

Basics of Practical Grasping

Shubhan P. Patni, Lukas Rustler, Matej Hoffmann

Humanoids and Cognitive Robotics Lab Department of Cybernetics, FEE, CTU

Why Grasping?

Object Exploration

Object Manipulation

Friction Cones

Do it Yourself!

Simplest case: Just one contact force

 $\theta = \tan^{-1} \mu$

In this case, the cone width does not depend on the value of force!!

Interaction at each Contact Point

Adding external forces that may disturb equilibrium

Grasping Spaces

Cartesian Space

Grasping Space

Wrench Space

- Set of forces that the gripper can resist.
- Plotted in Grasp Space coordinates
- Dependent on the gripper force as well as the surface friction

Computing Grasp Quality

- Multiple Contact points oriented on the object.
- The individual spaces are combined with a polygonal boundary.
- Radius of the largest circle which fits within this polygon with the origin as its centre

Complexity of Grasping

- In reality 3D objects, 6D grasp spaces, difficult to obtain equations, visualize
- Object shapes add constraints to possible grasp configurations
- Deformable objects cannot be modeled as point contacts

Thank You! Any Questions?