Combinatorial Optimization
 Lab No. 5
 Applications of the Shortest Path Problem
 Industrial Informatics Research Center
 http://industrialinformatics.fel.cvut.cz/

March 19, 2019

Abstract

In this lab, we present an interesting application of shortest paths and we remind ourselves, that SPT problem is generally $\mathcal{N} \mathcal{P}$-hard.

1 Shortest paths with negative cycles

In this example, we demonstrate that Bellman-Ford's algorithm fails to produce correct answer on the following instance, wheres an ILP formulation of SPT yields correct solution.

Figure 1: A graph with a negative cycle.

2 Approximation of piecewise-linear functions

Approximation of piecewise linear functions is lesser-known, however quite an interesting application of the shortest path problem [1]. As an input a set of n points is given, i.e. $\left\{\left(x_{i}, f\left(x_{i}\right)\right)\right\}$.

```
x = [ 0, 1.26, 2.51, 3.77, 5.03, 6.28]
f = [0.01, 1.16, 0.7, -0.34, 
```

The goal is to select the smallest possible number of points on condition that approximation error is reasonable (see Figure 2).

Figure 2: The input function (blue) and the approximated function (red).

This problem can be solved using the shortest path problem applied to graph G where each node v_{i} corresponds to a data point $\left(x_{i}, f\left(x_{i}\right)\right)$ and each edge $e=(i, j)$ (such that $i<j$) has weight $c_{i, j}$ which corresponds to a penalty if the part of the function from $\left(x_{i}, f\left(x_{i}\right)\right)$ to $\left(x_{j}, f\left(x_{j}\right)\right)$ is approximated by a line segment. The penalty consists of the approximation error (weighted by β) and the number of required samples (the 1 term). An example of such graph can be seen in Figure 2 and penalty $c_{i, j}$ is calculated as follows.

$$
\begin{equation*}
c_{i, j}=1+\beta\left[\sum_{k=i}^{j}\left(f\left(x_{k}\right)-f^{\prime}\left(x_{k}, x_{i}, x_{j}\right)\right)^{2}\right] \tag{1}
\end{equation*}
$$

$f^{\prime}\left(x_{k}\right)$ is a precomputed value of the approximating function.

$$
\begin{equation*}
f^{\prime}\left(x, x_{i}, x_{j}\right)=f\left(x_{i}\right)+\left(x-x_{i}\right) \cdot \frac{f\left(x_{j}\right)-f\left(x_{i}\right)}{x_{j}-x_{i}} \tag{2}
\end{equation*}
$$

In a similar way the shortest path problem can be applied to some vector pictures which are composed of points $\left(x_{i}, y_{i}\right)$. The difference is that weights $c_{i, j}$ are computed as a sum of squared distances from points $\left(x_{k}, y_{k}\right)$ to the line segment defined by $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ points where $i<k<j$.

$$
\begin{equation*}
c_{i, j}=1+\beta\left[\sum_{k=i}^{j} \frac{\left|\left(y_{j}-y_{i}\right) x_{k}-\left(x_{j}-x_{i}\right) y_{k}+x_{j} y_{i}-y_{j} x_{i}\right|^{2}}{\left(y_{j}-y_{i}\right)^{2}+\left(x_{j}-x_{i}\right)^{2}}\right] \tag{3}
\end{equation*}
$$

An example of two-dimensional approximation, where the frontiers of the Czech Republic are input data, is depicted in Figure 3.

Figure 3: Entered points (blue) and selected points (red).

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications. Prentice Hall; United States Ed edition, 1993.

