GVG'2021 Exam-02 EN

1. Consider the cameras with the (scaled) camera projection matrices

$$
\mathrm{P}=\left[\begin{array}{llll}
b & 0 & 1 & a \\
0 & a & b & 1 \\
0 & 0 & a & b
\end{array}\right]
$$

Find all values of parameters $a, b \in \mathbb{R}$ such that P projects the point

$$
\vec{X}_{\delta}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

from the space onto the ideal point of the line $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{\top}$.
2. Consider the camera with the camera projection matrix

$$
P=\left[\begin{array}{cccc}
1 & 2 & 1 & 1 \\
-1 & 0 & 2 & 1 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

Find the calibration matrix K , rotation R and the camera center \vec{C}_{δ} of the given camera.
3. Assume two parallel lines p and q in the space. Line p passes through points $\vec{X}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ and $\vec{X}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Line q passes through points $\vec{Y}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $\vec{Y}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$. Find the vanishing point of the lines p a q in the image by the camera with the projection matrix

$$
P=\left[\begin{array}{llll}
0 & 0 & 1 & -1 \\
0 & 1 & 0 & -1 \\
1 & 0 & 0 & -1
\end{array}\right]
$$

4. Let us have cameras with projection matrices

$$
P_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right], \quad P_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Find all points which are projected to the point $[1,-1,0]^{\top}$ in the first image and to the point $[-1,1,0]^{\top}$ in the second image.
5. Let us have two images bound by a fundamental matrix

$$
\mathrm{F}=\left[\begin{array}{rrr}
0 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Point X projects in the first image into point $[1,1]^{\top}$ and in the second image on a line $[1,1,1]^{\top}$. Write the coordinates of a point, into which X projects in the second image.
6. Find all homographies between two images of a calibrated camera $(\mathrm{K}=\mathrm{I})$ that is rotating around its projection center (i.e. its projection center doesn't change) and which maps points $[0,0]^{\top}$ on $[0,0]^{\top}$ and $[1,0]^{\top}$ on $[0,1]^{\top}$.

