GVG Lab-07 Solution

Task 1. 1. Complete the homography matriz
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that maps point with coordinates
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from the first image into points with coordinates
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in the second image.

2. Find the coordinates of the point in the first image that maps into point [2,2]" in the second image.

Solution:

1. From [Il Equation 8.41] we have )
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from which we get a = 1 and
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2. Denote the unknown coordinates of the point in the first image by [z, y] . Then similarly to the first part
of the task we have
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The coordinates then are [:c y] = [O 5] .

Task 2. Points in a plane (spanned by d_i and d_;) with coordinates

. 0 . 1 . 0 . 1
Xis=|0], Xos=|[0], Xgs=[1], Xys= |1
0 0 0 0

are mapped by a homography into image points with coordinates

- 0 . 2 ﬂ 0 ﬂ 2
Ula = |:0:|; U2q = |:0:|a U3 = |:1:|a Uger = |:2:|

1. Find a homography matriz.

2. Find the coordinates of the point of the plane that is mapped into point [1,1]7 in the image.



Solution:

1. All points in a plane have the representation

If the coordinates of the projection of X to the image plane are i, = [u v} T, then we are looking for a
homogrpahy matrix H such that for each pair ()?5, ) there exists a nonzero A that fulfills the equality
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In other words, the scale A may be different for each pair (Xg, Uy). Thus, we can reformulate algebraically
the assignment as follows:
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We will investigate each ¢ = 1,...,4 separately and see which constraints it puts on H:
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Hence the homography matrix has the form

2 0 0
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This is no coincidence that H is defined up to (nonzero) scale A4, since according to [I, Equations
8.52-8.55], £H defines the same map as H.



2. Denote the unknown coordinates of the point in the first image by [z,y]". Then
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The coordinates then are [x y]T = [% %]T
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Task 3. Let us have a camera that captured 2 images by keeping its center fized. Moreover, the camera cartesian
coordinate system ~yo after the motion is obtained from -1 before the motion by a rotation around vector Cy by

the angle 8 = 90°. Compute the homogrphy matriz that maps the points from the first image to the second, if
you know that the camera calibration matriz is

Solution: The rotation by 6 around the (directed) rotation axis can be determined by the right hand rule:
right 4 fingers curled in the direction of rotation and the right thumb pointing in the positive direction of the
axis. The result of such a rotation is visualized in Figure
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Figure 1: Two cartesian camera coordinate systems ~; = (61(1), Ca, 53(1)) and vo = (51(2), Ca, 53(2))

According to [I, Equation 8.14] we have
H = KoRoR K[!
and since in this task the camera that produced the two images is the same, then K; = K3 = K and hence

H= XK Ry R/ K
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Then
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