
The Catering Problem

Motivation
A catering company to cook dishes, but has only one available oven. At most a single dish can
be inside the oven at one time.
Each dish has its earliest time when it can be put into the oven (since it needs to be prepared
before it is put into the oven), the latest time it should be taken from the oven (since the
customers do not want to wait too long), and the time it needs to stay in the oven . The goal is
to find the vector of times (denoting the times when each dish is put into the
oven) such that the finish time of the last dish is minimal.

Input
You are given the following:

• number of dished
• parameters , and for each dish

For the testing purposes, you can experiment with the following instance:

Output
You are expected to find the vector denoting the times when each dish
should be put into the oven.

The optimal solution vector for the given instance is .

Exercise
Your task is to formulate the ILP model of the catering problem, solve it, and extract the vector .
The example solution follows:

n

i ri

di

pi

s = (s0, … , sn−1)

n

ri di pi i

In [1]:
n = 5

params = {

0: {'r': 20, 'd': 45, 'p': 15},

1: {'r': 4, 'd': 30, 'p': 19},

2: {'r': 5, 'd': 80, 'p': 20},

3: {'r': 17, 'd': 70, 'p': 8},

4: {'r': 27, 'd': 66, 'p': 7}

}

Note: parameter d_1 can be obtained by params[1]["d"]

s = (s0, … , sn−1)

s = (23, 4, 53, 38, 46)

s

Catering http://localhost:8888/nbconvert/html/lab_03/Catering.ipynb?download=false

1 of 3 3/6/2023, 6:09 PM

Hint: to ensure that any two dishes and are not overlapping in the oven, you need to ensure
that one of the following constraints holds: or . This might be perhaps

done using big-M...

Set parameter Username
Academic license - for non-commercial use only - expires 2024-02-16
Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (win64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 0 rows, 0 columns and 0 nonzeros
Model fingerprint: 0xf9715da1
Coefficient statistics:
 Matrix range [0e+00, 0e+00]
 Objective range [0e+00, 0e+00]
 Bounds range [0e+00, 0e+00]
 RHS range [0e+00, 0e+00]
Presolve time: 0.00s
Presolve: All rows and columns removed
Iteration Objective Primal Inf. Dual Inf. Time
 0 0.0000000e+00 0.000000e+00 0.000000e+00 0s

Solved in 0 iterations and 0.01 seconds (0.00 work units)
Optimal objective 0.000000000e+00

SOLUTION:

Solution visualization

i j

si + pi ≤ sj sj + pj ≤ si

In [2]:
import gurobipy as grb # import Gurobi module

model ---

model = grb.Model()

- ADD VARIABLES

TODO

- ADD CONSTRAINTS

TODO

- SET OBJECTIVE

TODO

call the solver ---

model.optimize()

print the solution --

print('\nSOLUTION:')

TODO

Catering http://localhost:8888/nbconvert/html/lab_03/Catering.ipynb?download=false

2 of 3 3/6/2023, 6:09 PM

In [3]:
import matplotlib.pyplot as plt

def plot_solution(s, p):

"""

 s: solution vector

 p: processing times

 """

fig = plt.figure(figsize=(10,2))

ax = plt.gca()

ax.set_xlabel('time')

ax.grid(True)

ax.set_yticks([2.5])

ax.set_yticklabels(["oven"])

eps = 0.25 # just to show spaces between the dishes

ax.broken_barh([(s[i], p[i]-eps) for i in range(len(s))], (0, 5),

facecolors=('tab:orange', 'tab:green', 'tab:red', 'tab:blue', 'tab:gray'

TODO: plot your solution

plot_solution([23.0, 4.0, 53.0, 38.0, 46.0], [params[i]["p"] for i in range(n)])

In []:

Catering http://localhost:8888/nbconvert/html/lab_03/Catering.ipynb?download=false

3 of 3 3/6/2023, 6:09 PM

