Combinatorial Optimization Contest 2019: Steiner tree in disguise

Combinatorial Optimization Team

http://industrialinformatics.fel.cvut.cz/

May 21, 2019

- $\blacksquare Classical \mathcal{NP}-hard problem$
- Benchmark instances selected from http://steinlib.zib.de/steinlib.php
 - For many of them, optimality of the best-so-far solution has not been proved yet

Instances

Diversity:

- Instances with unit costs
- Instances with non-unit costs
- Polynomially solvable instances
- Difficult instances
- Special instances (grid graphs with rectangular holes)

Figure: Example of a special instance of the Steiner tree problem

Reference solution

Several simple algorithms implemented to set some reasonable thresholds. One example:

- **1** Preprocess the graph (prune non-terminals of degree 1)
- 2 Find a minimum spanning tree
- 3 While time remains, greedily improve the current solution:
 - Try to remove some non-terminal vertex from the current spanning tree and find a new minimum spanning tree using the original graph without the removed vertex

Other strategies can be used too, e.g., splitting the tree (removing some non-terminal vertices) and trying to connect it again *somehow*.

State-of-the-art

Instance	Complexity	State-of-the-art	Gramopav	Gap [%]
bipa2p	??	35326	36147	2.3
cc3-12u	??	185	187	1.1
cc7-3u	??	549	573	4.3
сс9-2р	??	17199	17465	1.5
hc9p	NP?	30242	30475	0.8
hc12u	??	2262	2352	4.0
msm0709	LP	884	884	0.0
msm2152	PS	1590	1590	0.0
msm4312	PS	2016	2016	0.0
w23c23	NP?	689	699	1.4

Table: Comparison of the state-of-the art solutions and student's solutions

Note: LP (solvable by local preprocessing), PS (solvable by polynomial algorithms), NP (no polynomial algorithm is currently known), ?? (currently not known).