Elements of Geometry for Computer Vision and Computer Graphics

2021 Lecture 4

Tomas Pajdla
pajdla@cvut.cz

Sunday 14th February, 2021
Figure 6.4: A calibrated camera pose can be computed from projections of three known points.

6.3 Calibrated camera pose computation

We have seen how to find (uncalibrated) perspective camera pose from projections of known six points. In fact, we have recovered the calibration of the camera. Next we shall show that when the calibration is known, we are able to find the pose of the camera from projections of three points. This is a very classical problem which has been known since [14].

Figure [6.4](#) shows a camera with center C, which projects three points X_1, X_2 and X_3, represented by vectors $\vec{X}_1\delta$, $\vec{X}_2\delta$ and $\vec{X}_3\delta$ in (O, δ), into image points represented by $\vec{x}_1\beta$, $\vec{x}_2\beta$ and $\vec{x}_3\beta$.

\[P = [KR | - KR C_\delta] \]
§ 1 Classical formulation of the calibrated camera pose computation

We introduce distances between pairs of points as
\[d_{12} = ||\vec{X}_2 - \vec{X}_{1\delta}||, \quad d_{23} = ||\vec{X}_3 - \vec{X}_{2\delta}||, \quad d_{31} = ||\vec{X}_{1\delta} - \vec{X}_{3\delta}|| \] (6.57)

Since we see three different points, we know that all distances are positive.

Points \(X_1, X_2 \) and \(X_3 \) are in \((\vec{C}, \gamma)\) represented by vectors
\[\eta_i \vec{x}_i \gamma = \eta_i \vec{x}_i \beta, \quad i = 1, 2, 3 \] (6.58)

with \(\eta_i \) representing the distance from \(C \) to \(X_i \). Distances \(\eta_i \) are positive since otherwise we could not see the points.

§ 2 Computing distances to the camera center

Calibrated perspective camera measures angles between projection rays
\[c_{ij} = \cos \angle(\vec{x}_i, \vec{x}_j) = \frac{\vec{x}_i^T K^{-1} \vec{x}_j}{||K^{-1} \vec{x}_i|| ||K^{-1} \vec{x}_j||}, \quad i = 1, 2, 3, \quad j = (i - 1) \text{mod} 3 + 1 \] (6.59)

Hence we have all quantities \(\eta_i, \cos \angle(\vec{x}_i, \vec{x}_j) \) and \(d_{ij} \), which we need to construct a set of equations using the rule of cosines
\[d_{ij}^2 = \eta_i^2 + \eta_j^2 - 2 \eta_i \eta_j \cos \angle(\vec{x}_i, \vec{x}_j), \quad \text{i.e.} \]

\[
\begin{align*}
 d_{12}^2 &= \eta_1^2 + \eta_2^2 - 2 \eta_1 \eta_2 c_{12} & \text{Solve} \\
 d_{23}^2 &= \eta_2^2 + \eta_3^2 - 2 \eta_2 \eta_3 c_{23} & \text{Solve} \\
 d_{31}^2 &= \eta_3^2 + \eta_1^2 - 2 \eta_3 \eta_1 c_{31} & \text{Solve}
\end{align*}
\] (6.60, 6.61, 6.62)

with \(c_{ij} = \cos \angle(\vec{x}_i, \vec{x}_j) \).

We have three quadratic equations in three variables. We shall solve this system by manipulating the three equations to generate one equation in one variable, solving it and then substituting back to get the remaining two variables.
§ 3 A classical solution

Let us first get two equations in two variables. Let us generate new equations by multiplying the left hand side of (6.60) and (6.62) by the right hand side of (6.61) and right hand side of (6.60) and (6.62) by the left hand side of (6.61).

\[
\begin{align*}
\eta_1^2 + \eta_3^2 - 2 \eta_2 \eta_3 c_{23} &= d_{12}^2 (\eta_1^2 + \eta_2^2 - 2 \eta_1 \eta_2 c_{12}) \\
\eta_1^2 + \eta_3^2 - 2 \eta_2 \eta_3 c_{23} &= d_{31}^2 (\eta_1^2 + \eta_2^2 - 2 \eta_3 \eta_1 c_{31})
\end{align*}
\] (6.63)

We could have made three different choices which equation to use twice but since all \(d_{ij} \neq 0\), and hence all sides of the equations are nonzero, all the choices are equally valid.

We have now two equations with three variables but since the equations are homogeneous, we will be able to reduce the number of variables to two by dividing equations by (e.g.) \(\eta_1^2\) (which is non-zero) to get

\[
\begin{align*}
d_{12}^2 (\eta_{12}^2 + \eta_{13}^2 - 2 \eta_{12} \eta_{13} c_{23}) &= d_{23}^2 (1 + \eta_{12}^2 - 2 \eta_{12} c_{12}) \\
d_{31}^2 (\eta_{12}^2 + \eta_{13}^2 - 2 \eta_{12} \eta_{13} c_{23}) &= d_{23}^2 (1 + \eta_{13}^2 - 2 \eta_{13} c_{31})
\end{align*}
\] (6.65)

with \(\eta_{12} = \frac{\eta_2}{\eta_1}\) and \(\eta_{13} = \frac{\eta_3}{\eta_1}\). Notice that we have a simpler situation than before with only two quadratic equations in two variables. Let us proceed further towards one equation in one variable.

We rearrange the terms to get a polynomial in \(\eta_{13}\) on the left and the rest on the right

\[
\begin{align*}
\eta_{13}^2 (d_{12}^2 - d_{23}^2) + (-2 d_{12}^2 \eta_{12} c_{23}) \eta_{13} &= d_{23}^2 (1 + \eta_{12}^2 - 2 \eta_{12} c_{12}) - d_{12}^2 \eta_{12}^2 \\
(d_{31}^2 - d_{23}^2) \eta_{13}^2 + (2 d_{23}^2 c_{31} - 2 d_{31}^2 \eta_{12} c_{23}) \eta_{13} &= d_{23}^2 - d_{31}^2 \eta_{12}^2
\end{align*}
\] (6.67)

to get two quadratic equations

\[
\begin{align*}
m_1 \eta_{13}^2 + p_1 \eta_{13} &= q_1 \\
m_2 \eta_{13}^2 + p_2 \eta_{13} &= q_2
\end{align*}
\] (6.68)
in η_{13} with
\begin{align}
m_1 &= d_{12}^2 \\
p_1 &= -2d_{12}^2 \eta_{12} c_{23} \\
q_1 &= d_{23}^2 (1 + \eta_{12}^2 - 2 \eta_{12} c_{12}) - d_{12}^2 \eta_{12}^2 \\
m_2 &= d_{31}^2 - d_{23}^2 \\
p_2 &= 2d_{23}^2 c_{31} - 2d_{31}^2 \eta_{12} c_{23} \\
q_2 &= d_{23}^2 - d_{31}^2 \eta_{12}^2
\end{align}

We have “hidden” the variable η_{12} in the new coefficients. We can now look upon Equations 6.68 as on a linear system:
\[
\begin{bmatrix}
m_1 & p_1 \\
m_2 & p_2
\end{bmatrix}
\begin{bmatrix}
\eta_{13}^2 \\
\eta_{13}
\end{bmatrix}
= \begin{bmatrix}
q_1 \\
q_2
\end{bmatrix}
\] (6.75)

The matrix of the system (6.75) either is or is not singular.

§ 4 Case A If it is not singular, we can solve the system by Cramer’s rule [3, 4, 2]
\[
\eta_{13}^2 \begin{vmatrix}
m_1 & p_1 \\
m_2 & p_2
\end{vmatrix}
= \begin{vmatrix}
q_1 & p_1 \\
q_2 & p_2
\end{vmatrix}
\] (6.76)
\[
\eta_{13} \begin{vmatrix}
m_1 & p_1 \\
m_2 & p_2
\end{vmatrix}
= \begin{vmatrix}
m_1 & q_1 \\
m_2 & q_2
\end{vmatrix}
\] (6.77)
giving
\[
\eta_{13}^2 (m_1 p_2 - m_2 p_1) = q_1 p_2 - q_2 p_1
\] (6.78)
\[
\eta_{13} (m_1 p_2 - m_2 p_1) = (m_1 q_2 - m_2 q_1)^2
\] (6.79)
Eliminating η_{13} (by squaring the second equation, multiplying the first one by $m_1 p_2 - m_2 p_1$, which is non-zero, and comparing the left hand sides) yields
\[
(m_1 p_2 - m_2 p_1) (q_1 p_2 - q_2 p_1) = (m_1 q_2 - m_2 q_1)^2
\] (6.80)
Substituting Formulas [6.69], [6.74] into Equation [6.80] yields

\[0 = a_4 \eta_{12}^4 + a_3 \eta_{12}^3 + a_2 \eta_{12}^2 + a_1 \eta_{12} + a_0 \]

(6.81)

with coefficients

\[a_4 = -d_{23}^8 - d_{12}^4 d_{23}^4 - d_{23}^4 d_{31}^4 - 2 d_{12}^2 d_{23}^2 d_{31}^2 + 2 d_{12}^2 d_{23}^2 d_{31}^2 + 2 d_{12}^2 d_{23}^2 \]

(6.82)

\[a_3 = 4 d_{12}^4 d_{23}^4 c_{31} c_{23} - 4 d_{12}^4 d_{23}^2 c_{12} - 4 d_{12}^2 d_{23}^2 d_{31}^2 + 4 d_{12}^4 c_{12} d_{31}^4 + 4 d_{12}^2 d_{23}^2 c_{12}^3 c_{23} - 8 d_{12}^2 c_{23}^2 d_{23}^2 d_{31}^2 c_{12} - 8 d_{12}^2 c_{12}^2 d_{31}^2 c_{12}
\]

(6.83)

\[a_2 = 8 d_{12}^2 d_{23}^2 c_{12} d_{31}^3 + 4 d_{12}^2 d_{23}^2 d_{31}^2 - 2 d_{12}^2 d_{23}^2 d_{31}^2 + 2 d_{12}^2 d_{23}^2 d_{31}^2 - 4 d_{12}^4 d_{23}^2 c_{31}^2
\]

(6.84)

\[a_1 = 4 d_{12}^4 c_{12} d_{23}^4 + 4 d_{12}^4 d_{23}^2 c_{31} c_{12} + 4 d_{12}^4 c_{12} d_{23}^6 c_{31}
\]

(6.85)

\[a_0 = 2 d_{23}^2 d_{31}^2 + 2 d_{12}^2 d_{23}^2 d_{31}^2 - d_{12}^2 d_{23}^2 d_{31}^2 + 4 d_{12}^4 d_{23}^2 c_{31}^2
\]

(6.86)

We will use eigenvalue computation to find a numerical solution to Equation [6.81]. Construct the following companion matrix

\[
C = \begin{bmatrix}
0 & 0 & 0 & -a_0 \\
1 & 0 & 0 & -a_1 \\
0 & 1 & 0 & -a_2 \\
0 & 0 & 1 & -a_3
\end{bmatrix}
\]

(6.87)

and observe that

\[
| \eta_{12} I - C | = \eta_{12}^4 + \frac{a_3}{a_4} \eta_{12}^3 + \frac{a_2}{a_4} \eta_{12}^2 + \frac{a_1}{a_4} \eta_{12} + \frac{a_0}{a_4}
\]

(6.88)
Therefore, a numerical approximation of η_{12} can be obtained by computing, e.g., $\gg\text{eig}(C)$ in Matlab. Complex solutions are artifacts of the method and should not be further considered. For every real solution, we can then substitute back to Equation 6.79 to obtain the corresponding

$$
\eta_{13} = \frac{m_1 q_2 - m_2 q_1}{m_1 p_2 - m_2 p_1}
$$

(6.89)

$$
= \frac{d_{12}^2 (d_{23}^2 - d_{31}^2 \eta_{12}) + (d_{23}^2 - d_{31}^2) (d_{23}^2 (1 + \eta_{12}^2 - 2 \eta_{12} c_{12}) - d_{12}^2 \eta_{12}^2)}{2 d_{12}^2 (d_{23}^2 c_{31} - d_{31}^2 c_{23} \eta_{12}) + 2 (d_{31}^2 - d_{23}^2) d_{12}^2 c_{23} \eta_{12}}
$$

To get η_1, η_2, and η_3, we consider Equation 6.60, which can be rearranged as

$$
d_{12}^2 = \eta_1^2 (1 + \eta_{12}^2 - 2 \eta_{12} c_{12})
$$

(6.90)

and hence yields positive

$$
\eta_1 = \frac{d_{12}}{\sqrt{1 + \eta_{12}^2 - 2 \eta_{12} c_{12}}}
$$

(6.91)

$$
\eta_2 = \eta_1 \eta_{12}
$$

(6.92)

$$
\eta_3 = \eta_1 \eta_{13}
$$

(6.93)

§ 5 Case B Let us now look at what happens when the matrix of the system (6.75) is singular. Then, after substituting m_1, m_2, p_1 and p_2 from Equations 6.69–6.74 we have

$$
m_1 p_2 - m_2 p_1 = 0
$$

(6.94)

$$
-2 d_{12}^2 d_{23}^2 (\eta_{12} c_{23} - c_{31}) = 0
$$

(6.95)

$$
\eta_{12} c_{23} = c_{31}
$$

(6.96)

We used the fact that neither $d_{12} \neq 0$ nor $d_{23} \neq 0$.

Algebraic formulation of the absolute celebrated camera pose (PSP)

4 solutions \rightarrow 1 sol

in reality take additional pts \rightarrow clean!
§ 6 Case B1 When $c_{23} \neq 0$, then we get

$$\eta_{12} = \frac{c_{31}}{c_{23}}$$ \hspace{1cm} (6.97)

Substituting it to Equations 6.65 we get

$$d_{12}^2 \left(\left(\frac{c_{31}}{c_{23}} \right)^2 + \eta_{13}^2 - 2 \frac{c_{31}}{c_{23}} \eta_{13} c_{23} \right) = d_{23}^2 \left(1 + \left(\frac{c_{31}}{c_{23}} \right)^2 - 2 \frac{c_{31}}{c_{23}} c_{12} \right)$$ \hspace{1cm} (6.98)

$$d_{12}^2 \left(c_{31}^2 + c_{23} \eta_{13}^2 - 2 c_{31} c_{23} \eta_{13} \right) = d_{23}^2 \left(c_{23}^2 + c_{31}^2 - 2 c_{31} c_{23} c_{12} \right)$$ \hspace{1cm} (6.99)

and after some more manipulation obtain a quadratic equation

$$(d_{12}^2 c_{23}^2) \eta_{13}^2 + (-2 d_{12}^2 c_{23} c_{31}) \eta_{13} + d_{12}^2 c_{31}^2 - d_{23}^2 c_{23}^2 - d_{23}^2 c_{31}^2 + 2 d_{23}^2 c_{12} c_{23} c_{31} = 0$$ \hspace{1cm} (6.100)

in η_{13}. We get η_1, η_2 and η_3 from Equations 6.91, 6.92, 6.93.

§ 7 Case B2 When $c_{23} = 0$, then it follows from Equation 6.96 that $c_{31} = 0$ as well. Returning back to equations 6.65, 6.66 provides

$$d_{12}^2 (\eta_{12}^2 + \eta_{13}^2) = d_{23}^2 (1 + \eta_{12}^2 - 2 \eta_{12} c_{12})$$ \hspace{1cm} (6.101)

$$d_{31}^2 (\eta_{12}^2 + \eta_{13}^2) = d_{23}^2 (1 + \eta_{13}^2)$$ \hspace{1cm} (6.102)

Expressing η_{13} from Equation 6.102 gives

$$(d_{23}^2 - d_{31}^2) \eta_{13}^2 = d_{31}^2 \eta_{12}^2 - d_{23}^2$$ \hspace{1cm} (6.103)

§ 8 Case B2.1 When $d_{23}^2 \neq d_{31}^2$, then we can write

$$\eta_{13}^2 = \frac{d_{31}^2 \eta_{12}^2 - d_{23}^2}{d_{23}^2 - d_{31}^2}$$ \hspace{1cm} (6.104)
to substitute it into Equation 6.101
\[d_{12}^2 \left(\eta_{12} + \frac{d_{31}^2 \eta_{12} - d_{23}^2}{d_{23}^2 - d_{31}^2} \right) = d_{23}^2 (1 + \eta_{12}^2 - 2 \eta_{12} c_{12}) \] (6.105)
which we further manipulate to get a quadratic equation in \(\eta_{12} \)
\[(d_{12}^2 - d_{23}^2 + d_{31}^2) \eta_{12}^2 + 2 c_{12} (d_{23}^2 - d_{31}^2) \eta_{12} + d_{31}^2 - d_{12}^2 - d_{23}^2 = 0 \] (6.106)
We get \(\eta_1, \eta_2 \) and \(\eta_3 \) from Equations 6.91, 6.92, 6.93.

§ 9 Case B2.2 Finally, when \(d_{23}^2 = d_{31}^2 \), then we get from Equation 6.103
\[\eta_{12} = 1 \] (6.107)
and from Equation 6.101
\[\eta_{13}^2 = \frac{d_{23}^2}{d_{12}^2} (2 - 2 c_{12}) - 1 \] (6.108)
and hence the positive
\[\eta_{13} = \sqrt{\frac{d_{23}^2}{d_{12}^2} (2 - 2 c_{12}) - 1} \] (6.109)

We get \(\eta_1, \eta_2 \) and \(\eta_3 \) from Equations 6.91, 6.92, 6.93.

§ 10 Selecting solutions The above process of \(\eta_i \) computation often delivers several solutions. It is important to notice that some of them may not satisfy the original Equations 6.62–6.60. For instance, we always obtain solutions for the case A as well as for some of the cases B but only one of the cases is actually valid. Hence, we need to select only the solutions that satisfy Equations 6.62–6.60 and are meaningful, i.e. are real and positive.
§ 11 A modern (more elegant) solution

The classical solution is perfectly valid but it was quite tedious to derive it. Let us now present another, somewhat more elegant, solution, which exploits some of more recent results of algebraic geometry [15, 16].

Let us consider Equations 6.60, 6.61, 6.62 and proceed to Equations 6.65, 6.66, but, this time, using all three pairs to get three equations in η_{12}, η_{13}:

\[
\begin{align*}
 f_1 &= d_{12}^2 \left(\eta_{12}^2 + \eta_{13}^2 - 2 \eta_{12} \eta_{13} c_{23}\right) - d_{23}^2 \left(1 + \eta_{12}^2 - 2 \eta_{12} c_{12}\right) = 0 \\
 f_2 &= d_{31}^2 \left(\eta_{12}^2 + \eta_{13}^2 - 2 \eta_{12} \eta_{13} c_{23}\right) - d_{23}^2 \left(1 + \eta_{13}^2 - 2 \eta_{13} c_{31}\right) = 0 \\
 f_3 &= d_{12}^2 \left(1 + \eta_{13}^2 - 2 \eta_{13} c_{31}\right) - d_{31}^2 \left(1 + \eta_{12}^2 - 2 \eta_{12} c_{12}\right) = 0
\end{align*}
\] (6.110)

It is known [15, 16] that solutions to a set of k algebraic equations

\[f_i(x_1, \ldots, x_n) = 0, \quad i = 1 \ldots, k \] (6.113)

in n variables, which have a finite number of solutions, can always be obtained by deriving a polynomial $g(x_n) = 0$ in the last variable by the following procedure. If the system, does not have any solution, the procedure will generate polynomial $g_n = 1$, i.e. a non-zero constant, leading to the contradiction $1 = 0$.

The procedure is as follows. First generate new equations by multiplying all f_i by all possible monomials up to degree m

\[x_1, \ldots, x_n, x_1^2, x_2, \ldots, x_n^2, x_1 x_2, \ldots, x_n^m \] (6.114)

to get equations

\[f_1 = 0, \ldots, f_n = 0, x_1 f_1 = 0, \ldots, x_n f_n = 0, x_1^2 f_1 = 0, x_1 x_2 f_1 = 0, \ldots, x_n^m f_n = 0 \] (6.115)

The degree m needs to be chosen such that the next step yields the desired result. It is always possible to choose such m but it may sometimes be found only by using more and more monomials until the Gaussian elimination of the matrix of coefficients, which combine monomials, does not
produce a row corresponding to an equation in η_1 only. Let us demonstrate this process by solving our problem.

We use the following four monomials of maximal degree two

$$
\eta_{12}, \eta_{13}, \eta_{12} \eta_{13}, \eta_{12}^2
$$

(6.116)

Notice that we did not include the second degree monomial η_{13}^2 since it turns out that equations generated by that monomial are not necessary. We obtain $15 = 3 + 4 \times 3$ equations

$$
\begin{pmatrix}
\eta_{12} f_1 \\
\eta_{12} f_2 \\
\eta_{12} f_3 \\
\eta_{13} f_1 \\
\eta_{13} f_2 \\
\eta_{13} f_3 \\
\eta_{12} \eta_{13} f_1 \\
\eta_{12} \eta_{13} f_2 \\
\eta_{12} \eta_{13} f_3 \\
\eta_{12}^2 f_1 \\
\eta_{12}^2 f_2 \\
\eta_{12}^2 f_3 \\
\end{pmatrix}
= \mathbf{M}
= \mathbf{M} \mathbf{m} = 0
$$

(6.117)

with

$$
\mathbf{M} =
\begin{bmatrix}
0 & 0 & 0 & 0 & m_1 & 0 & 0 & 0 & -m_7 & 0 & 0 & 0 & m_4 & m_8 & -m_2 \\
0 & 0 & 0 & 0 & m_5 & 0 & 0 & 0 & m_6 & -m_{10} & 0 & 0 & -m_3 & 0 & m_2 \\
0 & 0 & 0 & 0 & -m_1 & 0 & 0 & 0 & m_{11} & 0 & 0 & m_3 & -m_{12} & m_6 \\
0 & 0 & 0 & m_1 & 0 & 0 & -m_7 & 0 & 0 & m_4 & m_6 & -m_2 & 0 & 0 & 0 \\
0 & 0 & 0 & m_5 & 0 & -m_9 & 0 & m_6 & -m_{10} & 0 & m_4 & m_8 & -m_2 & 0 & 0 \\
0 & 0 & -m_1 & 0 & 0 & -m_{11} & 0 & m_5 & -m_{10} & 0 & m_3 & -m_{12} & m_6 & 0 & 0 \\
0 & 0 & m_1 & 0 & 0 & m_5 & 0 & m_9 & -m_{10} & 0 & -m_3 & 0 & m_2 & 0 & 0 \\
0 & 0 & m_5 & 0 & m_9 & -m_{10} & 0 & -m_3 & 0 & m_2 & 0 & 0 & 0 & 0 & 0 \\
-m_1 & 0 & 0 & m_1 & 0 & m_5 & 0 & m_9 & -m_{10} & 0 & m_3 & -m_{12} & m_6 & 0 & 0 \\
0 & 0 & m_1 & 0 & m_5 & 0 & m_9 & -m_{10} & 0 & m_3 & -m_{12} & m_6 & 0 & 0 & 0 \\
0 & 0 & -m_1 & 0 & m_5 & 0 & m_9 & -m_{10} & 0 & m_3 & -m_{12} & m_6 & 0 & 0 & 0 \\
0 & 0 & -m_1 & 0 & 0 & 0 & 0 & m_{11} & 0 & 0 & m_3 & -m_{12} & m_6 & 0 & 0 \\
\end{bmatrix}
$$

(6.118)
Matrix \mathbf{M} contains coefficients and vector \mathbf{m} contains the monomials.

Notice in Equation 6.117 that the last five monomials contain only on η_{12}. We have deliberately ordered monomials to achieve this. Next, we do Gaussian elimination (with pivoting) of matrix \mathbf{M} and get a new matrix \mathbf{M}'.

One can verify that that the 10th row of \mathbf{M}' has the first nine elements equal to zero. Therefore

$$\mathbf{M}'_{10}: \mathbf{m} = 0 \quad (6.120)$$

is a polynomial only in η_{12}. In fact, it is exactly a non-zero multiple of polynomials obtained in cases A, B1, B2.1 and B2.2 above.

Discussion of the cases happens in the Gaussian elimination with pivoting, which avoids dividing by elements close to zero. The resulting polynomial may be of degree four (case A) but will have lower degrees in other cases.

§ 12 Computing camera orientation and camera center Having quantities η_1, η_2, η_3, we shall compute camera projection center \vec{C}_δ and camera rotation \mathbf{R} from Equation 6.24.

The three points X_1, X_2 and X_3 are represented in the world coordinate system (O, δ) by vectors $\vec{X}_{1\delta}, \vec{X}_{2\delta}$ and $\vec{X}_{3\delta}$. With known η_1, η_2, η_3, we can represent them also in the camera (orthonormal) coordinate system (C, ϵ) by vectors

$$\vec{y}_{ic} = \eta_i \frac{\vec{x}_{ic}}{||\vec{x}_{ic}||} = \eta_i \frac{f \vec{x}_{iy}}{||f \vec{x}_{iy}||} = \eta_i \frac{\vec{x}_{iy}}{||\vec{x}_{iy}||}, \quad i = 1, 2, 3 \quad (6.121)$$
Coordinate vectors $\vec{X}_{i\delta}$ are related to coordinate vectors \vec{Y}_{ie} as follows

$$\vec{Y}_{1e} = R (\vec{X}_{1\delta} - \vec{C}_\delta) \quad \text{(6.122)}$$
$$\vec{Y}_{2e} = R (\vec{X}_{2\delta} - \vec{C}_\delta) \quad \text{(6.123)}$$
$$\vec{Y}_{3e} = R (\vec{X}_{3\delta} - \vec{C}_\delta) \quad \text{(6.124)}$$

There are three vector equations in \mathbb{R}^3, which is nine scalar equations, and 12 unknowns in R and \vec{C}_δ. Additional seven equations are provided by the fact that R is an orthonormal matrix, i.e. $R^T R = I$ and $|R| = 1$.

To compute R, we shall next eliminate \vec{C}_δ from Equations 6.122–6.124

$$\vec{Y}_{2e} - \vec{Y}_{1e} = R (\vec{X}_{2\delta} - \vec{X}_{1\delta}) \quad \text{(6.125)}$$
$$\vec{Y}_{3e} - \vec{Y}_{1e} = R (\vec{X}_{3\delta} - \vec{X}_{1\delta}) \quad \text{(6.126)}$$

and use the property (Equation 1.50 in Section 1.3)

$$\vec{X}_e \times \vec{Y}_e = \frac{R^{-T}}{|R^{-T}|} (\vec{X}_\delta \times \vec{Y}_\delta) = R (\vec{X}_\delta \times \vec{Y}_\delta) \quad \text{(6.127)}$$

of the vector product of any two vectors \vec{X}, \vec{Y} in \mathbb{R}^3 and an orthonormal matrix R to write

$$(\vec{Y}_{2e} - \vec{Y}_{1e}) \times (\vec{Y}_{3e} - \vec{Y}_{1e}) = \left(R (\vec{X}_{2\delta} - \vec{X}_{1\delta}) \right) \times \left(R (\vec{X}_{3\delta} - \vec{X}_{1\delta}) \right) \quad \text{(6.128)}$$

which provides a triplet of independent vectors expressed in the two bases

$$\vec{Z}_{2e} = \vec{Y}_{2e} - \vec{Y}_{1e}, \quad \vec{Z}_{2\delta} = \vec{X}_{2\delta} - \vec{X}_{1\delta} \quad \text{(6.130)}$$
$$\vec{Z}_{3e} = \vec{Y}_{3e} - \vec{Y}_{1e}, \quad \vec{Z}_{3\delta} = \vec{X}_{3\delta} - \vec{X}_{1\delta} \quad \text{(6.131)}$$
$$\vec{Z}_{1e} = \vec{Z}_{2e} \times \vec{Z}_{3e}, \quad \vec{Z}_{1\delta} = \vec{Z}_{2\delta} \times \vec{Z}_{3\delta} \quad \text{(6.132)}$$
Rotation R can then be recovered from

$$
\begin{bmatrix}
\vec{Z}_{1\epsilon} \\
\vec{Z}_{2\epsilon} \\
\vec{Z}_{3\epsilon}
\end{bmatrix} = R \begin{bmatrix}
\vec{Z}_{1\delta} \\
\vec{Z}_{2\delta} \\
\vec{Z}_{3\delta}
\end{bmatrix}
$$

(6.133)

as

$$
R = \begin{bmatrix}
\vec{Z}_{1\epsilon} \\
\vec{Z}_{2\epsilon} \\
\vec{Z}_{3\epsilon}
\end{bmatrix} \begin{bmatrix}
\vec{Z}_{1\delta} \\
\vec{Z}_{2\delta} \\
\vec{Z}_{3\delta}
\end{bmatrix}^{-1}
$$

(6.134)

With known R we get \vec{C}_δ as

$$
\vec{C}_\delta = X_{i\delta} - R^\top Y_{i\epsilon}, \quad i = 1, 2, 3
$$

(6.135)
§ 1 Vector product

Assume two linearly independent coordinate vectors \(\vec{x} = [x_1 \ x_2 \ x_3]^\top \) and \(\vec{y} = [y_1 \ y_2 \ y_3]^\top \) in \(\mathbb{R}^3 \). The following system of linear equations

\[
\begin{bmatrix}
 x_1 & x_2 & x_3 \\
 y_1 & y_2 & y_3 \\
 x_1 & x_2 & x_3
\end{bmatrix}
\vec{z} = 0
\]

has a one-dimensional subspace \(V \) of solutions in \(\mathbb{R}^3 \). The solutions can be written as multiples of one non-zero vector \(\vec{w} \), the basis of \(V \), i.e.

\[
\vec{z} = \lambda \vec{w}, \quad \lambda \in \mathbb{R}
\]

Let us see how we can construct \(\vec{w} \) in a convenient way from vectors \(\vec{x}, \vec{y} \).

Consider determinants of two matrices constructed from the matrix of the system (1.41) by adjoining its first, resp. second, row to the matrix of the system (1.41)

\[
\begin{vmatrix}
 x_1 & x_2 & x_3 \\
 y_1 & y_2 & y_3 \\
 x_1 & x_2 & x_3
\end{vmatrix} = 0
\]

which gives

\[
\begin{split}
x_1 (x_2 y_3 - x_3 y_2) + x_2 (x_3 y_1 - x_1 y_3) + x_3 (x_1 y_2 - x_2 y_1) &= 0 \quad (1.44) \\
y_1 (x_2 y_3 - x_3 y_2) + y_2 (x_3 y_1 - x_1 y_3) + y_3 (x_1 y_2 - x_2 y_1) &= 0 \quad (1.45)
\end{split}
\]

and can be rewritten as

\[
\begin{bmatrix}
 x_1 & x_2 & x_3 \\
 y_1 & y_2 & y_3
\end{bmatrix}
\begin{bmatrix}
 x_2 y_3 - x_3 y_2 \\
 -x_1 y_3 + x_3 y_1 \\
 x_1 y_2 - x_2 y_1
\end{bmatrix} = 0
\]

We see that vector

\[
\vec{w} = \begin{bmatrix}
 x_2 y_3 - x_3 y_2 \\
 -x_1 y_3 + x_3 y_1 \\
 x_1 y_2 - x_2 y_1
\end{bmatrix}
\]

(1.47)
solves Equation 1.41.

Notice that elements of \(\vec{w} \) are the three two by two minors of the matrix of the system (1.41). The rank of the matrix is two, which means that at least one of the minors is non-zero, and hence \(\vec{w} \) is also non-zero. We see that \(\vec{w} \) is a basic vector of \(V \). Formula 1.47 is known as the vector product in \(\mathbb{R}^3 \) and \(\vec{w} \) is also often denoted by \(\vec{x} \times \vec{y} \).

§ 2 Vector product under the change of basis

Let us next study the behavior of the vector product under the change of basis in \(\mathbb{R}^3 \). Let us have two bases \(\beta, \beta' \) in \(\mathbb{R}^3 \) and two vectors \(\vec{x}, \vec{y} \) with coordinates \(\vec{x}_\beta = \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix}^T \) and \(\vec{x}_\beta' = \begin{bmatrix} x'_1 & x'_2 & x'_3 \\ y'_1 & y'_2 & y'_3 \end{bmatrix}^T \). We introduce

\[
\vec{x}_\beta \times \vec{y}_\beta = \begin{bmatrix} x_2 y_3 - x_3 y_2 \\ -x_1 y_3 + x_3 y_1 \\ x_1 y_2 - x_2 y_1 \end{bmatrix} \quad \vec{x}_\beta' \times \vec{y}_\beta' = \begin{bmatrix} x'_2 y'_3 - x'_3 y'_2 \\ -x'_1 y'_3 + x'_3 y'_1 \\ x'_1 y'_2 - x'_2 y'_1 \end{bmatrix}
\]

(1.48)

To find the relationship between \(\vec{x}_\beta \times \vec{y}_\beta \) and \(\vec{x}_\beta' \times \vec{y}_\beta' \), we will use the following fact. For every three vectors \(\vec{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T \), \(\vec{y} = \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix}^T \), \(\vec{z} = \begin{bmatrix} z_1 & z_2 & z_3 \end{bmatrix}^T \) in \(\mathbb{R}^3 \) there holds

\[
\vec{z}^T (\vec{x} \times \vec{y}) = \begin{bmatrix} x_2 y_3 - x_3 y_2 \\ -x_1 y_3 + x_3 y_1 \\ x_1 y_2 - x_2 y_1 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{bmatrix} \begin{bmatrix} \vec{x}^T \\ \vec{y}^T \\ \vec{z}^T \end{bmatrix}
\]

(1.49)
We can write
\[
\begin{bmatrix}
\hat{\mathbf{x}}_\beta \\
\hat{\mathbf{y}}_\beta
\end{bmatrix}
\times
\begin{bmatrix}
\hat{\mathbf{x}}'_\beta \\
\hat{\mathbf{y}}'_\beta
\end{bmatrix}
=
\begin{bmatrix}
\begin{bmatrix}
\hat{\mathbf{x}}'_\beta \\
\hat{\mathbf{y}}'_\beta
\end{bmatrix}
A^T
=
\begin{bmatrix}
\frac{\mathbf{A}^{-T}}{||\mathbf{A}^{-T}||}
(\hat{\mathbf{x}}_\beta \times \hat{\mathbf{y}}_\beta)
\end{bmatrix}
\end{bmatrix}
\begin{bmatrix}
\mathbf{A}^T
\end{bmatrix}
\begin{bmatrix}
\hat{\mathbf{x}}'_\beta \\
\hat{\mathbf{y}}'_\beta
\end{bmatrix}
\end{bmatrix}
\]

\[
\hat{\mathbf{x}}'_\beta = \mathbf{A} \hat{\mathbf{y}}_\beta
\]

\[
\hat{\mathbf{y}}'_\beta = \hat{\mathbf{x}}_\beta \mathbf{A}^T
\]

\[\text{§ 3 Vector product as a linear mapping} \quad \text{It is interesting to see that for all} \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^3 \text{ there holds}
\]

\[
\mathbf{x} \times \mathbf{y} =
\begin{bmatrix}
x_2 y_3 - x_3 y_2 \\
x_1 y_3 + x_3 y_1 \\
x_1 y_2 - x_2 y_1
\end{bmatrix} =
\begin{bmatrix}
0 & -x_3 & x_2 \\
x_3 & 0 & -x_1 \\
-x_2 & x_1 & 0
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix}
\]

and thus we can introduce matrix

\[
[\mathbf{x}]_x =
\begin{bmatrix}
0 & -x_3 & x_2 \\
x_3 & 0 & -x_1 \\
-x_2 & x_1 & 0
\end{bmatrix}
\]

and write

\[
\mathbf{x} \times \mathbf{y} = [\mathbf{x}]_x \mathbf{y}
\]
Quiz