] < size]
    model.add(cp.sum([cells[neigh] for neigh in neighborhood]) % 3 == 0)
for pos in AB["B"]: # Cond B - The number in (i,j) <= to the min of numbers in
    \hookrightarrowits north, west and north-west positions
        neighborhood = [e for e in [(pos[0] - 1, pos[1]), (pos[0], pos[1] - 1),\sqcup
    \hookrightarrow(pos[0] - 1, pos[1] - 1)]
                if 0 <= e[0] < size and 0 <= e[1] < size]
        model.add(cells[pos] <= cp.min([cells[neigh] for neigh in neighborhood]))
# OBJECTIVES
if variant == "A":
    model.add(cp.minimize(cp.sum(cells[i, i] for i in range(size))))
elif variant == "B":
            model.add(cp.maximize(cp.sum([cells[0, 0], cells[0, size - 1], cells[size -
    \hookrightarrow1, 0], cells[size - 1, size - 1],
                                cells[int((size - 1) / 2), int((size - 1) /\sqcup
    42)]]))(
```

```
# OUTPUT
sol = model.solve().get_solution()
if sol is None:
    print("-1")
else:
    print(sol.objective_values[0])
    for row, column in iter.product(range(size), repeat=2):
        print(sol.get_var_solution(cells[row, column]).value, end="")
        print("", end="") if column != 8 else print("")
```


[]:

