GVG Lab-03 Solution

Task 1. Assume a camera with the following image projection matrix

$$
\mathrm{P}_{\beta}=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right] .
$$

Find the coordinates of the projection center.

Solution: By definition,

$$
\mathrm{P}_{\beta}=\left[\begin{array}{ll}
\mathrm{A} & -\mathrm{A} \vec{C}_{\delta}
\end{array}\right]
$$

where $\mathrm{A}=\mathrm{T}_{\delta \rightarrow \beta}$. Thus, the camera projection center expressed in the world coordinate system \vec{C}_{δ} can be retrieved from the kernel of P_{β}, since

$$
\mathrm{P}_{\beta}\left[\begin{array}{c}
\vec{C}_{\delta} \\
1
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{A} & -\mathrm{A} \vec{C}_{\delta}
\end{array}\right]\left[\begin{array}{c}
\vec{C}_{\delta} \\
1
\end{array}\right]=\mathrm{A} \vec{C}_{\delta}-\mathrm{A} \vec{C}_{\delta}=\mathbf{0}
$$

Computing the kernel of P_{β} means solving the system of linear equations

$$
\mathrm{P}_{\beta} \mathbf{x}=\mathbf{0}, \quad \mathbf{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \tag{1}
\end{array}\right]^{\top}
$$

We solve it by applying Gaussian elimination method:

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 1 & 1 & 0 \\
0 & 0 & -1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

From the last row $\left(-x_{3}+x_{4}=0\right)$ we let x_{4} to be any real number and conclude that $x_{3}=x_{4}$. Substituting it to the second row we get $x_{2}=-2 x_{4}$. Further, substituting x_{2} and x_{3} to the first row we obtain $x_{1}=-x_{2}=x_{4}$. Thus, the solutions to (1) are

$$
S=\left\{\left.\left[\begin{array}{r}
x_{4} \\
-2 x_{4} \\
x_{4} \\
x_{4}
\end{array}\right] \right\rvert\, x_{4} \in \mathbb{R}\right\}
$$

We know that the kernel of every image projection matrix is one-dimensional, since rank of this matrix is always equal to 3 . We are interested in the representative of the kernel with last coordinate equal to 1 . For this we take $x_{4}=1$ and get

$$
\left[\begin{array}{c}
\vec{C}_{\delta} \\
1
\end{array}\right]=\left[\begin{array}{r}
1 \\
-2 \\
1 \\
1
\end{array}\right] \in S \Rightarrow \vec{C}_{\delta}=\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]
$$

Another way to compute \vec{C}_{δ} would be to invert A. For this we stack A and I together into 3×6 matrix and apply Gaussian elimination so that the left 3×3 part becomes I. The inverse A^{-1} then appears as the right 3×3 block:

$$
\begin{aligned}
{[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] } & \sim\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 1 & 0 & -1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & -1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \sim \\
& \sim\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & -1 & 1 & 1 \\
0 & 0 & 1 & 1 & -1 & 0
\end{array}\right]
\end{aligned}
$$

Thus,

$$
\mathrm{A}^{-1}=\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right] \Rightarrow \vec{C}_{\delta}=-\mathrm{A}^{-1} \mathrm{P}_{\beta_{1: 3,4}}=-\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]
$$

Task 2. Assume the following camera projection matrix

$$
\mathrm{P}=\left[\begin{array}{llll}
2 & 0 & 4 & 0 \\
0 & 2 & 2 & 2 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Find the principal point of the image plane.

Solution: By definition,

$$
\mathrm{P}=\left[\mathrm{KR} \mid-\mathrm{KR} \vec{C}_{\delta}\right]
$$

The principal point is defined to be the elements k_{13} and k_{23} of the camera calibration matrix K . We use [1, Equations (7.45) and (7.46)] to compute it. If we denote the matrix KR by B and its rows by column vectors b_{i}, then we can rewrite those equations as

$$
\begin{aligned}
& k_{13}=\mathrm{b}_{1}^{\top} \mathrm{b}_{3}=\left[\begin{array}{lll}
2 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=4, \\
& k_{23}=\mathrm{b}_{2}^{\top} \mathrm{b}_{3}=\left[\begin{array}{lll}
0 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=2
\end{aligned}
$$

The principal point of the image plane equals

$$
\vec{u}_{0 \alpha}=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

Task 3. Let us assume the following image projection matrix

$$
P_{\beta}=\left[\begin{array}{rrrr}
6 & -8 & 50 & 800 \\
16 & 12 & 40 & -1200 \\
0 & 0 & 0.1 & 0
\end{array}\right]
$$

Find K, R, \vec{C}_{δ}, f.
Solution: We first compute the focal length f of the given camera according to [1, Equation (7.25)]:

$$
\left\|\mathrm{P}_{\beta_{3,1: 3}}\right\|=\frac{1}{f} \Rightarrow f=\frac{1}{\left\|\mathrm{P}_{\beta_{3,1: 3}}\right\|}=\frac{1}{0.1}=10
$$

According to [1, Equation (7.24)]:

$$
\mathrm{P}_{\beta_{1: 3,1: 3}}=\frac{1}{f} \mathrm{KR} \Rightarrow \mathrm{KR}=f \cdot \mathrm{P}_{\beta_{1: 3,1: 3}}=\left[\begin{array}{rrr}
60 & -80 & 500 \\
160 & 120 & 400 \\
0 & 0 & 1
\end{array}\right]
$$

Using [1. Equations (7.45)-(7.49)] we decompose $B=K R$ into K and R :

$$
\begin{gathered}
k_{23}=\mathrm{b}_{2}^{\top} \mathrm{b}_{3}=\left[\begin{array}{lll}
160 & 120 & 400
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=400, \\
k_{13}=\mathrm{b}_{1}^{\top} \mathrm{b}_{3}=\left[\begin{array}{lll}
60 & -80 & 500
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=500, \\
k_{22}^{2}+400^{2}=\mathrm{b}_{2}^{\top} \mathrm{b}_{2}=\left[\begin{array}{lll}
160 & 120 & 400
\end{array}\right]\left[\begin{array}{l}
160 \\
120 \\
400
\end{array}\right]=200000 \Rightarrow k_{22}=\sqrt{200000-160000}=\sqrt{40000}=200,
\end{gathered}
$$

$$
\begin{gathered}
k_{12} \cdot 200+500 \cdot 400=\mathrm{b}_{1}^{\top} \mathrm{b}_{2}=\left[\begin{array}{lll}
60 & -80 & 500
\end{array}\right]\left[\begin{array}{l}
160 \\
120 \\
400
\end{array}\right]=200000 \Rightarrow k_{12}=\frac{200000-200000}{200}=0 \\
k_{11}^{2}+0^{2}+500^{2}=\mathrm{b}_{1}^{\top} \mathrm{b}_{1}=\left[\begin{array}{lll}
60 & -80 & 500
\end{array}\right]\left[\begin{array}{r}
60 \\
-80 \\
500
\end{array}\right]=260000 \Rightarrow k_{11}=\sqrt{260000-250000}=\sqrt{10000}=100
\end{gathered}
$$

Thus,

$$
K=\left[\begin{array}{rrr}
100 & 0 & 500 \\
0 & 200 & 400 \\
0 & 0 & 1
\end{array}\right]
$$

The rotation matrix R of the camera can be computed as

$$
\mathrm{R}=\mathrm{K}^{-1} \mathrm{~B}=\left[\begin{array}{rrr}
0.01 & 0 & -5 \\
0 & 0.005 & -2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
60 & -80 & 500 \\
160 & 120 & 400 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
0.6 & -0.8 & 0 \\
0.8 & 0.6 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The camera projection center \vec{C}_{δ} can be obtained as

$$
\vec{C}_{\delta}=-\mathrm{P}_{\beta_{1: 3,1: 3}}^{-1} \mathrm{P}_{\beta_{1: 3,4}}=-\left[\begin{array}{rrr}
6 & -8 & 50 \\
16 & 12 & 40 \\
0 & 0 & 0.1
\end{array}\right]^{-1}\left[\begin{array}{r}
800 \\
-1200 \\
0
\end{array}\right]=\left[\begin{array}{r}
0 \\
100 \\
0
\end{array}\right]
$$

Task 4. Write the transition matrix from basis δ to basis γ, coordinates of the camera projection center in the camera cartesian coordinate system $C_{(C, \gamma)}$ and \vec{C}_{γ} of the camera from the previous example.

Solution: According to [1, Equation (7.6)], the transition matrix $\mathrm{T}_{\delta \rightarrow \gamma}$ equals

$$
\mathrm{T}_{\delta \rightarrow \gamma}=\frac{1}{f} \mathrm{R}=\frac{1}{10}\left[\begin{array}{rrr}
0.6 & -0.8 & 0 \\
0.8 & 0.6 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
0.06 & -0.08 & 0 \\
0.08 & 0.06 & 0 \\
0 & 0 & 0.1
\end{array}\right]
$$

Also,

$$
\begin{gathered}
C_{(C, \gamma)}=\overrightarrow{C C}_{\gamma}=\overrightarrow{0}_{\gamma}=\mathbf{0} \\
\vec{C}_{\gamma}=\mathrm{T}_{\delta \rightarrow \gamma} \vec{C}_{\delta}=\left[\begin{array}{rrr}
0.06 & -0.08 & 0 \\
0.08 & 0.06 & 0 \\
0 & 0 & 0.1
\end{array}\right]\left[\begin{array}{r}
0 \\
100 \\
0
\end{array}\right]=\left[\begin{array}{r}
-8 \\
6 \\
0
\end{array}\right]
\end{gathered}
$$

References

[1] Tomas Pajdla, Elements of geometry for computer vision, https://cw.fel.cvut.cz/wiki/_media/ courses/gvg/pajdla-gvg-lecture-2021.pdf.

