
Combinatorial Optimization

Lab No. 8

Scheduling and Bratley’s algorithm

Industrial Informatics Research Center
http://industrialinformatics.cz/

May 6, 2019

Abstract

The topic of this seminar is scheduling of tasks on resources. We focus on 1|rj , d̃j |Cmax

problem, which will be solved by Bratley’s algorithm.

1 Scheduling

Scheduling, generally speaking, deals with assigning tasks to resources in time. Let’s have a set of
tasks T , a set of resources (processors) on which these tasks can be executed, a set of constraints
and an optimality criterion. Each task, typically denoted as Ti, is characterized by processing time
pi which is the time needed by a resource to process it. Moreover, task Ti can be specified by the
following parameters:

• release time ri, the time at which task Ti is ready for processing

• due date di, a time limit by which task Ti should be completed

• deadline d̃i, a time limit by which task Ti must be completed

α|β|γ notation, so called Graham-Blazewicz, is commonly used to describe the scheduling problems
[1, 2]:

• α contains the characteristics of resources: the number (1 to ∞) and type (P for parallel
identical, Q for parallel uniform, etc.)

• β specifies the characteristics of tasks and additional resources (rj means that each task has
release time, pmtn means that preemption is allowed, etc.)

• γ denotes an optimality criterion (Cmax for minimizing the schedule length, Lmax for min-
imizing the max. lateness,

∑
Uj for minimizing the number of tasks exceeding their due

date, etc.)

For example, P2||Cmax is a formal notation of the scheduling problem where two parallel identical
processors are available and objective is to minimize the schedule length (even this “simple”
problem is NP-hard). The output of the scheduling is an assignment of tasks to resources in time
and it is mostly depicted as a Gantt chart [1] where an independent variable is a discrete time
(x-axis) and dependent variable is utilization of resources/processors (y-axis).

1

http://industrialinformatics.cz/

2 Branch and Bound algorithm

The Branch and Bound (B&B) algorithm is used to solve discrete optimization problems [1]. This
algorithm gradually constructs a tree of partial solutions which are expanded further (branch). If
B&B finds an infeasible partial solution or a partial solution such that it is worse than the best
found solution, the node with this partial solution is not expanded (bound). Each node of the
search tree corresponds to one partial solution and the leaves represent a complete solution. The
subtree can be eliminated if:

1. It does not contain any feasible solution.

2. It does not contain an optimal solution.

Basically, the first case implies the second case. However, it can be appropriate to consider them
separately for the algorithm construction.

Generally there are two main methods of the solution space searching: breadth-first search
and depth-first search. In our case, i.e., the application of the Branch and Bound algorithm in the
scheduling, it is advantageous to use the depth-first search since each obtained feasible solution
increases the probability of eliminating other parts of the tree without their complete search.

3 The Bratley’s algorithm

An example of the use of the Branch and Bound algorithm in the scheduling is a problem formally
denoted as 1|rj , d̃j |Cmax. It is scheduling on a single processor where each task has a specified
release time and deadline, i.e., a time window in which the task has to be processed. The objective
is to minimize the schedule length. This problem also belongs to the NP-hard problems, so unless
P = NP there is no hope of finding deterministic exact algorithm that runs in polynomial time.
The problem can be solved, for example, by Bratley’s algorithm [1] which is based on the branch
and bound algorithm. The goal is to search the solution space in the form of a tree where each end
node (leaf) represents one solution of the problem. Other nodes are partial solutions consisting of
some tasks which are ordered. A node can be pruned on conditions that:

1. Some tasks exceed their deadline

Let’s have node N . If there is no option to add arbitrary task at node N without exceeding
its deadline, then the partial schedule will never result in the feasible solution. Therefore,
all descendant nodes of node N can be eliminated. This follows from the fact that if any of
these tasks exceeds its deadline at node N , it will certainly exceed its deadline if scheduled
later.

2. The estimate of the result of the best possible solution in the subtree is worse
than the best achieved result so far

Let UB be the makespan of the best achieved complete solution so far. At each node, the
estimate of the best possible final solution (lower bound) based on the current partial solution
can be determined as

LB = max

{
c, min

Tj∈V
rj

}
+
∑
Tj∈V

pj (1)

where c is the current schedule length (i.e., the completion time of the last scheduled task)
and V is the set of tasks being not scheduled yet. If LB ≥ UB than the particular part of
the tree can be eliminated because the further branching of the current node cannot find the
optimal solution.

3. A partial solution is optimal

If the following condition
c ≤ min

Tj∈V
rj (2)

2

is satisfied in node N , then the partial schedule is optimal and only the current node is
expanded further. Node N becomes a root node of the whole search tree since going back
in the original tree of partial solutions cannot return a better schedule.

An input example of the problem 1|rj , d̃j |Cmax is on the left side in Figure 1. It is a problem
with four tasks having their own processing time, release time and deadline. The problem is solved
by Bratley’s algorithm based on the branch and bound algorithm. The final solution in the form
of a Gantt chart is on the right side in Figure 1.

Input:
p = (2, 1, 2, 2)
r = (4, 1, 1, 0)
d̃ = (7, 5, 6, 4)

0 1 2 3 4 5 6 7 8

Processor 1

t

T
1

T
2

T
4

T
3

Figure 1: An example of the problem 1|rj , d̃j |Cmax and its optimal solution

A homework assignment: Implement Bratley’s algorithm. Upload your source codes to
the Upload System.

Hint: To pass the evaluation successfully, you need to implement all three elimination rules,
as given above. Otherwise, the running time of your algorithm will be damn too high!

3.1 Input/Output format

Your program will be called with two arguments: the first one is absolute path to input file and
the second one is the absolute path to output file which has to be created by your program.

Let n be the number of tasks. Then the input file has n+ 1 lines and has the following form

n

p1 r1 d̃1
p2 r2 d̃2
...

pn rn d̃n

One space is used as a separator between values on one line. All the values in the input file
are non-negative integers.

If the input instance is infeasible, then the output file consists of the single line containing −1.
On the other hand, if the input instance is feasible, then the output file consists of n lines and has
the following form

s1
s2
...
sn

where si is the optimal start time of task Ti. All the values in the output file are integers.

3

Example 1

Input:

4

2 4 7

1 1 5

2 1 6

2 0 4

Output:

5

2

3

0

Example 2

Input:

3

2 4 7

1 1 2

2 1 2

Output:

-1

References

[1] J. Blazewicz, Scheduling Computer and Manufacturing Processes. Springer, second ed., 2001.

[2] R. Graham, E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Optimization and ap-
proximation in deterministic sequencing and scheduling theory: a survey,” Annals of Discrete
Mathematics, vol. 5, pp. 287–326, 1979.

4

	Scheduling
	Branch and Bound algorithm
	The Bratley's algorithm
	Input/Output format

