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8 Projective plane

8.1 Motivation – perspective projection in affine
space

§1 Geometric model of perspective projection in affine space The
perspective projection of a point X by a camera with projection center C
can be obtained geometrically in 3D affine space by taking all lines passing
through the points C and X and finding the intersections with the (affine)
image plane π.

Three different situations may arise, Figure 8.1.

1. If X “ C, then there is an infinite number of lines passing through
C “ X, which intersectπ in all its points, and therefore the projection
of X contains the whole plane π.

2. If point Y ‰ C lies in the plane σ, which is parallel to π and passing
through C, then the line passing trough C and Y (which there is
exactly one) does not intersect the projection plane π, and therefore,
the projection of X is empty.

3. If X does not lie in the plane σ, then there is exactly one line passing
through points C and X and this line intersects the projection plane
π in exactly one point x. Hence the projection of X contains exactly
one point x.

Let us compare this affine geometrical model of the perspective projection
with the algebraic model of the perspective projection, which we have
developed before.
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Figure 8.1: Geometric model of perspective projection in affine space.
Point C has infinite (i.e. not unique) projection, point X has
exactly one projection x. Point Y has no projection.

§2 Algebraic model of perspective projection in affine space The
projection #xβ of #Xδ by a perspective camera with image projection matrix

Pβ “
”

A | ´ A #Cδ
ı

(8.1)

is

η #xβ “
”

A | ´ A #Cδ
ı

„

#Xδ

1



(8.2)

for some η P R.
We shall analyze the three situations, which arise with the geometrical

model of affine projection.
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1. If X “ C, then

η #xβ “
”

A | ´ A #Cδ
ı

„

#Cδ
1



“ #0 (8.3)

i.e. we obtain the zero vector. What does it say about #xβ? Clearly, #xβ
can be completely arbitrary (even the zero vector) when we set η “ 0.

Alternatively, we can choose η ‰ 0 and thus enforce #xβ “ #0. Both
choices are possible. We shall use the latter one since we will see

that it better fits the other cases. We will use #xβ “ #0 to (somewhat
strangely) represent all non-zero vectors in R3.

2. If point Y ‰ C lies in the plane σ, then

η #xβ “
”

A | ´ A #Cδ
ı

„

#Yδ
1



“ A p#Yδ ´ #Cδq (8.4)

which, taking into account rank A “ 3, implies

η A´1#xβ “ #Yδ ´ #Cδ (8.5)

Matrix A´1 transforms #xβ into #xδ and therefore its columns

A´1 “
”

#b1δ
#b2δ

#b3δ

ı

(8.6)

are the basic vectors of the camera coordinate system in the world
basis δ. Hence

η
”

#b1δ
#b2δ

#b3δ

ı

#xβ “ #Yδ ´ #Cδ (8.7)

which means that vector #Yδ ´ #Cδ can be written as a linear combina-
tion of the camera coordinate system basic vectors

η p#b1δ ` η q#b2δ ` η r#b3δ “ #Yδ ´ #Cδ (8.8)
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with p, q, r P R. Now, since Y lies in a plane parallel to π, vector
#Yδ ´ #Cδ can be written as a linear combination of the first two basic
vectors of the camera coordinate system, and therefore r “ 0, i.e.

#xβ “

»

–

p
q
0

fi

fl (8.9)

We also see that η ‰ 0 since otherwise we would get the zero vector
on the left but that would correspond to Y “ C, which we have
excluded.

3. If X does not lie in the plane σ, then the coefficient r P R in the linear
combination

η A´1 #xβ “ #Xδ ´ #Cδ (8.10)

η p#b1δ ` η q#b2δ ` η r#b3δ “ #Xδ ´ #Cδ (8.11)

is non-zero. In that case we can write

η

»

–

p
q
r

fi

fl “ A p#Xδ ´ #Cδq (8.12)

pη rq

»

—

—

–

p
r
q
r
1

fi

ffi

ffi

fl

“ A p#Xδ ´ #Cδq (8.13)

η1

»

–

u
v
1

fi

fl “ A p#Xδ ´ #Cδq (8.14)

As in the case two, η ‰ 0 since otherwise we would get the zero
vector on the left and that would correspond to X “ C, which we
have excluded.
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Table 8.1: Comparison of the geometrical and algebraic projection models
in affine space.

Point position Projection
Geometrical model in aff. space Algebraic model in aff. space

X R σ one point of π η ‰ 0, #xβ “

»

–

u
v
1

fi

fl, (#xβ ‰ #0)

C ‰ X P σ no point η ‰ 0, #xβ “

»

–

u
v
0

fi

fl, #xβ ‰ #0

X “ C all points of π η ‰ 0, #xβ “ #0

The comparison of the two models of perspective projection, Table 8.1
shows that

1. We can always assume η ‰ 0.

2. The “projection” of C is represented by the zero vector while the
projections of all other points are represented by non-zero vectors.

3. The algebraic projection model can represent projections of all points
in the affine space.

4. The geometrical projection model is less capable than the algebraic
projection model since it can’t model the projection of points in σ
different from C.

The previous analysis clearly shows that the affine geometrical model
of the perspective projection is somewhat deficient. It can’t model pro-
jections of some points in the space. This deficiency leads to inventing
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a generalized model of the geometry around us in order to model the
perspective projection completely by intersections of geometrical entities.
This generalization of the affine space is called the projective space.

Let us look at the most important projective space, which is the projective
plane. We shall first develop a concrete projective plane by improving the
affine plane exactly as much as necessary to achieve what we want, i.e.
to be able to distinguish projections of all points in the space. In fact,
this will be extremely easy since we have already done all the work, and
we only need to “upgrade” the notion of point, line, intersection and join
(i.e. making the line from two distinct points). Later, we shall observe
that such an “upgrade” will also lead to an interesting simplification and
generalization of the principles of geometry.

8.2 Real projective plane

8.2.1 Geometrical model of the real projective plane

A real affine plane A2 can be imagined as a subset of a real affine space
A3, Figure 8.2. There is a point O inA3, which is not inA2. For each point
X in A2, there is exactly one line in A3, which passes through X and O.
Now, there is a set of lines in A3, which pass through O but do not pass
through any point of A2. This is the set of lines parallel to A2 that pass
through O. These lines fill the plane of A3, which is parallel to A2 and
which contains the point O.

The set of all lines in A3 passing through O will be called the real
projective plane and denoted as P2. The lines ofA3 passing through O will
be called the points of the real projective plane.1

1The previous definition can be given without referring to any affine plane. We can take
a point O inA3 and the set of all lines inA3 passing through O and call it a projective
plane. In the above example, however, we have obtained the projective plane as an
extension of a given affine plane A2. In such a case, we can distinguish two sets of
points – affine points and ideal points – in the projective plane.
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Figure 8.2: (a) Two dimensional affine plane A2 can be (b) embedded in
the three dimensional affine spaceA3. There is a point O P A3,
O R A2. (c) For each point X in A2, there is exactly one line
through X and O inA3. (d) There is exactly one pencil of lines
through O, which do not correspond to any point inA2, inA3.
(e) Each line in the pencil corresponds to a set of parallel lines
with the same direction inA2.

The lines in A3 passing through O, which intersect A2, are in one-to-
one correspondence with points in the affine plane A2 and hence will be
called the affine points of the projective plane2 of the projective plane. The
set of lines in A3 passing through O, which do not intersect A2, are the
“additional” points of the projective plane and will be called the ideal
points of the projective plane3.4

2Vlastnı́ body in Czech. Finite points in [13].
3Nevlastnı́ body in Czech. Points at infinity in [13].
4Notice that words “point” and “line” actually need to be accompanied by adjectives for

the above to make sense beacause lines of A3 become points of A2. Also notice that
this division of the points of the projective plane makes sense only when we start with
a given affine plane or when we start with a projective plane and select one plane of
lines inA3 as the set of ideal points.
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Figure 8.3: Algebraic model of the real projective plane.

To each ideal point P (i.e. a line l of A3 through O parallel to A2),
there corresponds exactly one set of parallel lines inA2 which are parallel
to l in A3. Different sets of parallel lines in A2 are distinguished by their
direction. In this sense, ideal points correspond to directions inA2 and can
also be understood as points where parallel lines of A2 intersect. Notice
that the parallel lines of A2 do not intersect inA2, because P is not inA2,
but they intersect in the real projective plane obtained as the extension of
A2.

8.2.2 Algebraic model of the real projective plane

We shall now move from the geometrical model in A3 to an algebraic
model in R3 which allows us to do computations.
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Let us choose a coordinate system pO,#b1,#b2,#b3q inA3 with the origin in

O, with basic vectors#b1,#b2 from the coordinate system po,#b1,#b2q inA2 and

with #b3 “ ϕpO, oq, Figure 8.3.
Lines in A3, which pass through O, correspond to one-dimensional

subspaces of R3 and therefore, in R3, points of the real projective plane
will be represented by one-dimensional subspaces.

The real projective plane is the set of all one-dimensional subspaces ofR3.
The affine plane is a subset of the set of all one-dimensional subspaces

ofR3, which we obtain after removing all one-dimensional subspaces that
lie in a two-dimensional subspace of R3.

There are (infinitely) many possible choices of sets of one-dimensional
subspaces which can model the affine plane within the real projective
plane. The choice of a particular subset, which will model a concrete1
affine plane, can be realized by a choice of a basis in R3.

Let us select a basis β “ p#b1,#b2,#b3q of R3. Then, all the one-dimensional
subspaces generated by vectors

#xβ “

»

–

x
y
1

fi

fl x, y P R (8.15)

will represent affine points, point X in Figure 8.4, and all the one-dimensional
subspaces generated by vectors

#xβ “

»

–

x
y
0

fi

fl x, y P R, x ‰ 0 or y ‰ 0 (8.16)

will represent the ideal points, e.g. point Y in Figure 8.4.
It is clear that the affine points are in one-to-one correspondence with all

points in a two-dimensional affine space (plane) and the ideal points are
exactly what we need to add to the affine points to get all one-dimensional
subspaces of R3.
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Figure 8.4: Points of the real projective plane are represented by one-
dimensional subspaces of R3. One selected two-dimensional
affine subspace determines the ideal points.

8.2.3 Lines of the real projective plane

Let us look at lines now. Lines, e.g. l in Figure 8.5, in the affine plane
contain points represented by one-dimensional subspaces generated, e.g.,
by #x and #y. This set of one-dimensional subspaces of points on l fills almost
a complete two-dimensional subspace ofR3 with the exception of one one-
dimensional subspace, generated by #z, which represents an ideal point.
After adding the subspace generated by#z to the set of all one-dimensional
subspaces representing points on l, we completely fill a two-dimensional
subspace of R3, which hence corresponds to the projective completion of the
affine line l, which we will further call line, too.

Hence, in the real projective plane, lines correspond to two-dimensional
subspaces of R3.
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Figure 8.5: Lines of the real projective plane correspond to two-
dimensional subspaces of R3 but can be also represented by
one-dimensional subspaces of R3.

We would like to do calculations with lines as we do calculations with
points. Let us develop a convenient representation of lines now. A
straightforward way how to represent a two-dimensional subspace in R3

is to select a basis (i.e. two linearly independent vectors) of the subspace,
e.g. #x and #y for the line l. There are many ways how to choose a basis and
therefore the representation is far from unique. Moreover, having two
bases, it is not apparent whether they represent the same subspace.

For instance, two pairs of linearly independent vectors p#x1, #y1q and
p#x2, #y2q represent the same line if and only if they generate the same
two-dimensional subspace. To verify that, we, for instance, may check
whether

rank
“

#x1β #y1β #x2β #y2β
‰

“ 2 (8.17)
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where we write all the four vectors #x1, #y1, #x2, #y2 w.r.t. a basis β of R3.
Yet, there is another quite convenient way how to represent a two

dimensional subspace in R3. Since 3 “ 2 ` 1, we can find for each
two-dimensional subspace, specified by a basis p#x, #yq, exactly one one-
dimensional subspace of the three-dimensional dual linear space. Call the

basis of this new one-dimensional subspace#l. Then there holds

#l
J

β̄

“

#xβ #yβ
‰

“ 0 (8.18)

where β̄ is the dual basis to β. Therefore, we can represent lines in the real
projective plane by one-dimensional subspaces in this way.

We have developed an interesting representation of points and lines
where both points and lines are represented by one-dimensional sub-
spaces of R3. Points are represented by one-dimensional subspaces of
V “ R3, which is connected by ϕ to the three-dimensional spaceA3 of the
geometrical model of the real projective plane. The lines are represented
by one-dimensional subspaces of the space V̄, which is the space dual to

V. Using the basis β̄ in V̄, which is dual to basis β in V, the coordinates#lβ̄ as

well as coordinates of #xβ become vectors inR3 which satisfy Equation 8.18.

The line of A3 generated by #l in Figure 8.5 is shown as perpendicular5

to the plane generated by #x, #y. Indeed, in the geometrical model of the real
projective plane, we can use the notion of perpendicularity to uniquely
construct the (perpendicular) line to the plane corresponding to l inA2.

8.2.4 Ideal line

The set of all one-dimensional subspaces of R3, which do not correspond
to points in the affine plane, i.e. the set of all ideal points, forms itself a
two-dimensional subspace of R3 an hence a line in the projective plane,

5In A3, line and plane are perpendicular when they contain the right angle. The right
angle is one quarter of a circle.

13



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

A3

σ

A2

O

#l8

Figure 8.6: The ideal line is the set of all projective points (i.e. all lines of A3

through C, which have no intersection withA2. It is a plane σ.
There is exactly one, which is perpendicular to sigma, which is
generated by vector l8.

which is not in the affine plane. It is the ideal line6 of the projective plane
associated with the selected affine plane in that projective plane. It is

represented by vector#l8 in Figure 8.6.
For each affine plane, there is exactly one ideal line (a two-dimensional

subspace of R3). Conversely, by selecting one line in a projective plane
(i.e. one two-dimensional subspace ofR3) the associated affine plane is de-

6Nevlastnı́ přı́mka in Czech, line at infinity in [13].
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termined as the set of all points (one-dimensional subspaces ofR3) which
are not contained in the selected ideal line (two-dimensional subspace).

8.2.5 Homogeneous coordinates

Once a coordinate system is fixed in an affine plane, every point of the
affine plane has unique coordinates, which are the coordinates of its vector
in the basis of the coordinate system.

A point in a real projective plane is represented by a one-dimensional
subspace ofR3. One-dimensional subspaces are represented by their bases
consisting of a single non-zero vector. There are infinitely many bases
representing the same one-dimensional subspace. Two basic vectors of
the same one-dimensional subspace are related by a non-zero multiple.

Hence, when talking about coordinates of a point in the projective space,
we actually talk about coordinates of a particular basic vector of the one-
dimensional subspace that represents the point.

For instance, vectors
»

–

1
0
1

fi

fl and

»

–

2
0
2

fi

fl (8.19)

are basic vectors of the same one-dimensional subspace since they are
related by a non-zero multiple. These are two different “coordinates” of
the same point in the real projective plane.

Hence, the “coordinates” of a point in the real projective plane are not
unique. This is so radically departing from the fundamental property of
coordinates, their uniqueness, that it deserves a new name. To distinguish
the coordinates of a point in the affine plane, which are unique, from the
“coordinates” of a point in the projective plane, which are not unique, we
shall introduce new name homogeneous coordinates.

Homogeneous coordinates of a point in the real projective plane are the
coordinates of a basic vector of the one-dimensional subspace, which
represents the point.
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Homogeneous coordinates of a line in the real projective plane are the
coordinates of a basic vector of the one-dimensional subspace, which
represents the line.

A point in an affine plane can be represented by affine as well as by
homogeneous coordinates. Let us see the relationship between the two.

Let us have a point X in a two-dimensional real affine plane, which is
represented by coordinates

„

x
y



(8.20)

By extending the real affine plane to the real projective plane with the ideal
line identified with the two-dimensional subspace z “ 0, we can represent
point X by a one-dimensional subspace ofR3 generated by its basic vector

»

–

x
y
1

fi

fl (8.21)

Thus, X has affine coordinates
“

x y
‰J

and homogeneous coordinates
“

u v w
‰J

, where u “ λ x, v “ λ y, and w “ λ 1 for some λ P R, λ ‰ 0.
Ideal points do not have affine coordinates. Their homogeneous coor-

dinates are
“

x y 0
‰J

(8.22)

where x, y P R and either x ‰ 0 or y ‰ 0.

The zero vector #0 is not a basis of any one-dimensional space and thus
represents neither a point nor a line.

8.2.6 Incidence of points and lines

We say that a point x is incident with line l if and only if it can generate the
line with another point y, Figure 8.7. In the representation of subspaces

16
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Figure 8.7: A point x is incident with a line l if and only if it can generate
the line with another point y. Lines in A3 representing the
point and the line are perpendicular to each other.

of R3, it means that
#l

J

β̄
#xβ “ 0 (8.23)

This means that the one-dimensional subspace of R3 representing the
line is orthogonal to the one-dimensional subspace ofR3 representing the
point w.r.t. the standard (Euclidean) scalar product. In the geometrical
model of the real projective plane it means that the line ofA3 representing
x is perpendicular to line ofA3 representing l.
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Let us write explicitly the coordinates of the bases generating the one-
dimensional subspaces as

#xβ “

»

–

x
y
z

fi

fl
#lβ̄ “

»

–

a
b
c

fi

fl

then we get
a x ` b y ` c z “ 0

and for affine points represented with z “ 1 this formula reduces to

a x ` b y ` c “ 0

which is the familiar equation of a line in the two dimensional real affine
plane.

8.2.7 Join of points

Every two distinct points x and y in the real projective plane are incident
with exactly one line l. The join of two distinct points is the unique line
passing through them.

In the real projective plane, two distinct points are represented by two
different one-dimensional subspaces with bases #x and #y.

The homogeneous coordinates of this line, i.e. the coordinates of the
basic vectors of the one-dimensional subspace representing the line, can
be obtained by solving the following system of homogeneous equations

for coordinates of the vector#l

#l
J

β̄
#xβ “ 0 (8.24)

#l
J

β̄
#yβ “ 0 (8.25)

w.r.t. β and β̄ in R3. The set of solutions forms the one-dimensional
subspace that represents the line l.

18



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

eplacements

A3

A2

O

#x#y

l

#l

Figure 8.8: The join of two distinct points is the unique line passing
through them.

We have seen in Section 1.3 that vector #lβ̄ can be conveniently con-
structed by the vector product as

#lβ̄ “ #xβ ˆ #yβ (8.26)

Notice, that in the real projective plane as well as in the real affine plane, there is
exactly one line incident with two distinct points.

8.2.8 Meet of lines

Every two distinct lines k and l in a projective plane are incident exactly
to one point x. The meet of two distinct lines is the unique point incident
with them.
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Figure 8.9: The meet of two distinct lines is the unique point incident with
them.

In the real projective plane, two distinct lines are represented by two

different one-dimensional subspaces with bases #k and#l.
The homogeneous coordinates of this point, i.e. the coordinates of the

vectors in the one-dimensional subspace representing the point, can be
obtained by solving the following system of homogeneous equations for
coordinates of the vector #x w.r.t. β in R3

#k
J

β̄
#xβ “ 0

#l
J

β̄
#xβ “ 0

The set of solutions forms the one-dimensional subspace that represents
point x. To get one basic vector in the subspace, we may again employ the

20
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vector product in R3 and compute

#xβ “ #kβ̄ ˆ#lβ̄

Notice, that in the real projective plane there is exactly one point incident to
two distinct lines.

This is not true in an affine plane because there are (parallel) lines that
have no point in common!

8.3 Line coordinates under homography

Let us now investigate the behavior of homogeneous coordinates of lines
in projective plane mapped by a homography.

Let us have two points represented by vectors #xβ, #yβ. We now map
the points, represented by vectors #xβ, #yβ, by a homography, represented
by matrix H, to points represented by vectors #x 1

β 1 , #y 1
β 1 such that there are

λ1,λ2 P R,λ1λ2 ‰ 0

λ1 #x
1
β 1 “ H #xβ (8.27)

λ2 #y 1
β 1 “ H #yβ (8.28)

Homogeneous coordinates #pβ̄ of the line passing through points repre-

sented by #xβ, #yβ̄ and homogeneous coordinates #p 1
β̄ 1 of the line passing

through points represented by #x 1
β 1 , #y 1

β 1 are obtained by solving the linear
systems

#pJ
β̄
#xβ “ 0 and #p 1

β̄ 1

J
#x 1
β 1 “ 0 (8.29)

#pJ
β̄
#yβ “ 0 #p 1

β̄ 1

J
#y 1
β 1 “ 0 (8.30)
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for a non-trivial solutions. Writing down the incidence of points and lines,
we get

λ1 #p
J
β̄ H

´1 #x 1
β 1 “ 0 ô #pJ

β̄ H
´1 #x 1

β 1 “ 0

λ2 #pJ
β̄ H

´1 #y 1
β 1 “ 0 ô #pJ

β̄ H
´1 #y 1

β 1 “ 0

We see that #p 1
β̄ 1 and H´J#pβ̄ are solutions of the same set of homogeneous

equations. When #xβ, #yβ are independent, then there is λ P R such that

λ#p 1
β̄ 1 “ H´J#pβ̄ (8.31)

since the solution space is one-dimensional. Equation 8.31 gives the rela-
tionship between homogeneous coordinates of a line and its image under
homography H.

8.3.1 Join under homography

Let us go one step further and establish formulas connecting line coordi-
nates constructed by vector products. Construct joins as

#pβ̄ “ #xβ ˆ #yβ and #p 1
β̄ 1 “ #x 1

β 1 ˆ #y 1
β 1 (8.32)

and use Equation 1.50 to get

#xβ 1 ˆ #yβ 1 “
H´J

|H´J|
p#xβ ˆ #yβq (8.33)

pλ1 #x
1
β 1q ˆ pλ2 #y 1

β 1q “
H´J

|H´J|
p#xβ ˆ #yβq (8.34)

#x 1
β 1 ˆ #y 1

β 1 “
H´J

λ1 λ2 |H´J|
p#xβ ˆ #yβq (8.35)

#p 1
β̄ 1 “

H´J

λ1 λ2 |H´J|
#pβ̄ (8.36)
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8.3.2 Meet under homography

Let us next look at the meet. Let point #x be the meet of lines #p and #q
with line cordinates #pβ̄, #qβ̄, which are related by a homography H to line

coordinates #p 1
β̄ 1 and #q 1

β̄ 1 by

λ1 #p
1
β̄ 1 “ H´J #pβ̄ (8.37)

λ2 #q 1
β̄ 1 “ H´J #qβ̄ (8.38)

for some non-zero λ1, λ2. Construct meets as

#xβ “ #pβ̄ ˆ #qβ̄ and #x 1
β 1 “ #p 1

β̄ 1 ˆ #q 1
β̄ 1 (8.39)

and, similarly as above, use Equation 1.50 to get

#x 1
β 1 “

pH´Jq´J

λ1 λ2 |pH´Jq´J|
#xβ “

H

λ1 λ2 |H|
#xβ (8.40)

8.3.3 Meet of join under homography

We can put the above together to get meet of join under homography. We
consider two pairs of points represented by their homogeneous coordi-
nates #xβ, #yβ, and #zβ, #wβ and the corresponding pairs of points with their
homogeneous coordinates #x 1

β 1 , #y 1
β 1 , and #z 1

β 1 , #w 1
β 1 related by homography H

as

λ1 #x
1
β 1 “ H #xβ , λ2 #y 1

β 1 “ H #yβ , λ3#z 1
β 1 “ H#zβ , λ4 #w

1
β 1 “ H #wβ (8.41)
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Let us now consider point

#v 1
β 1 “ p#x 1

β 1 ˆ #y 1
β 1q ˆ p#z 1

β 1 ˆ #w 1
β 1q (8.42)

“
ˆ

H´J

λ1 λ2 |H´J|
p#xβ ˆ #yβq

˙

ˆ
ˆ

H´J

λ3 λ4 |H´J|
p#zβ ˆ #wβq

˙

(8.43)

“
H |H|

λ1 λ2 λ3 λ4
p#xβ ˆ #yβq ˆ p#zβ ˆ #wβq (8.44)

“
H |H|

λ1 λ2 λ3 λ4
#vβ (8.45)

8.3.4 Note on homographies that are rotations

First notice that homogeneous coordinats of points and lines constructed
as combinations of joins and meets indeed behave under a homography as
homogeneous coordinates constructed from affine coordinates of points.

Secondly, when the homography is a rotation and homogeneous coor-
dinates are unit vecors, all λ’s become equal to one, the determinant of H is
one and H´J “ H. Therefore, all homogeneous coordinates in the previous
formulas become related just by H.

8.4 Vanishing points

When modeling perspective projection in the affine space with affine pro-
jection planes, we meet somewhat unpleasant situations. For instance,
imagine a projection of two parallel lines K,L, which are in a plane τ in
the space into the projection plane π through the center C, Figure 8.10.

The lines K,L project to image lines k, l. As we go with two points X,Y
along the lines k, l away from the projection plane, their images x, y get
closer and closer to the point v in the image but they do not reach point v.
We shall call this point of convergence of lines K, L the vanishing point7.

7Úběžnı́k in Czech.
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Figure 8.10: Vanishing point v is the point towards projections x an y tend
as X and Y move away from π but which they never reach.

8.5 Vanishing line and horizon

If we take all sets of parallel lines in τ, each set with a different direction,
then all the points of convergence in the image will fill a complete line h.

The line h is called the vanishing line or the horizon8 when τ is the ground
plane.

Now, imagine that we project all points from τ to π using the affine
geometrical projection model. Then, no point from τ will project to h.
Similarly, when projecting in the opposite direction, i.e. π to τ, line h has
no image, i.e. it does not project anywhere to τ.

8Horizont in Czech
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C
h

τ

π

Figure 8.11: Vanishing line (horizon) h is the line of vanishing points.

When using the affine geometrical projection model with the real pro-
jective plane to model the perspective projection (which is equivalent to
the algebraic model in R3), all points of the projective plane τ (obtained
as the projective completion of the affine plane τ) will have exactly one
image in the projective plane π (obtained as the projective completion
of the affine plane π) and vice versa. This total symmetry is useful and
beautiful.
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