
B3M33HRO HW3
Grasping

1 Introduction
You are provided with point clouds from noisy real depth cameras. The individual point clouds are different
views on an object on a table. Your task is to combine them to get a full view of a scene and use it to get grasp
from two pipelines: GraspIt! and GPD. Examples of grasps can be seen in Figure 1.

(a) Example grasp from GraspIt! (b) Example grasp from GPD.

Figure 1: Examples of grasps.

2 Assignment
• Download the assignment from the course website.

• The first part of the assignment is a python script that will allow you to read, manipulate, and process
point clouds. You are give three point clouds of the same object.

• Combine the provided point clouds in one. You can process them as you want and as needed—downsampling,
removing outliers, cropping with a bounding box.

– Set limits for the z-axis for the bounding box of the workspace. Different values may be needed for
GraspIt! and for GPD.

– The processed point cloud should have the right number of points to balance betwen too much data
and not enough data.,and should not contain unnecessary holes.

– Decide whether to use the processing on the final point cloud, or on individual samples.
– See Open3D Point Cloud Class and Open3D Point Cloud Tutorial.

• Prepare point cloud for GPD.

– This point cloud must have “a table” under the object.
– It is better to translate it into (0,0,0) otherwise you will have to zoom out in the GPD output.
– save the point cloud as a .pcd file.

• Prepare point cloud for GraspIt!. It must contain only the object, without the table.

1

http://graspit-simulator.github.io
https://github.com/atenpas/gpd
https://cw.fel.cvut.cz/b232/courses/hro/tutorials/hw/hw3
http://www.open3d.org/docs/release/python_api/open3d.geometry.PointCloud.html
http://www.open3d.org/docs/latest/tutorial/Basic/pointcloud.html


• Create a mesh from the point cloud, translate it to position (0,0,0), and save it to file.

– Select the appropriate method that will work in GraspIt!
– See Surface Reconstruction Tutorial and Open3D Triangle Mesh Class.
– Note: The item in the point cloud is an opened box, i.e., it is concave and has a hollow part.

However, it is hard to obtain a concave mesh for this point cloud, so it is fine if your mesh looks like
a closed box.

• Complete the code. Please, pay attention to code quality and performance.

• The second part of the assignment will take place on GitPod.

– Create an account (you can log in with GitHub).
– Create a workspace by clicking here.
– Upload your .pcd and .ply files, and the Jupyter notebook for part 2, inside the B3M33HRO-gitpod

folder. These files should be available in the environment in the /workspace folder. Alternatively
you can email them to yourself and download them inside the environment.

– Run the Jupyter notebook. You might have to run it with the --allow-root option.

• Open the GraspIt interface and:

– Clear the World;
– Import Barrett as a robot;
– Import your mesh as a graspable body;
– See GraspIt! commander API.
– Note: if you see only black/grey after you load the robot and the body, zoom-out in the GraspIt

GUI.

• Run the Eigengrasp planner and sort the grasp by ϵ-quality.

– ϵ-quality: the closer to 1, the better. Note: if you close the GraspIt interface, you will probably
need to restart the kernel in the notebook before you run it again.

• Check if the grasp looks like you would assume and take a picture of it.

• Run the GPD and take a picture of the output.

– Make it run as fast as possible.
∗ The run-time can vary on different computers, but if the GPD runs for more than 5 seconds, it

is too much even on a slow computer.
∗ Right processing of the point cloud can help you to reduce time, or you can play with the values

in eigen_params.cfg (in Docker located in /home/docker/gpd/cfg/eigen_params.cfg.

3 Points
• Correct GraspIt! output - 3 points

– Screenshot of the grasp
– Correct code

• Correct GPD output - 2 points

– Screenshot of the grasp
– Correct code

2

http://www.open3d.org/docs/latest/tutorial/Advanced/surface_reconstruction.html
http://www.open3d.org/docs/release/python_api/open3d.geometry.TriangleMesh.html
https://gitpod.io/workspaces
https://gitpod.io/#github.com/rustlluk/B3M33HRO-gitpod
https://github.com/graspit-simulator/graspit_commander/blob/master/src/graspit_commander/graspit_commander.py

	1 Introduction
	2 Assignment
	3 Points

