GVG Lab-05 EN

1. The following picture shows a coordinate system $\sigma=(O, \beta)$ and a basis $\beta=\left(\vec{b}_{1}, \vec{b}_{2}\right)$.

(a) Find a coordinate system $\sigma^{\prime}=\left(O^{\prime}, \beta^{\prime}\right), \beta^{\prime}=\left(\vec{b}_{1}^{\prime}, \vec{b}_{2}^{\prime}\right)$, whose basis vector \vec{b}_{1}^{\prime} has in basis β coordinates

$$
\vec{b}_{1 \beta}^{\prime}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

and its origin O^{\prime} is in the coordinate system σ described by vector

$$
\vec{O}_{\beta}^{\prime}=\left[\begin{array}{c}
1 / 2 \\
1
\end{array}\right]
$$

and there exists point X described by vector \vec{X} in σ and vector \vec{X}^{\prime} in σ^{\prime} with coordinates

$$
\vec{X}_{\beta}=\left[\begin{array}{r}
3 / 2 \\
1
\end{array}\right], \quad \vec{X}_{\beta^{\prime}}^{\prime}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and draw it on the picture.
(b) Write the coordinates of the point O in coordinate system σ^{\prime}.
2. Find coordinates of the image point which is the projection of point $[1,1,1]^{\top}$ by the camera with the following camera projection matrix

$$
P=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

3. Find the camera calibration matrix K , rotation R , and the projection center \vec{C}_{δ} of a camera with the camera projection matrix

$$
P=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

4. Denote the image coordinates by $[u, v]^{\top}$. Write down coordinates of all points in the threedimensional space that projects on the line $v=0$ by a camera with the following camera projection matrix

$$
P=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

