GVG Lab-05 EN

1. The following picture shows a coordinate system $\sigma = (O, \beta)$ and a basis $\beta = (\vec{b}_1, \vec{b}_2)$.

(a) Find a coordinate system $\sigma' = (O', \beta'), \beta' = (\vec{b}'_1, \vec{b}'_2)$, whose basis vector \vec{b}'_1 has in basis β coordinates

$$\vec{b}_{1\beta}' = \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

and its origin O' is in the coordinate system σ described by vector

$$\vec{O}_{\beta}' = \begin{bmatrix} 1/2\\1 \end{bmatrix}$$

and there exists point X described by vector \vec{X} in σ and vector $\vec{X'}$ in σ' with coordinates

$$\vec{X}_{\beta} = \begin{bmatrix} 3/2\\1 \end{bmatrix}, \quad \vec{X}'_{\beta'} = \begin{bmatrix} 1\\1 \end{bmatrix}$$

and draw it on the picture.

- (b) Write the coordinates of the point O in coordinate system σ' .
- 2. Find coordinates of the image point which is the projection of point $[1, 1, 1]^{\top}$ by the camera with the following camera projection matrix

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

3. Find the camera calibration matrix K, rotation R, and the projection center \vec{C}_{δ} of a camera with the camera projection matrix

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

4. Denote the image coordinates by $[u, v]^{\top}$. Write down coordinates of all points in the threedimensional space that projects on the line v = 0 by a camera with the following camera projection matrix

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$