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Manipulation

e “Prehensile manipulation” - grasping. (CZ: prehensile ~ “chapavy”)
e “Nonprehensile manipulation” - everything else you can do with your hands

(manus in latin)
pushing
rolling
throwing
catching
tapping

etc.
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Grand Challenge: “The ability to grasp
arbitrary objects...would

have significant impact in
factories, warehouses,

and homes.”
ROD BROOKS, FEBRUARY 2017

Slide taken from Ken Goldberg - The New Wave in Robot Grasping: https://youtu.be/ATDrSWZXuwk
© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024



https://youtu.be/ATDrSWZXuwk

Universal picking challenge

e g

Universal
Picking:

diversely
shaped
and sized
objects

Pictures from Ken Goldberg - The New Wave in Robot Grasping: https://youtu.be/ATDrSWZXuwk
© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024
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Contact joints

FIGURE 2.11 Closed loops are formed via contact joints at the feet and hands. Contact coordinate frames {k}, k €
{er,er}, e € {H, F} are fixed at the center of pressure (CoP) to the common loop-closure link (floor F and rod H). The
z-axes at the feet (shown in blue color) point in a way s.t. the reaction force at the contact is always nonnegative. The
contact constraints in the vertical direction at the feet are unilateral while those in the angular tangential directions
are bilateral, with bounds. All contact constraints at the hands are bilateral.

Section 2.9 in Nenchey, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann.
© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024




Contact joints

2.9.3 Kinematic Models of Frictionless Contact Joints

Denote by V™ € 9" the first-order instantaneous motion components along the uncon-
strained-motion directions at contact joint k. These components determine the contact joint
twist, i.e.

Vi =B, VM. (2.62)

Here ¥B,, € %% is a transform that comprises orthonormal basis vectors for the twist com-
onents in the unconstrained motion directions.” There is a complementary transform s.t.
n ®FB. = Eg (® denotes the direct sum operator):

Vi =*B.VE. (2.63)

Here V¢ comprises first-order instantaneous motion components in the constrained motion
directions. In the above notations (and throughout this text), the overbar notation signifies a
restricted quantity, i.e.

om k kpT
Vi' = NCB)Vie ="By Ve, 264) In the example in Fig. 2.11, the frictionless cylindrical contact joints at the hands determine
V¢ = NEBy)Vi = BTV (2.65) i o
These relations imply that (1) g
Ve kT R BBn=10 o ,w;;:[w’y]. (2.68)
pm | = ez [V W LV (2.66) 01
k ke 00
The frictionless plane-contact joints at the feet, on the other hand, are modeled with
100
010
00 o -, |™
FiB,, = 00 0 ,vg:{vy]. (2.69)
000 o
00 1
Section 2.9 in Nencheyv, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 7
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Outline

1. Contact kinematics
a. Formclosure

2. Contact forces and friction
a. Forceclosure

Grasp quality metrics
4. Sampling-based and data-driven grasp planning

w
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First Wave: R(x,u) € {0, 1}
Analytic Methods u*=n(x) = argmax R(X, u)

REAULEAUX, 1876 NGUYEN, 1988 SHIMOGA, 1996 KRUGER ET AL., 2012
HANAFUSA & ASADA, 1977 FERRARI & CANNY, 1992 BICCHI & KUMAR, 2001 POKORNY ET AL., 2013
Ll & SASTRY, 1988 BICCHI, 1994 ROA & SUAREZ, 2006 HAAS-HEGER ET AL., 2006

Ken Goldberg - The New Wave in Robot Grasping: https://youtu.be/ATDrSWZXuwk
© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024
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Contact kinematics

e study of how two or more rigid bodies can move relative to each other while
respecting the impenetrability constraint.

e motion at acontact
o breaking
o sliding
o rolling (sticking)

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024 10
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Analysis of single contact

Consider two rigid bodies whose configurations are given by the local coordinate
column vectors ¢; and ¢o, respectively. Writing the composite configuration as
q = (q1,92), we define a distance function d(q) between the bodies that is
positive when they are separated, zero when they are touching, and negative
when they are in penetration. When d(g) > 0, there are no constraints on the
motions of the bodies; each is free to move with six degrees of freedom. When
the bodies are in contact (d(q) = 0), we look at the time derivatives d, d, etc.,
to determine whether the bodies stay in contact or break apart as they follow
a particular trajectory ¢(t). This can be determined by the following table of

contact
tangent plane

possibilities:
A _ ycontact
n
d d i normal
Figure 12.2: (Left) The bodies A and B in single-point contact define a contact
=5 0 no contact tangent plane and a contact normal vector n perpendicular to the tangent plane. By
. . A default, the positive direction of the normal is chosen into body A. Since contact
<1 infeasible (PCnCtrathD) curvature is not addressed in this chapter, the contact places the same restrictions on
p— >0 in contact. but breaking free the motions of the rigid bodies in the middle and right panels.
b
= <0 infeasible (penetration)
= =0 >0 in contact, but breaking free
=0 =0 <0 infeasible (penetration)
etc.

The contact is maintained only if all time derivatives are zero.
12.1.1 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-1-first-order-analysis-of-a-single-contact/

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024 1
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https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-1-first-order-analysis-of-a-single-contact/

First-order analysis

contact
tangent plane

Now let’s assume that the two bodies are initially in contact (d = 0) at a
single point. The first two time derivatives of d are written

A _{contact
od . o ™" normal
()(I Figure 12.2: (Left) The bodies A and B in single-point contact define a contact

tangent plane and a contact normal vector 7 perpendicular to the tangent plane. By

é default, the positive direction of the normal is chosen into body A. Since contact

(122) curvature is not addressed in this chapter, the contact places the same restrictions on
the motions of the rigid bodies in the middle and right panels.

The terms dd/dq and 9%d/dq?* carry information about the local contact geom-
etry. The gradient vector dd/dq corresponds to the separation direction in ¢
space associated with the contact normal (Figure 12.2). The matrix §*d/dq>
encodes information about the relative curvature of the bodies at the contact
point.

equivalent motion constraints by a
first-order analysis

12.1.1 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-1-first-order-analysis-of-a-single-contact/

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024
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https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-1-first-order-analysis-of-a-single-contact/

= VA t+twWa XPAa

VB +wWB X PB

12.1.2in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-2-contact-types-rolling-sliding-and-breaking

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024
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https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-2-contact-types-rolling-sliding-and-breaking

first-order rolling (~ sticking) contact

impenetrability constraint

n' (pa —pg) =0 a-b = [a]l |[b]l cos,

12.1.2in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.

https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-2-contact-types-rolling-sliding-and-breaking
© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024
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https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-2-contact-types-rolling-sliding-and-breaking

Contact types

X4, Xg € SE(2)

Relative
twist
VA L VB :
Vo

(%

penetrating

https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-2-contact-types-rolling-sliding-and-breaking

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024
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Form closure

e if asetof stationary constraints prevents all motion of the body.
e i.e.theonlytwististhe zero twist.

: +
g s
(a) (b)

1st order

Ivsi X X X X X
analysis
Form closure Y
2nd order " " "
analysis

12.1.7 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.

https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-7-form-closure
© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024
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https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-7-form-closure

e |fanobjectisinform closure by first-order analysis, then it is also in form

closure by a higher-order analysis.
e If afirst-order analysis concludes only sliding and rolling contacts (no breaking),

a higher-order analysis may conclude form closure.

higher-order form closure

Higher-order form closure is
possible with as few as 2 contacts.

12.1.7 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-7-form-closure

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024
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https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-7-form-closure

Form closure

e Form-closure requires:
e Atleast 4 point contacts for a planar body.
e Atleast 7 point contacts for a spatial body.

Question: are we grasping like that?

Grasping vs. design of fixtures.

12.1.7 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.

https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-7-form-closure 18
© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024
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https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-7-form-closure

u: friction coefficient

."7 4
VAV AV VAV AV VAV AV VAV VAN ANd — AV o Vv VAV Ay AV a4y 4V 4V 4V 4V 4V 4V 4V 4y 4
D

This model is reasonable for hard, dry, materials.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-1-friction/
© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024



https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-1-friction/

Friction cone

For a contact normal in the +2-direction, the set of forces that can be trans-
mitted through the contact satisfies

VIZ+TE<uh,  f20 (12.16)

Z

e What happens to the friction

cone if

o | pressharder?
o Thefriction coefficient changes?

12.2.1 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-1-friction/

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024 20
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https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-1-friction/

Wrench cone

e Notonly forces but also
moments/torques can be
transmitted through contacts
with friction.

e Note that every contact
provides more than 1 force

mz
“basis” vector.
fi fo 9y I3 fa composite
- - wrench cone £,
5 -—"lﬂ'
X
fa
—r
(c) d) R '

12.2.1 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-1-friction/

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024
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Force closure

e Agraspis force closure
o If for any external wrench there exist contact wrenches that cancel it.
o The composite wrench cone contains the entire wrench space, so that any external wrench on
the body can be balanced by contact forces.

e Intuition
o Form closure - object completely immobilized statically/geometrically (no forces applied).
o Forceclosure - someone is trying to take the object out of my hand but | can resist any such force
or rotation by pushing firmly through my fingers at the appropriate contact locations.

12.2.3 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-3-force-closure/

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024 22
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https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-3-force-closure/

Force closure

I

external ‘l
wrench |

external
wrench

I

|
I
)

resisting wrench

e What has changed?

o  (new contact points)
o friction coefficient increased!

e Now: any wrench can be generated -> force closure.

https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-3-force-closure

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024 23
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https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-3-force-closure

Intuitions - summary - form vs. force closure

With form closure, the contacts were acting (preventing object’s motion) only along
the normal. With friction, we get leverage in the orthogonal direction!

Friction always requires contact forces (pushing)!

Friction forces only counteract/resist other forces. That is actually very handy here -
resist wrenches that want to take the object away from the grasp...

Each contact is not a single basis like in form closure but through the friction/wrench
cone actually a set...

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024 24
S



Form and force closure summary

Friction-less force closure ~ first-order form closure.
Form closure requires:

e Atleast 4 point contacts for a planar body.
e Atleast 7 point contacts for a spatial body.

Force closure with friction possible with as few as:

e 2 contacts for a planar body.

e 3contacts for a spatial body.
o 2softfingers - yes!

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024 25



Now, how do we choose a grasp?

Prerequisite: evaluate alternative
grasps (grasp proposals).

Grasp quality measure.
Grasp wrench space - “minimum ball’”.

(employed in Grasplt! simulator)

Fig. 5 Qualitative 2-dimensional example of the grasp quality using 3
fingers and a a limit in the module of each force; b a limit in the sum

of the modules of the applied forces

Prattichizzo, D., & Trinkle, J. C. (2016). Grasping. In Springer handbook of robotics (pp. 955-988). Springer, Cham.
© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024




Table 2 Grasp quality measures

‘ r a S p Group Subgroup Quality index Criterion

Measures related to Based on algebraic Minimum singular value of G Maximize

the position of the properties of G
contact points on

o
quali et
Volume of the ellipsoid in the wrench space Maximize

Grasp isotropy index Maximize
m e a S u re S Based on geometric Shape of the grasp polygon® Minimize
relations
Area of the grasp polygon Maximize
Distance between the centroid C and Minimize
the center of mass CM
Orthogonality Minimize
Margin of uncertainty in finger positions® Maximize
Based on independent contact regions Maximize
Considering Largest-minimum resisted wrench Maximize
limitations on the
finger forces
Volume of the Grasp Wrench Space Maximize
Decoupled forces and torques Maximize
Normal components of the contact forces Minimize
Coplanarity of the normals* Minimize
Task oriented measures Maximize
Measures related to Distance to singular configurations Maximize
hand configuration
Volume of the manipulability ellipsoid Maximize
Uniformity of transformation Minimize
Finger joint positions Minimize
Similar flexion values Minimize
Task compatibility index Maximize
, . Safety margin Maximize
Roa, M. A., & Suarez, R. (2015). Grasp quality
. . Other measures Biomechanical fatigue Minimize
measures: review and performance. P —
in object pos i
Autonomous robots, 38(1), 65-88. —
# Applicable only to 2D and 3D planar grasps
. . . b Applicable only to 2D grasps 27
© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2074



Sampling based grasp planning revisited

« Sampling approach
— Choose candidate contacts.
— Evaluate resulting grasp.

* Instead of choosing contact locations, sample location to
place preshaped hand, and simulate where contacts
happen after closing fingers.

— Preshapes for prototypical grasps, e.g. pinch grasp, power
grasp, cylindrical grasp.

— Miller et al. 2003. .»' J
PR ‘, , ‘
Engineering

Slide from Ville Kyrki, Aalto University. Course: Robotic manipulation. Lectures 8: Friction and grasping.
© Matej Hoffmann, Humanoid robots, FEhtips://mycourses.aalto.fi/course/view.php?id=32938&section=1

28



https://mycourses.aalto.fi/course/view.php?id=32938&section=1

Grasplt! - Overview

- Graspit!
Element Grasp Database Sensors Stereo Misc. Help

e http://graspit-simulator.github.io = e
o Miller,A. T, &Allen, P. K. (2004). Graspit: A versatile |*

simulator for robotic grasping. IEEE Robotics and
Automation Magazine.
e Used forlongtime
o For example as generator of labeled grasps
e Supports different hands or robots
o Users can define their own
e Supports obstacles
o Importable as meshes

e Supports materials

ERYCiaEY= A

e
e

o Different coefficients of friction @
e Dynamic simulation can be enabled | {
o Bullet
© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024 29


http://graspit-simulator.github.io
https://ieeexplore.ieee.org/document/1371616/
https://ieeexplore.ieee.org/document/1371616/
https://ieeexplore.ieee.org/document/1371616/

Grasplt! - How it works

e Contact between object and gripper is detected (a)
o Using collision detection based on trees of bounding boxes

e Joint angle which caused the collision is found and the movement is reverted
before collision (b)
e Geometry of the contact is found and friction cones are created (c)

“ “
(@) (b) (©)

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024
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Grasplt! - Friction cones

e Coulomb friction model
o Force applicable at the contact is in the friction cone
e Frictioncone (a)
o Apexinthe contact point
o  Axis along the normal force f |
o Halfangle ¢qn=1y
m M isthe friction coefficient

e During grasp analysis, the cone is

approximated with an m side pyramid (b)
o fisconvex combination of m vectors

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024
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Grasplt! - Grasp Wrench Space

w = | Fis
e Wrenches "/ Adi < f; )
o .fz’,j one of m forces from the cone at contact point i
° d; vector from the torque origin
o )\ force to torque multiplicator
e GWS - space of wrenches applicable to the object given limit on normal force
o Computed as convex hull of wrenches
® W, =ConvexHull U('wi,j, e, W)
o Usedin Grasplt!
® W, = ConvexHull (é(wi,j, . ,wi,m))

i=1

o Minkowski sum

e For 3D object the GWS is 6D -> three coordinates need to be fixed for
visualization

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024 32
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Grasplt! - Metrics

e Taskwrench space

o Space of wrenches which needs to be applied to carry out the given task

m 6D ball when we assume that disturbances can come from any direction

e 1) Epsilon-quality

o Radius of the biggest 6D ball in the torque origin which can fit into unit GWS
o Thecloserto 1, the better quality
)
O

e 2)Volumeof W,
The bigger, the better

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024 33
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Grasplt! - Simulated Annealing

Used to find global extrema

e Randomly computes a neighbor of current states and probabilistically decides if
to change state or not
e Use parameter “Temperature T”
o Decreasesintime
o IfT=0,itis basic hill climbing algorithm
o

Used in Grasplt! to sample possible grasps

— A
lemperature: 25.0 i -
III L‘;‘I’! ),’.“, I| I'.P',JIH' ||' xlu5
Ay t AR Y AN
. I"'l A llllL I'J 1\' 4 { hr‘- ,x' f J' M ' LAY
ANy f
A / h / \ ! 'Hl \_n
7 f v y 1
'PJ | 'I l| F ;.UIA W '\A‘J "\‘x IJ l‘ ." \
ll i 'll i!x ol 'l ||1 W
W | | ‘“ / ll‘u"

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024 34
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Grasplt! - Eigengrasps

Ciocarlie et al. ,2007. Dimensionality reduction for hand-independent dexterous robotic grasping. IEEE

International Conference on Intelligent Robots and Systems.

e Reduction of DOF of hands

o Based onresults from robotics and neuroscience

m  Majority of grasps lacks individual finger movements
e For example, human hand needs only 2 eigengrasps

Thumb rotation

Thumb flexion
Human 20 MCP flexion

Index abduction

w_»

Thumb flexion
MCP extension
PIP flexion

Barrett 4 | Spread angle opening w —p '

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024
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https://ieeexplore.ieee.org/abstract/document/4399227
https://ieeexplore.ieee.org/abstract/document/4399227

Grasplt! - Interface

e ROS interface https://github.com/graspit-simulator/graspit interface
o Publishes topics and services based on Grasplt! API

e Python client https://github.com/graspit-simulator/graspit commander
o Access the services with Python
o  Minimal knowledge of ROS needed
m  Onlydatatypes - Point, Quaternion, etc.

In [ ]: from graspit commander import GraspitCommander

In [ ]: GraspitCommander.clearWorld()
GraspitCommander.importRobot("BarrettBH8 280")
GraspitCommander.importGraspableBody("my object.ply")
plan = GraspitCommander.planGrasps(max steps=70000)

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024 36
S


https://github.com/graspit-simulator/graspit_interface
https://github.com/graspit-simulator/graspit_commander

Problems in practice?

On the side of object:

shape estimation uncertainty

pose estimation uncertainty

friction estimation uncertainty

rigidity assumption

highly simplified contact model vs. reality

On gripper side:
e kinematic constraints

Plus:

e planned vs. actual placement of gripper jaws
/ fingers
e task compatibility

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024




First Wave:
Analytic Methods

REAULEAUX, 1876 NGUYEN, 1988
HANAFUSA & ASADA, 1977 FERRARI & CANNY, 1992
Ll & SASTRY, 1988 BICCHI, 1994

Ken Goldberg - The New Wave in Robot Grasping:

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024

R(x,u) € {0, 1}

u*=n(x) = argmax R(X, u)

SHIMOGA, 1996 KRUGER ET AL., 2012
BICCHI & KUMAR, 2001 POKORNY ET AL., 2013
ROA & SUAREZ, 2006 HAAS-HEGER ET AL., 2006

https://voutu.be/ATDrSWZXuwk


https://youtu.be/ATDrSWZXuwk

Grasping as a learning problem

e ~ Data-driven grasping.
e Train aneural network to do the grasp evaluation.

Aligned Image /7| /7 Orasp Quality CNN

N &)
Grasp Candidate
y n RelU Rell ul Rell RelU RelU
LRN LRN
A ._/ _/ _/ RelU SofiMix QB
Gripper Depth |/ LV -
Conv 7x7 Conv 5x5 Max Pool Canv 3x2 Canv 33 Fully Cammected

S
| | Fally Comnected
2 Outputs
| I Rell
S

Fully Commected Fully Comnected
16 Outpants 1024 Oupuns

Mahler, J., Liang, J., Niyaz, S., Aubry, M., Laskey, M., Doan, R., ... & Goldberg, K. (2018). Dex-Net 2.0: Deep
Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics.

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024 39




I
Dex-Net 4.0:

Learning Ambidextrous Robot Grasping Policies

(AUTD. )

Science Robotics Journal 2019
berkeleyautomation.github.io/dex-net

e Overview in a talk: Ken Goldberg - The New Wave in Robot Grasping: https://youtu.be/ATDrSWZXuwk

° Mabhler, J., Liang, J., Niyaz, S., Aubry, M., Laskey, M., Doan, R., ... & Goldberg, K. (2018). Dex-Net 2.0: Deep Learning to Plan
Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics.

° Mabhler, J., Matl, M., Satish, V., Danielczuk, M., DeRose, B., McKinley, S., & Goldberg, K. (2019). Learning ambidextrous robot
grasping policies. Science Robotics, 4(26), eaau4984.

https://voutu.be/r-OPKne9e w
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Fig. 1: Dex-Net 2.0 Architecture. (Center) The Grasp Quality Convolutional
Neural Network (GQ-CNN) is trained offline to predict the robustness
candidate grasps from depth images using a dataset of 6.7 million synthetic
point clouds, grasps, and associated robust grasp metrics computed with Dex-
Net 1.0. (Left) When an object is presented to the robot, a depth camera
returns a 3D point cloud, where pairs of antipodal points identify a set of
several hundred grasp candidates. (Right) The GQ-CNN rapidly determines
the most robust grasp candidate, which is executed with the ABB YuMi robot.

Fig. 2: Graphical model for robust parallel-jaw grasping of objects on a table
surface based on point clouds. Blue nodes are variables included in the state
representation. Object shapes O are uniformly distributed over a discrete set of
object models and object poses T, are distributed over the object’s stable poses
and a bounded region of a planar surface. Grasps u = (p, ) are sampled
uniformly from the object surface using antipodality constraints. Given the
coefficient of friction 4 we evaluate an analytic success metric S for a grasp
on an object. A synthetic 2.5D point cloud y is generated from 3D meshes
based on the camera pose T, object shape, and pose and corrupted with
multiplicative and Gaussian Process noise.

Mahler, J., Liang, J., Niyaz, S., Aubry, M., Laskey, M., Doan, R., ... & Goldberg, K. (2018). Dex-Net 2.0: Deep
Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics.
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Dex-Net 2.0
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Fig. 3: Dex-Net 2.0 pipeline for training dataset generation. (Left) The database contains 1,500 3D object mesh models. (Top) For each object, we sample
hundreds of parallel-jaw grasps to cover the surface and evaluate robust analytic grasp metrics using sampling. For each stable pose of the object we associate
a set of grasps that are perpendicular to the table and collision-free for a given gripper model. (Bottom) We also render point clouds of each object in each
stable pose, with the planar object pose and camera pose sampled uniformly at random. Every grasp for a given stable pose is associated with a pixel location
and orientation in the rendered image. (Right) Each image is rotated, translated, cropped, and scaled to align the grasp pixel location with the image center
and the grasp axis with the middle row of the image, creating a 32 x 32 grasp image. The full dataset contains over 6.7 million grasp images.

Mahler, J., Liang, J., Niyaz, S., Aubry, M., Laskey, M., Doan, R., ... & Goldberg, K. (2018). Dex-Net 2.0: Deep
Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics.
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ex-Net 4.0
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’ .Sﬁ ! : ~ = .ﬂ ‘EA B " - Fig. 1. Learning ambidextrous grasping policies for UP. (Top) Synthetic training Fale b Ditaet Suction Dataset

" & - ﬂ_ e ‘ J ' a g | 1 [ @ datasets of depth images, grasps, and rewards are generated from a set of 3D c iter- v N N

[ | @ o -’t ('ﬁ . aided design (CAD) models using analytic models based on physics and domain ran-

e 2 Q 0 - i domization. Specifically, a data collection policy proposes actions given a simulated

heap of objects, and the synthetic training environment evaluates rewards. Reward is

Fig. 2. Physical benchmark for evaluating UP policies. (Top) The robot plansa computed consistently across grippers by considering the ability of a grasp to resista
grasp to iteratively transport each object from the picking bin (green) to a receptacle given wrench (force and torque) based on the grasp wrench space, or the set of Parallel-Jaw GQ-CNN A Suction GQ-CNN )
(blue) using either a suction-cup or a paralleljaw gripper. Grasp planning is based on wrenches that the grasp can resist through contact. (Middle) For each gripper, a policy
3D point clouds from an overhead Photoneo PhoXi § industrial depth camera. is trained by optimizing a deep GQ-CNN to predict the probability of grasp success Pollcy Learning
_(B‘m_“"") Performance |s'evaliiated o o) d.atasets d no?rel e .objec\s nf” Used given a point cloud over a large training dataset containing millions of synthetic
Intraining. (Le.ﬂ—Boﬂom) ngl 1 °b’?a5 consistof prsrnlatlc ar.ad dircular solids (eg, examples from the training environment. Data points are labeled as successes (blue)
boxes and cylinders) spanning groceries, toys, and medicine. (Right-Bottom) Level 2 or failures (red) according to the analytic reward metric. (Bottom) The ambidextrous

objects are more challenging, including common objects with clear plastic and varied

licy is deployed on th | robot to select i b lit;
geometry, such as products with cardboard blisterpack packaging. Policy Is ceployec on the real ronot o se'ect a gripper by maximizing grasp qualty

using a separate GQ-CNN for each gripper.

Mahler, J., Matl, M., Satish, V., Danielczuk, M., DeRose, B., McKinley, S., & Goldberg, K. (2019).
Learning ambidextrous robot grasping policies. Science Robotics, 4(26), eaau4984.
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Grasp Pose Detection (GPD) - Overview

e based on point clouds | N A Sllilcce s shlillimotal: di
o evenasingle view | , ‘
e machinelearning ' ‘

e no physical properties needed
o materials, etc.

e faster than Grasplt!
e works in cluttered environments

e assumes only two-finger grippers

< \)\z‘h\

<

3
‘.

Ten Pas, A., Gualtieri, M., Saenko, K., & Platt, R. (2017). Grasp pose detection in point clouds. The International Journal of Robotics
Research, 36(13-14), 1455-1473. https://github.com/atenpas/gpd
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GPD - Point Clouds

e point clouds from RGB-D cameras

o oneview is sufficient
o basic pre-processing is needed
m denoising, downsampling, outliers removal

e onlyinformation in Region of Interest (ROI) is considered

o segmented object
o oronlygivenregionin point cloud, e.g., workspace
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GPD - Grasps sampling

e candidates sampled uniformly randomly over the point
cloud

e two conditions:
o  thebody of the hand is not in collision with the point cloud
o theclosing region of the hand contains at least one point from the
point cloud

e for each candidate, reference frame F of the hand is
computed
e Gridsearchingrid G=Y x Z isperformed. Y andZ

contains values along y and z axis of F.

o corresponding rotation and translation for each grid point applied to
the hand

e rotated hand pushed along negative x axis until contact

with point cloud occurs
o last point before contact added to set of possible grasp if any point
from the point cloud is in the closing region of the hand

46
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GPD - Grasp Classification

e four-layer CNN

o Binary classification - grasp/no grasp

e trained from 300 thousand (sampled from 1.5
million) labeled grasps for 55 objects (~
labeled using ~ force closure)

e pointsin closing region (b) are voxelized
(MxMxM voxels)

e inputto CNN are heightmaps (c, d) of voxels
projected to planes orthogonal to axes of the
hand (b) and surface normals (e)

© Matej Hoffmann, Humanoid robots, FEE CTU in Prague, 2024
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Others - PointNetGPD
]

Comparative experiments on object set 1

e same grasp sampling as GPD

fewer parameters in CNN than GPD -> less prone to
overfitting

no hand-crafted features needed for training

works with more sparse point clouds

provides dataset with 350k real point clouds

grasp with probability, not only binary

PointNetGPD *4.5 GPD x4.2
6/6 Succeed/Trail S/5 Succeed/Trail

Liang et al., 2018. PointNetGPD: Detecting Grasp Configurations from Point Sets, IEEE International
Conference on Robotics and Automation. https://github.com/lianghongzhuo/PointNetGPD
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Resources

e  Books / book sections
o  Chapter 12: Grasping and manipulation in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
o Sections 2.9 and 6.2 in Nenchev, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control.
Butterworth-Heinemann.
o Kao, I, Lynch, K. M., & Burdick, J. W. (2016). Contact modeling and manipulation. In Springer Handbook of Robotics (pp.
931-954). Springer, Cham.
o  Prattichizzo, D., & Trinkle, J. C. (2016). Grasping. In Springer handbook of robotics (pp. 955-988). Springer, Cham.
e  Online resources
o  htips://modernrobotics.northwestern.edu/nu-gm-book-resource/grasping-and-manipulation/ - video lectures by Kevin
Lynch (covering Lynch, K. M., & Park, F. C. (2017). Modern robotics.)
o  Lecture slides by Ville Kyrki: Robotic manipulation: Lectures 7 and 8.
https://mycourses.aalto.fi/course/view.php?id=32938&section=1
o  Grasplt! Simulator: https://graspit-simulator.github.io/
o  iCub Gazebo grasping benchmark: https://robotology.qithub.io/icub-gazebo-grasping-sandbox/
o MIT RoboSeminar - Ken Goldberg - The New Wave in Robot Grasping: https://youtu.be/ATDrSWZXuwk
e Atrticles
o  Kleeberger, K., Bormann, R., Kraus, W., & Huber, M. F. (2020). A survey on learning-based robotic grasping. Current Robotics
Reports, 1(4), 239-249.
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