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5 Perspective camera

Modern photographic camera, Figure 5.1, is an interesting and advanced
device. We shall abstract from all physical and technical details of image
formation and will concentrate solely on its geometry. From the point of
view of geometry, a perspective camera projects point X from space into
an image point x by intersecting the line connecting X with the projection
center (red) and a planar image plane (green), Figure 5.1(b).

5.1 Perspective camera model

Let us now develop a mathematical model of the perspective camera. The
model will allow us to project space point X into image point x and to find
the ray p in space along the which point X has been projected.

§1 Camera coordinate system Figure 5.2 shows the geometry of the
perspective camera. Point X is projected along ray p from three-dimensional
space to point x into two-dimensional image. Point x is obtained as the
intersection of ray p with planar image plane π. Ray p is constructed by
joining point X with the projection center C. The plane through the projec-
tion center C, which is parallel to the image plane is called the principal
plane.

The image plane is equipped with an image coordinate system (§ 1),

po,αq, where o is the origin and α “ r#b1,#b2s is the basis of the image
coordinate system. Notice that the basis α is shown as non-orthogonal.
We want to develop a general camera model, which will be applicable
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(a) (b)

Figure 5.1: Perspective camera (a) is geometrically a point (red) and an
image plane (green) (b).

even in the situation when image coordinate system is not rectangular.
Point x is represented by vector #u in po,αq

#u “ u#b1 ` v#b2 i.e. #uα “
„

u
v



(5.1)

Three-dimensional space is equipped with a world coordinate system

pO, δq, where O is the origin and δ “ r#d1, #d2, #d3s is a three-dimensional

orthonormal basis. Point X is represented by vector #X in pO, δq. The

camera projection center is represented by vector #C in pO, δq.
Let us next define the camera coordinate system. The system will be

derived from the image coordinate system to make the construction of
coordinates of the direction vector #x of p extremely simple.

Camera coordinate system pC, βq has the origin in the projection center C

and its basis β “ r#b1,#b2,#b3s is constructed by re-using the two basis vectors

of α and adding the third basic vector #b3, which corresponds to vector
ÝÑ
Co.

We see that vectors in β form a basis when point C is not in π, which is
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Figure 5.2: Coordinate systems of perspective camera.
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satisfied for every meaningful perspective camera. Notice also that the
camera coordinate system is three-dimensional.

Image points o and x are in planeπ, which is in three-dimensional space,
and therefore we can consider them as points of that space too. Point x
is in pC, βq represented by vector #x, which is the direction vector of the
projection ray p along which point X has been projected into x. We see

that vectors #u, #x, #b3 form a triangle such that

#x “ #u `#b3 (5.2)

“ u#b1 ` v#b2 ` 1#b3 (5.3)

and therefore

#xβ “ #x
r#b1,#b2,#b3s

“

»

–

u
v
1

fi

fl “
„

#uα
1



. (5.4)

Notice that basis β has been constructed in a very special way to facilitate
construction of #xβ. We can use u, v directly since β re-uses vectors of α

and the third coordinate is always 1 by the construction of #b3. Although
we do not know exact position of C w.r.t. the image plane, we know that
it is not in the plane π and hence a meaningful camera coordinate system
constructed this way exists.

Notice next that the camera coordinate system is right-handed. This is
because when looking at a scene from a point C through the image plane,
the image is constructed by intersecting image rays with the image plane,

which is in front and hence the vector#b3 points towards the scene. We see
that vectors of β form a right-handed system.

Let us mention that we have used deeper properties of linear and affine
spaces. In particular, we were making use of the concept of free vector in

the following way. We look at vectors #b1, #b2 and #u as on a free vectors.
Therefore, coordinates of the representative of #u beginning in o with re-

spect to representatives of #b1, #b2 beginning in o equal the coordinates of
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the representative of #u beginning in C with respect to representatives of
#b1,#b2 beginning in C. Hence u, v reappear as the first two coordinates of #x.

For usual consumer cameras, vector#b3 is often much longer than vectors
#b1,#b2 and often not orthogonal to them. Therefore, basis β is in general
neither orthonormal nor orthogonal! This has severe consequences since
we can’t measure angles and distances in the space using β, unless we find
out what are the lengths of its vectors and what are the angles between
them.

§2 Perspective projection Point X has been projected along p into x.
Since #x is a direction vector of p, point X can be represented in pC, βq by

η #x (5.5)

for some real non-negative1 η. The value of η corresponds to the scaled
depth of X, i.e. the distance of X from the plane passing through C and

generated by #b1, #b2 in units equal to the distance of C from π. Value η is
not known since it “has been lost” in the process of projection2 but will
serve us to parametrize the projection ray in order to get coordinates of
all possible points in space that could project into x.

Let us now relate the coordinates #uα, which are measured in the image,

to the coordinates #Xδ, which are measured in the world coordinate system.

First consider vectors #X, #C and #x. They are coplanar and we see that there
holds

η #x “ #X ´ #C (5.6)

1Here we choose #x such that η is non-negative. Considering negative η, as in [13], may
be necessary if it is not clear how has the image coordinate systems been defined or
how has #x been chosen. For instance, if #x has been chosen to point along ray p away
from X, η would have to be negative.

2It can be recovered when a point X is observed by two cameras with different projection
centers.
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To pass to coordinates, we will use the camera coordinate system, in which
we can write

η #xβ “ #Xβ ´ #Cβ (5.7)

η

„

#uα
1



“ #Xβ ´ #Cβ (5.8)

Next we shall pass to the coordinates w.r.t. basis δ on the right hand side
of Equation 5.8 by introducing a matrix A, which transforms coordinates
of a general vector #y from basis δ to basis β, i.e.

#yβ “ A #yδ (5.9)

We know from linear algebra (§ 3) that such a matrix exists. We write

η

„

#uα
1



“ A p#Xδ ´ #Cδq

η

„

#uα
1



“ A
”

I | ´ #Cδ
ı

„

#Xδ

1



(5.10)

η

„

#uα
1



“ Pβ

„

#Xδ

1



(5.11)

η #xβ “ Pβ

„

#Xδ

1



(5.12)

with 3 ˆ 4 image projection matrix

Pβ “
”

A | ´ A #Cδ
ı

(5.13)

§3 Projection equation Equation 5.11 describes the relationship be-

tween measurement #uα in the image and measurement #Xδ in space. It

says that #Xδ is projected into #uα since there exists η such that Equation 5.11
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holds. Notice that η multiple of the vector on the left of Equation 5.11 is

obtained by a linear mapping represented by matrix Pβ from vector #Xδ on
the right.

When computing #uα from #Xδ, we actually eliminate η using the last row
of the (matricidal) equation (5.11)

#uα “

»

—

—

—

—

–

pJ
1 X

pJ
3 X

pJ
2 X

pJ
3 X

fi

ffi

ffi

ffi

ffi

fl

(5.14)

where we introduced rows of p1, p2, p3 of P and a 4 ˆ 1 vector X as follows

Pβ “

»

–

pJ
1
pJ

2
pJ

3

fi

fl and X “
„

#Xδ

1



(5.15)

Notice that the projection equation is not linear. It is a rational function of
the first order polynomials in elements of X.

§4 Projection ray Having an image point #uα, we can construct its pro-

jection ray p in space. The ray consists of all points #Y that can project to
#uα. In pC, βq, the ray is emanating from the origin C. We parametrize it by

real η and express it in pO, δq by vector #Xδ

#Yβ “ η

„

#uα
1



“ η #xβ

#Xδ “ η A´1#xβ ` #Cδ (5.16)

Notice that #Xδ (5.16) can also be obtained for a given η by solving the

system of linear equations (5.12) for #Xδ.
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5.2 Computing image projection matrix from
images of six points

Let us now consider the task of finding the Pβ from measurements. We
shall consider the situation when we can measure points in space as well
as their projection in the image. Consider a pair of such measurements

rx, y, zsJ corrØ ru, vsJ. There holds

λ

»

–

u
v
1

fi

fl “ Q

»

—

—

–

x
y
z
1

fi

ffi

ffi

fl

“ Q X (5.17)

for some real λ, 3ˆ4 matrix Q and 4ˆ1 coordinate vector X. Notice that we
introduced new symbols λ and Q to emphasize that they are determined
by Equation 5.17 up to a non-zero scale

Q “ ξ Pβ (5.18)

We will see that this will have further consequences.
Introduce symbols for rows of Q

Q “

»

–

qJ
1
qJ

2
qJ

3

fi

fl (5.19)

and rewrite the above matrix equation as

λu “ qJ
1 X (5.20)

λ v “ qJ
2 X (5.21)

λ “ qJ
3 X (5.22)
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Eliminate λ from the first two equations using the third one

pqJ
3 Xq u “ qJ

1 X (5.23)

pqJ
3 Xq v “ qJ

2 X (5.24)

move all to the left hand side and reshape it using xJy “ yJx

XJq1 ´ pu XJq q3 “ 0 (5.25)

XJq2 ´ pv XJq q3 “ 0 (5.26)

Introduce vector of parameters (which are elements of Q)

q “
“

qJ
1 qJ

2 qJ
3

‰J
(5.27)

and express the above two equations in matrix form
„

x y z 1 0 0 0 0 ´u x ´u y ´u z ´u
0 0 0 0 x y z 1 ´v x ´v y ´v z ´v



q “ 0

M q “ 0 (5.28)

Every correspondence rx, y, zsJ corrØ ru, vsJ brings two rows into the
matrix M (5.28). We need therefore at least 6 correspondences in general
position to obtain 11 linearly independent rows in Equation 5.28 to obtain
a one-dimensional space of solutions.

If Q is a solution to Equation 5.28, then τ Q is also a solution and both
determine the same projection for any positive τ since

pτ Qq X “ τ pQ Xq “ τ pλ#xβq “ pτλq #xβ (5.29)

Assuming Pβ “ τ Q leads to λ “ η{τ. We see that we can’t recover Pβ but
only its non-zero multiple. Therefore, when solving Equation 5.28, we are
looking for one-dimensional subspace of 3 ˆ 4 matrices of rank 3. Such a
subspace determines one projection. Also note that the zero matrix does
not represent any interesting projection.
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Notice that when considering more correspondences, M becomes

M q “

»

—

—

—

—

—

—

—

—

–

x1 y1 z1 1 0 0 0 0 ´u1x1 ´u1y1 ´u1z1 ´u1

x2 y2 z2 1 0 0 0 0 ´u2x2 ´u2y2 ´u2z2 ´u2
...

0 0 0 0 x1 y1 z1 1 ´v1x1 ´v1y1 ´v1z1 ´v1

0 0 0 0 x2 y2 z2 1 ´v2x2 ´v2y2 ´v2z2 ´v2
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

q “ 0

(5.30)
Matrix M can be more concisely rewritten as

M “

»

—

—

—

—

—

—

—

—

—

–

XJ
1 0J ´u1 X

J
1

XJ
2 0J ´u2 X

J
2

...
0J XJ

1 ´v1 X
J
1

0J XJ
2 ´v2 X

J
2

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.31)

with 0J “ r0, 0, 0, 0s.

§1 A more general procedure for computing Q We shall next develop
and alternative formulation for finding matrix Q. Let us come back to
Equation 5.17

λ #u “ Q X (5.32)

Above, we have eliminated λ assuming #u3 “ 1. Let us now present an
alternative procedure for eliminating λ, which works for any non-zero
#u “ ru, v,wsJ, i.e. even when w “ 0. The trick is to realize that

0 “ #u ˆ pλ #uq “ #u ˆ Q X “ r#usˆ Q X (5.33)
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§1 Kronecker product Let A be a k ˆ l matrix and B be a m ˆ n matrix

A “

»

—

—

—

–

a11 a12 ¨ ¨ ¨ a1l

a21 a22 ¨ ¨ ¨ a2l
...

...
. . .

...
ak1 ak2 ¨ ¨ ¨ akl

fi

ffi

ffi

ffi

fl

P Rkˆl and B P Rmˆn (1.83)

then k m ˆ l n matrix

C “ Ab B “

»

—

—

—

–

a11 B a12 B ¨ ¨ ¨ a1l B

a21 B a22 B ¨ ¨ ¨ a2l B
...

...
. . .

...
ak1 B ak2 B ¨ ¨ ¨ akl B

fi

ffi

ffi

ffi

fl

(1.84)

is the matrix of the Kronecker product of matrices A, B (in this order).
Notice that this product is associative, i.e. pAb Bq b C “ Ab pBb Cq, but

it is not commutative, i.e. A b B ‰ B b A in general. There holds a useful
identity pAb BqJ “ AJb BJ.

§2 Matrix vectorization Let A be an m ˆ n matrix

A “

»

—

—

—

–

a11 a12 ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2n
...

...
. . .

...
am1 am2 ¨ ¨ ¨ amn

fi

ffi

ffi

ffi

fl

P Rmˆn (1.85)

We define operator vp.q : Rmˆn Ñ Rm n which reshapes an m ˆ n matrix A
into a m nˆ1 matrix (i.e. into a vector) by stacking columns of A one above
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row sends the j-th element of an input vector to the i-th element of the
output vector. The i-the column of the transpose of J has 1 in the j-th row.
It is the only non-zero element in that row and therefore the j-th row of JJ

sends the i-th element of an input vector to the j-th element of the output
vector. We see that JJ is the inverse of J, i.e. permutation matrices are
orthogonal. We see that

J´1
mˆn “ JJ

mˆn (1.89)

and hence conclude
Jnˆm “ JJ

mˆn (1.90)

We also write vpAq “ JJ
mˆn vpAJq.

§3 From matrix equations to linear systems Kronecker product of
matrices and matrix vectorization can be used to manipulate matrix equa-
tions in order to get systems of linear equations in the standard matrix
form A x “ b. Consider, for instance, matrix equation

A X B “ C (1.91)

with matrices A P Rmˆk, X P Rkˆl, B P Rlˆn, C P Rmˆn. It can be verified by
direct computation that

vpA X Bq “ pBJb Aq vpXq (1.92)

This is useful when matrices A, B and C are known and we use Equation 1.91
to compute X. Notice that matrix Equation 1.91 is actually equivalent to
m n scalar linear equations in k l unknown elements of X. Therefore, we
should be able to write it in the standard form, e.g., as

M vpXq “ vpCq (1.93)

with some M P Rpm nqˆpk lq. We can use Equation 1.92 to get M “ BJ b A
which yields the linear system

vpA X Bq “ vpCq (1.94)

pBJb Aq vpXq “ vpCq (1.95)
26



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

This gives three equations for each #u Ø X correspondence. However, only
two of them are linearly independet since r#usˆ has rank two. Now, we are
in the position to employ Equation 1.95, which gives

r#usˆ Q X “ 0 (5.34)

XJQJ r#usJ
ˆ “ 0J (5.35)

vpXJQJ r#usJ
ˆq “ vp0Jq (5.36)

pr#usˆb XJq vpQJq “ vp0Jq (5.37)
¨

˝

»

–

0 ´w v
w 0 ´u

´v u 0

fi

flb XJ

˛

‚ vpQJq “ vp0Jq (5.38)

»

–

0J ´w XJ v XJ

w XJ 0J ´u XJ

´v XJ u XJ 0J

fi

fl vpQJq “ vp0Jq (5.39)

For more correspondences numbered by i, we then get

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0J ´w1 X
J
1 v1 X

J
1

0J ´w2 X
J
2 v2 X

J
2

...
w1 X

J
1 0J ´u1 X

J
1

w2 X
J
2 0J ´u2 X

J
2

...
´v1 X

J
1 u1 X

J
1 0J

´v2 X
J
2 u2 X

J
2 0J

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

vpQJq “ 0 (5.40)

which if, for w “ 1, is equivalent to Equation 5.30. Notice that vpQJq “ q
from Equation 5.30.
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