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3.4.2 Point computation

Let us assume having camera projection matrices P, P, and image points
X1p,, Xap, such that

1

- }Z) - 2 W
C1 X1p, = P1 [ 16} and ( Xop, = P2 [ 6} (3.68)

We can get X5, and 1, G by solving the following system of (inhomoge-
neous) linear equations

R 6]

e N = (3.69)
0 xp, —P2| |Xs
1

3.5 Calibrated relative camera pose computation

In the previous chapter, we had first computed a multiple of the fun-
damental matrix from seven point correspondences and only then used
camera calibration matrices to recover a multiple of the essential matrix.
Here we will use the camera calibration right from the beginning to obtain
a multiple of the essential matrix directly from only five image correspon-
dences. Not only that five is smaller than seven but using the calibration
right from the beginning permits all points of the scene generating the
correspondences to lie in a plane.

We start from Equation [3.42] to get ¥y,, and i, from Equation [3.43
which are related by

fZTﬁZK—TE K '%yp = 0 (3.70)
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The above equation holds true for all pairs of image points (3?1V1, 3?2)/2) that
are in correspondence, i.e. are projections of the same point of the scene.
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3.5.1 Constraints on E

Matrix E has rank two, and therefore there holds

|E| =0 @(ww\h E = 9\3 (3.72)
SN

true. -
_
We will now derive additional constraints on E. Let us consider that we

can write, Equation
i / E — R[@l] (3.73)
X

Letusi duce (11 = [x y Z]T and evaluate

e - (x]e] ) [ - e wnfe] ~[e ] [e], e

[0 z —y 0 —z vy Z2+y? —xy  —xz
= -z 0 x} [ z 0 x] = [ —xy Z2+x*2  —yz }
|y —x 0] |-y x O —xz  —yz Y +x°
[ + 9% + 22 XX xy xz
= x2+y2+22 ] - [xy yy yz]
| X2+ y? 4 2 Xz yz zz

- &, P1-C.CL

€1

(3.75)

W¢ can multiply the above expression by E from the left again fo get an

inferesting equation (E fl 684 ” 2

- - - 1
£ EE'E = E (Hceluzx —celéTel) = |Co|’E = Strace (E'E)E (376)

or equivalently
2EE'E = trace (E'E)E (3.77)
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which provides nine equations on elements of E. YxY peohx
In fact, these equations also imply |E| = 0. Consider'that Equation
implies £° = Shon- M
(2EET —trace E'E)I)E=0 ¢ (3.78)
For Equation(3.78|to hold true, either E can’t have the full rank, i.e. [E[ = 0, 2EETE = trace (ETE) E &‘65 E = 0
or 2EE" — trace (E'E) I = 0. The latter case gives i
G 0 = trace(2EE' — trace (E'E)I) = 2trace (EE') — 3trace (E' £3.79) &E)
trace (E'E
Let lus check the relationship between trace (E'E) and trace (EE") noﬂ boee trace (ETE) = 3 trace (E'E)
We write I — trace (E'E)
trace (E'E) = (Ef, +E3; +E)) + (E}, + E3, + E3) + (Ef3 + E3 + E35) \/
= (E}; +E}, +Ef3) + (B3 +E3, + E33) + (E3; + E3, + E3;) .
( T T
5 = trace(EE') (3.80) QJ‘\’Va C& EE)- £ J’WCLQE E)
Substituting the above into Equation gets us n ‘j
0 = 2trace(EE") —3trace (E'E) = —trace (E'E) (3.81) 1:
Equation 2EE" — trace (ETE) I = 0 also implies
2EE' = trace(E'E)I = 0 -T (3.82)
2EE"| = |trace(E'E)I| - o (3.83) p b,\ - 0
evoue + T
2|E* = (trace(E'E))® = O (3.84)
N o ()
E| = 0~ (3.86)
Therefore, Equation [3.77]implies |E| = 0. v d
Let us now look at constraints on matrix G = 7 E, for some non-zero real WL (»mfﬂ/ Uufe ’
7. We can multiply Equation[3.78]by 7 to get
7 (2EE" —trace(E'E)I)E = 0 (3.87)
(2(TE) (tE") —trace (TE") (TE))I) (TE) = © (3.88)
(266" —trace(6'G)I) G = © (3.89)
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Clearly, rank (G) = rank (T E) = rank (E) = 2.
We conclude that constraints on E and G are the same.

c,onﬂglf\—s“)/\«\)ds

3.5.2 Geometrical interpretation of Equation [3.77] Denr gvve
é 2EE'E = trace (E'E)E
y
Cx (Cx (Cx1) Ex (€ x7)
f hrue &,o\r &wzy
Cxy % 3
— X\ ¥ el

- -

- 4 - G =
Figure 3.3: Identity C¢, x (Ce; % (Ce; x 7)) = —[Ce, [*(Ce; x )-

Let us provide a geometrical interpretation of Equation We will
mutiply both sides of Equation by a vector i/ € R® and write

true to get

- > VY

Cop X (Cey x Ce, X)) = —[CeiP(Ce, x 9)

which is a familiar identity of the vector pruduct in R?, Figure
66
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3.5.3 Characterization of E

Let us next see that a non-zero 3 x 3 real matrix satisfying Equation [3.77]
has rank two and can be written in the form of Equation for some
rotation R and some vector Cq,.

Consider a real 3 x 3 matrix E such that Equation[3.77lholds true. We
will make here use of the SVD decomposition |2} p. 411] of real matrices.
We can write

a
EU[ b ]vT (3.95)
C

and V' V = I implies |[U] # £1,|V| = +1.
Using Equation|3.95

v
a2 a2
EE' =U b? u', ETE=V b? v’ (3.96)
C2 C2

and trace (E'E) = trgce (VD?V'") = trace (VD?V~!) |= trace (D?) since matri-
ces D? and EE' are similar and hence their traces, which are the sums of
their eigenvalues, are equal. Now, we can rewritg, Equation[3.77]as

. -

- 3
E-R[C])  re%®, GER
E = DM_SW\SL—
4 ovade E= % (F8AE) =)
U
= E
N wkE=2)
:DMa—M oV
2 3¢, c A

DJ@UMD S/

2EE'E = trace (E'E)E
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Matrices U, V are regular and thus we get 2
a® a
2 v — @+ + ) b =0 (3.99)
o c
L 0 - = v

which finally leads to the following three equations  ~
)
a® —ab* —ac? :Z(g_z/—gz—cz))— (3.100)
b —ba> b = (I - — ") = (3.101)

0
S —ca?—ch? =c(?-a*—1?) 0 (3.102)

We see that there are the following two exclusive cases:

1. Jf any two of a,b,c are zero, then the third one is zero too. For
instance, if a = b = 0, then Equation[3.102] gives ¢> = 0. This can’t
happen for a non-zero E.

2. If any two of a,b,c are non-zero, then the two non-zero are equal
and the third is zero. For instance, if 2 # 0 and b # 0, then Equa-
tions[3.100] B.101]imply c* = 0 and thus 4> = b?, which givesa = b
since 4, b are non-negative, i.e. rank (E) = 2.

We thus conclude that E can be written as

E = }VT (3.103)
0
_ v |0 104
a X
= (sign (JW]))* WV sign (|V (3.105)
= sign(JW)wv' sign ([v"|) [sign (|W])avs], (3.106)
= Rfsign([U))avs] e (3.107)
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for some non-negative a and the third column v3 of V. Parameter a is
zero for E = 0 and positive for rank two matrices E. We introduced a
new matrix W in Equation|3.104} which is the product of U and a rotation
round the z axis. We also used V'V = I, and finally Equation In
Equation[3.105|we used (sign (|W]))?> = 1,V-T = Vfor VIV = I. MatrixR =
sign (|(W)|) WV sign (|VT|) in Equation[3.107lis a rotation since sign (|(if)|) W
as well as V' sign (|V'|) are both rotations. Finally, we see that sign (|ii]) =
sign ([U]).

3.5.4 Computing a non-zero multiple of E

Let us now disscuss how to compute a non-zero multiple of matrix E from
image matches.

3.5.4.1 Selecting equations

Every pair of image matches (¥,,,%2,,) provides a linear constratint on
elements of E in the form of Equation[3.71] and matricial Equation
gives nine polynomial constraints for elements of E.

We have already seen in Paragraph [3.2] that a non-zero multiple of E
can be obtained from seven absolutely accurate point correspondences
using the constraint |E| = 0. The solution was obtained by solving a set of
polynomial equations out of which seven were linear and the eighth one
was a third order polynomial.

Let us now see how to exploit Equation [3.77]in order to compute a
non-zero multiple of E from as few image matches as possible.

An idea might be to use Equations [3.77] instead of [E| = 0. It would
be motivated by the fact that Equations [3.77]imply equation |E| = 0 for
real 3 x 3 matrices E. Unfortunately, this implication does not hold true
when we allow complex numbers in K7, which we have to do if we want to

1Equation |E| = 0 can’t be generated from Equations[3.77]as their algebraic combination,
ie. |[E| = 0 is not in the ideal [12] generated by Equations It means that there
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obtain E as a solution to a polynomial system without using any additional
constraints. We have to therefore use |E| = 0 as well.

The next question is whether we have to use all nine Equations It
can be shown similarly as above that indeed none of the equations[3.77]is
in the ideal [12] generated by the otherd?] Therefore, we have to use all

might be some matrices E satisfying Equations B.ZZlwhich do not satisfy |E| = 0. We
know that such matrices can’t be real. The proof of the above claim can be obtained
by the following program in Maple [13]

>with(LinearAlgebra):
>with(Groebner):
>E:=jjell—el2—el3;,je21—e22—e23; ,je31—e32—e33;,:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM, Vector),list)):
>v:=indets(eq):
>mo:=tdeg(op(v)):
>G:=Basis(eq,mo):
>Reduce(Determinant(E),G,mo);
ell e22 e33 - ell e23 €32 + e21 e32 €13 - e21 e12 €33 + e31 e12 €23 - e31 e22 €13
which computes the Groebner basis G of the ideal generated by Equations|3.77|and
verifies that the remainder on division of |E| by G is non-zero [12].
2To show that none of the equations[3.77lis in the ideal generated by the others, we run
the following test in Maple.
>with(LinearAlgebra):
>with(Groebner):
>E:=jjell—el2—el3;,je21—e22—e23;,je31—e32—e33;;:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM, Vector),list)):
>
>ReduceEqByEqn:=proc(eq,eqn)
local mo,G;
mo:=tdeg(op(indets(eqn)));
G:=Basis(eqn,mo);
Reduce(eq,G,mo);
end proc:
>
>forifrom 1 to 9 do
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Equationsas wellas |E| = 0. Hence we have altogether ten polynomial
equations of order higher than one.

We have more equations than unknowns but they still do not fully
determine E. We have to add some more equations from image matches.
To see how many equations we have to add, we evaluate the Hilbert
dimension [12] of the ideal generated by Equations[3.77]and [E| = 0. We
know [12] that a system of polynomial equations has a finite number of
solutions if and only if the Hilbert dimension of the ideal generated by the
system is zero.

The Hilbert dimension of the ideal generated by Equations[3.77]and |E| =
0 is equal to siX]. An extra linear equation reduces the Hilbert dimension

ReduceEqByEqn(eq[i],eq[[op({$1..9} minus {i})]]);
end;

€113 4e11e122 +-e11 132 4-e11 212 4221 €12 22+ 2621 €13 €23+ e11 €312 4231 1232 +2 31 €13 €33 —el1 €222 —e11 0322 —
11232 — e11¢33?

€112 €21 +2¢11e1222+2 11 €13 €23 + 213 +¢21 ¢22% +¢21 €232 + €21 ¢312 +2 31 ¢22 €32 4 2 £31 €23 ¢33 — ¢21 €122 — 21 ¢322 —
€21¢13% — e21¢33?

€112 31+ 2¢11e1232+2¢11 €13 ¢33 +¢212 ¢31 +2 21 €22 €32 +2 €21 23 ¢33 + 313 + 31 €322 + €31 ¢332 — ¢31 €122 — 31 0222 —
31132 — ¢31¢232

€12e112 4123 +e12¢13% 4222611 €21 4126222 +2¢22 ¢13 234232 11 e31 +¢12 322 4232 €13 ¢33 —¢12 €212 — 120312 —
12232 — ¢12¢332

2¢12¢11 621 4€122 €22 +2 €12 13 €23 4 ¢22 €212 + 6223 422 €232 +2 032 €21 €31 +¢22 €322 +2 ¢32 23 €33 — €22 112 — 22 €312 —
€22¢13% — 226332

2¢e12¢e11e31 4122 e32+2¢12¢13 €33 +2 €22 €21 €31 + €222 €32 4222 23 33 4 €32 €312 + 323 €32 €332 — 32112 — 32212 —
326132 — 326232

e13e112 + 13 ¢122 +¢13% + 223 ¢11 €21 422312622 + 13232 4233 11 ¢31 +2¢33 ¢12 €32 + €13 ¢332 — ¢13 212 —¢13¢312 —
13222 — ¢13¢322

2¢13¢11e21+2¢13 1222+ €132 ¢23 + 623 €212 423 222 +¢23% +2 33 ¢21 €31 42 £33 €22 032 +¢23 €332 — 23 ¢112 — 23312 —
€23¢122 — 23322
2¢13¢11e31 4261312632 + €132 ¢33 4223 €21 e31 42 €23 €22 32 + 232 €33 + ¢33 €312 + 33 0322 4 33° — 33 ¢112 — 33 €212 —
33122 — 33222

3The Hilber Dimension of the ideal is computed in Maple as follows
>with(LinearAlgebra):
>E:=jjell—el2—el3;,je21—e22—e23;,je31—e32—e33:;:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM, Vector),list)):
>with(Polynomialldeals):
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by one [12]. Hence, five additional (independent) linear equations from
image matches will reduce the Hilbert dimension of the system to one.
Since all equations B.77]and |E| = 0 are homogeneous, we can’t
reduce the Hibert dimension below one by adding more equations
from image matches. This reflects the fact that E is fixed by image mea-
surements only up to a non-zero scale.
To conclude, five independent linear equations plus Equations[3.77]

—> —7

and |E| = 0 fix E up to a non-zero scale. ~ T s ~ C
The scale of E has to be fixed in a different way. For instance, one often U E 7 R/} -IL;?_ ¢
knows that some of the elements of E can be set to one. By doing so, an L 1

extra independent linear equation is obtained and the Hilbert dimension
is reduced to zero. Alternatively, one can ask for |E|?> = 1, which adds a
second order equation. That also reduces the Hilbert dimension to zero o S

but doubles the number of solutions for E. W

a?szyzEa?i,lyl =0, (2EE" —trace(E'E)I)E=0, [E/=0, i=1,...,5
N (3.108)
We will/present a solution based on [14], which is somewhat less efficient %
than [13}[16] but requires only eigénvalue computgfion. va LoD "'MM

poke
P S & £

>HilbertDimension(jop(eq),Determinant(E); );
6 Ca
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First, using Equation[1.90/from Paragraph|1.5| we can write [M/lq 1 &L 1w ] 19
_ ® 77

x _
Fdn L2y 0 Use W
X319, ® X3y, S 1 —
5 S v(E) (3.109) - ~
Xl ® X 0 l’: ¥ 0
451 0 —
1

G=@+xG1+yG2+zG3 S (3.110) T _ /\ a#\’w Va
Pedirnce \ANSRWM'; uws -

forx,y,ze R.
Now, we can subsfitute G for E into the two remainjing equations in[3.108]

s in thrde unknowns nd w1th

£ 4 AL oS mAa Wa

We get ten trird-order polynomial equati
20 monomials. We[can write it as _, ) 3

S (o~ DM .J(\E\/ Mm =20 Eo X "a’% (3.111)
e
where M is a constant 10 ;7 20 matri and

2 _ - F WFC}\D% cedl
m = [x yx yxy zx2 zyxzyZ Zszy,z x? yxy zxzy,z %, Y,2,1] E -0 \ﬁwj,g
(3.112) - . =

#Matrix M can be obtained by the following Maple [13] program a (s VMK’(\/'V Q 125
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is a vector of 20 monomials. ‘ ,@JS . ( C = ’L)
Next, we rewrite the system|3.112as i}'bw 1

X 2
1 |
s ! (23C3 + 2°C, +zC1+C0)c% 0 (3.113) m%
with <%(+C)c?(’) = Cbc = %Cnc —-)COX: XX MM ~ 0
1 o

L/\\/ \/
C = 2°CG+22CGH2C +C ey (3.114)

1xyr bt ey

—
—

containing 10 monomials. Matrices Cy, . ..} C4 are constant 10 x 10 matrices

Co = [m m m my my mp\mz my mg my| (3.115) 7 ,
G = [000 0 m m m ] (3.116) = Az ("b) y2(2) + 1 C’(M“ 1
G = [00 00 0 0 0 m m (3.117) +

GG = [060 0600006006 (3.118) 3@\%% 14] X

0\

%L
where m; are columns of M.
Since m contains all monomials in x, y,z up to degreathree, we could Xy
have written similar equations as Equation[3.113]with x and y. M A
>G0:=jg011—g012—g013;,;g021—g022—g023;,ig031—g032—g033; ¢ : \ ) 7
>Gl:=jjgl11—gl112—g113;,ig121—g122—g123;,ig131—g132—g133;;: Ma \ ¥ 2: -4+ 1.1
>G2:=ig211—g212—g213;,ig221—g222—g223; ,ig231—g232—g233;;: — (Z, 7 4 /‘ X 2
>G3:=iig311—g312—g313;,ig321—g322—g323;,ig331—g332—g333;:
3)).E): c \
m

>with(LinearAlgebra):

>trc:=E-;simplify((2*E.Transpose(E)-Trace(Transpose(E).E)*IdentityMatrix(
>eq:=[op(convert(trc(G) listlist)),Determinant(G)]:

v
>mo:=tdeg(x,y,z); L C/
>m:=PolyVarMonomials(eq,mo); \ C o\ c
m:i= [x3,yxz,yzx,y3,zx2,z}/x,zyz,zzx,zzy,23,x2,yx,y2,zx,zy,zz,x, y,z,1] ?O Q%e}/% \ .
>M:=PolyCoeffMatrix(eq,m,mo): N’ ‘EO Y40 auw L\/b e 0% A~
>M[1,1];

29122 ¢112 g121+2 g133 g113 g131 — g123% g111 — g1222 111 +2 132 112 g131 — g1322 111 + g131% g111 + g1122 g111 + C— C < % ) 0 /\M/\,\S'
g111% 4 24123113 g121 — ¢1332 g111 + g121% g111 + g1132 111
%r)7 C n)ff- PR fr C 0
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Equation[3.113Jis known as a Polynomial Eigenvealue Problem (PEP)
of degree three. The strandard solution to such a problem is to relax it into

a generelized ei Valu roblem of a larger size as follows.
We can writ and@;@altogether with Equation|3.113

in a matrix form as

0 I 0 C I 0 0 C
0 0 I zC =z |0 I O zc (3.119)
—C -G -G | |7 0 0 G| |7z%

Av = 2zBv (3.120)

x = cg/cip and x = cg/cyp. It provides 30 solutions in general.
When () is regular, we can pass to a standard eigenvalue problem for
non-zero z by inverting A and using w = 1/z

—¢;'la ¢l —¢'c | [wie w?c
1 0 0 we | =@ | we) (@3121)
0 I 0 C

N ’(\
A X = x X

>

O0<

00
Ao 1 0
N9

vy

e 30

G P
Jeoy T/ F 0 K

fops g = RG, 0 vest

uoed Vo

C

$)

L okl
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