
Combinatorial Optimization

Dynamic programming

Industrial Informatics Department
Czech Technical University in Prague

https://industrialinformatics.fel.cvut.cz/

April 22, 2024

Overview of the tutorial

• Introduction to Dynamic Programming (10 minutes)

• Exercise: Coin-exchange problem (30 minutes)

• Exercise: Optimal coin system (20 minutes)

Part 1: Revision

Dynamic programming (DP) is a solution method for solving complex problems by breaking them into
a collection of simpler subproblems, solving them once and storing their solutions. If the subproblems
are nested recursively inside a larger problem, dynamic programming is applicable.

Very simple example: Imagine that you want to sum the squares of all numbers between 1 and n,

i.e., f(n) =
n∑

i=1

i2. If you spent some effort and calculated the resulting number f(k) for some input k

(e.g., f(9) = 285), then it should be simple to calculate the result of f(k + 1). You could simply say it
was f(k) (that you already knew) plus (k + 1)2 → f(10) = 285 + 102 = 385. You memorized the result
of simpler problem and solved the the original problem for f(k + 1) by using a simple decomposition.
That is the very basic principle of dynamic programming.

More formally: Typically, the problem is represented by a recursive function

f(n) = g(f(0), f(1), . . . , f(n− 1)), (1)

where f is the problem we want to solve, n is the size of the problem, and g is some aggregate
function.

Cliché example: Sometimes, the situation is not as simple as for the first example, where the value
of f(n) depended only on f(n− 1) and n itself. Remember the Fibonacci’s sequence:

f(n) =

0, if n = 0,

1, if n = 1,

f(n− 1) + f(n− 2), if n > 1.

(2)

You see that the subproblems repeat.

f(n) = f(n− 1)︸ ︷︷ ︸
f(n−2)+f(n−3)

+ f(n− 2).

1

https://industrialinformatics.fel.cvut.cz/

Exercise: Coin-exchange problem

Motivation: We have a vending machine with unlimited supply of coins of denominations
D = {d1, d2, . . . , dn} and we want to make change for value V , i.e., we want to get the value V using
only the denominations in D. Note that for some instances of the problem, the solution might not exist,
e.g., denominations 5 and 10 can make change for 35, but not for 12.

For now, we solve the decision variant of the problem. Later on, we will complicate the formulation
a little bit.

Exercise: Try to formulate and solve the decision variant of coin-exchange problem using DP. You are
given the value V – the task is to decide whether the value V can be composed by the denominations
from D only.

How to solve it in general? We can define function

f : {0, . . . , n} × {0, . . . , V } → {0, 1}

with meaning ‘f(i, v) = 1 iff it is possible to change value v by coins with denominations (d1, . . . , di)’.
Then we can write the recursive formula

f(i, v) = f(i− 1, v)︸ ︷︷ ︸
done by di,...,di−1

OR f(i, v − di)︸ ︷︷ ︸
done using di

. (3)

The initialization is done as follows

f(0, v) = 0, ∀v ∈ {1, . . . , V }, (4)

f(i, 0) = 1, ∀i ∈ {0, . . . , n}, (5)

f(0, 0) = 1. (6)

Then, we simply fill the table – left to right, top to bottom (i.e., we calculate the values of f(i, v)
using formula (3)). One can see, that the complexity is O(|D| · V), which is pseudopolynomial. The
solution can be read from the bottom-right cell. If we wanted to see, which coins contributed to the
solution, we could remember the back-links.

Example: Let D = {2, 3, 5} and V = 9.

v

di
0 1 2 3 4 5 6 7 8 9

0

2

3

5

i = 0

i = 1

i = 2

i = 3

1

1

1

1

0 0 0 0 0 0 0 0 0 init

0 1 0 1 0 1 0 1 0

0 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1

Figure 1: Unlimited coins exchange (many lines are missing for better readability)

We see that value V = 9 can be composed from denominations {2, 3, 5}, e.g., by 2 + 2 + 2 + 3 (as
shown by red lines).

2

Optimization version: Let’s slightly change the problem. Now, we would like to know, what is the
minimal number of coins, which sum up to V (∞ if there is no solution).

Exercise: Try to solve the optimization version of coin-exchange problem by DP.

Solution: We need to change our function. Now, we have

f(i, v) = min{f(i− 1, v), 1 + f(i, v − di)}, (7)

where f(i, v) gives the minimal number of coins that sum up to v using only values {d1, . . . , di}.
Initialization is also slightly different:

f(0, v) = ∞, ∀v ∈ {1, . . . , V }, (8)

f(i, 0) = 0, ∀i ∈ {0, . . . , n}, (9)

f(0, 0) = 0. (10)

Continuing with the previous example: D = {2, 3, 5} and V = 9. We, again, fill the table. Finally,
we see that 9 can be obtained from 3 + 3 + 3 (using only 3 coins) – this solution is shown by read lines
in the following figure. Alternatively, we could also get the solution 5 + 2 + 2, which is also optimal.

v

di
0 1 2 3 4 5 6 7 8 9

0

2

3

5

i = 0

i = 1

i = 2

i = 3

0

0

0

0

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ init

∞ 1 ∞ 2 ∞ 3 ∞ 4 ∞

∞ 1 1 2 2 2 3 3 3

∞ 1 1 2 1 2 2 2 3
+1+1+1

Figure 2: Optimal version of coin exchange problem (many lines are missing for better readability)

Question – each coin only once: What would change, if each denomination should be used only
once?

For decision problem, we would need to redefine function f :

f(i, v) = f(i− 1, v) OR f(i− 1, v − di). (11)

Question – limited number of coins: What would change, if the number of coins was limited? Let
us assume, that we have maximally ui coins of denomination di.

We could simply change D to

D = {d1, d1, . . . , d1︸ ︷︷ ︸
u1 times

, d2, . . . , d2︸ ︷︷ ︸
u2 times

, . . . , dn}, (12)

then we can solve the decision problem with maximally one coin per denomination.
For example, for D = {5, 2}, u1 = 3, u2 = 2, we would construct new D̃ = {5, 5, 5, 2, 2} and solve the

problem with function (11).

3

Exercise: Optimal coin system

A dictator made a revolution in some country. He wants to optimize his country and so he remakes
everything from scratch. This time, he is concerned with the old coin system. He decided that new
coins and banknotes will be distributed. Their denominations will be such that the number of exchanged
pieces will be minimized for some often used values.

Advisers found a set of often used values V . It was decided, that number of banknotes and coins will
be at most u. We want to find a system D, |D| < u, of coins and banknotes such that

q(D) =
∑
v∈V

min

{
|S|

∣∣∣∣∣ ∀si ∈ S : si ∈ D,
∑
i∈S

i = v

}
(13)

is minimized. Formally,

min
D

q(D) (14)

such that |D| ≤ k. (15)

Exercise: Let u = 3 and V = {1, 2, . . . , 100}.
Now, try to find a system of new banknotes and coins D, such that is contains at most 3 coins or

banknotes, and all the values in V can be composed by system D efficiently (i.e., if you composed all
values in V by denominations in D, you would have the minimal number of coins and banknotes). Write
the DP and solve the problem.

Note that system D = {1} is feasible, but surely not optimal. Value 1 can be composed by 1 coin,
value 2 by 2 coins, etc. Finally, value 100 can be composed by 100 coins. It is easy to verify that the
sum of all coins needed to represent values in V is q({1}) = 5050 ((100 + 1) · 100/2). Can you find some
better system? Before solving the problem, try to guess the optimal system. The solution is shown on
the following page.

4

Solution: The optimal solution is D = {1, 12, 19} with objective value 521.

Some other systems (sorted by their evaluations):

System Evaluation

(1, 12, 19) 521

(1, 7, 23) 522

(1, 8, 19) 525

(1, 9, 22) 526

(1, 13, 18) 526

...

(1, 98) 4759

(1, 99, 100) 4853

(1, 99) 4854

(1, 100) 4951

(1,) 5050

Summary

You should understand the concept of dynamic programming, and you should be able to solve some
simple examples, such as small instances of knapsack, by hand. Also, you should be able to write the
code to solve some bigger instances automatically (try. e.g., the optimal coin system problem).

5

