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5 Perspective camera

Modern photographic camera, Figure is an interesting and advanced
device. We shall abstract from all physical and technical details of image
formation and will concentrate solely on its geometry. From the point of
view of geometry, a perspective camera projects point X from space into
an image point x by intersecting the line connecting X with the projection
center (red) and a planar image plane (green), Figure[5.1]b).

5.1 Perspective camera model

Let us now develop a mathematical model of the perspective camera. The
model will allow us to project space point X into image point x and to find
the ray p in space along the which point X has been projected.

§1 Camera coordinate system Figure[5.2lshows the geometry of the
perspective camera. Point X is projected along ray p from three-dimensional
space to point x into two-dimensional image. Point x is obtained as the
intersection of ray p with planar image plane . Ray p is constructed by
joining point X with the projection center C. The plane through the projec-
tion center C, which is parallel to the image plane is called the principal
plane.

The image plane is equipped with an image coordinate system (§1I)),
(0,a), where o is the origin and a = [51,52] is the basis of the image
coordinate system. Notice that the basis a is shown as non-orthogonal.
We want to develop a general camera model, which will be applicable
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Figure 5.1: Perspective camera (a) is geometrically a point (red) and an
image plane (green) (b).
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even in the situation when image coordinate system is not rectangular. pinbole
Point x is represented by vector i in (0, )

Z=ub +ob e ﬁaz[Z] (5.1) Coimer o obscuvo

Three-dimensional space is equipped with a world coordinate system
(O,0), where O is the origin and 0 = [d:,dz, d;,] is a three-dimensional
orthonormal basis. Point X is represented by vector X in (0,0). The
camera projection center is represented by vector Cin (0,9).

Let us next define the camera coordinate system. The system will be
derived from the image coordinate system to make the construction of
coordinates of the direction vector X of p extremely simple.

Camera coordinate system (C, f) has the origin in the projection center C
and its basis § = [l;l, 52, 53] is constructed by re-using the two basis vectors
of a and adding the third basic vector b3, which corresponds to vector Co.
We see that vectors in  form a basis when point C is not in 7, which is
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Figure 5.2: Coordinate systems of perspective camera.
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satisfied for every meaningful perspective camera. Notice also that the
camera coordinate system is three-dimensional.

Image points 0 and x are in plane 71, which is in three-dimensional space,
and therefore we can consider them as points of that space too. Point x
is in (C,B) represented by vector ¥, which is the direction vector of the
projection ray p along which point X has been projected into x. We see

that vectors i, X, 53 form a triangle such that

2 = il+bs (5.2)
= uby+ovby+1bs (5.3)
and therefore
u N
S o 7
Xﬁ = x[l;lj;z,gs] = TlJ = [ 1 } . (54)

Notice that basis  has been constructed in a very special way to facilitate
construction of X3. We can use u, v directly since p re-uses vectors of a

and the third coordinate is always 1 by the construction of bs. Although
we do not know exact position of C w.r.t. the image plane, we know that
it is not in the plane 7w and hence a meaningful camera coordinate system
constructed this way exists.

Notice next that the camera coordinate system is right-handed. This is
because when looking at a scene from a point C through the image plane,
the image is constructed by intersecting image rays with the image plane,
which is in front and hence the vector bs points towards the scene. We see
that vectors of § form a right-handed system.

Let us mention that we have used deeper properties of linear and affine
spaces. In particular, we were making use of the concept of free vector in

the following way. We look at vectors l;l, I;z and 7 as on a free vectors.

Therefore, coordinates of the representative of i beginning in o with re-

spect to representatives of bj, b, beginning in o equal the coordinates of
5
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the representative of if beginning in C with respect to representatives of
by, by beginning in C. Hence u, v reappear as the first two coordinates of ¥.

For usual consumer cameras, vector 53 is often much longer than vectors
b1, b, and often not orthogonal to them. Therefore, basis § is in general
neither orthonormal nor orthogonal! This has severe consequences since
we can’t measure angles and distances in the space using 8, unless we find
out what are the lengths of its vectors and what are the angles between
them.

§2 Perspective projection Point X has been projected along p into x.
Since ¥ is a direction vector of p, point X can be represented in (C, ) by

nx (5.5)

for some real non-negativ n. The value of 1 corresponds to the scaled
depth of X, i.e. the distance of X from the plane passing through C and
generated by b1, by in units equal to the distance of C from 7. Value 7 is
not known since it “has been lost” in the process of projectio but will
serve us to parametrize the projection ray in order to get coordinates of
all possible points in space that could project into x.

Let us now relate the coordinates i7,, which are measured in the image,
to the coordinates )?5, which are measured in the world coordinate system.

First consider vectors X, C and ¥. They are coplanar and we see that there
holds

- -

nt = X-C (5.6)

'Here we choose ¥ such that 7 is non-negative. Considering negative 1, as in [13], may
be necessary if it is not clear how has the image coordinate systems been defined or
how has ¥ been chosen. For instance, if X has been chosen to point along ray p away
from X, n would have to be negative.

2]t can be recovered when a point X is observed by two cameras with different projection
centers.
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To pass to coordinates, we will use the camera coordinate system, in which dz
we can write ~ Vectors nt = X-C
| (/oovo\/w\tvl—c; /B T]J?ﬂ = X)ﬁ — éﬁ (5-7)
i ,
] [ 1&] - %G (538)

Next we shall pass to the coordinates w.r.t. basis 6 on the right hand side
of Equation by introducing a matrix A, which transforms coordinates
of a general vector y/ from basis 6 to basis f, i.e.

-

Ug = A¥s (5.9)

We know from linear algebra that such a matrix exists. We write

ri7 ] 23
u - -
1] = AK-G) > Afébi
_IZIX_ _ g )_()6
1T - A[I]—C@][l] (5.10)
1 ”1“ - B {X‘S] (5.11)
1
o | [z 7 %
Sl k7' 2 _ o
c K nXg = B { ) }“X (5.12) )
/7 _— VC2
with 3 x 4 image projection matrix o
5 W = —
- [A \—AC(S] — 2Axb (5.13) : o«
xS w ek L
§3 Projection equation Equation describes the relationship be- Ar = —Q/

. . rd .
tween measurement LTa in the image and measurement X; in space. It

says that Xy is projected into iz, since there exists ) such that Equation[5.11]
7
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holds. Notice that 7 multiple of the vector on the left of Equation [5.11]is

obtained by a linear mapping represented by matrix P; from vector X5 on
the right.
When computing i, from X5, we actually eliminate 7 using the last row

of the (matricidal) equation (5.11) o

-

P, X .
T —

p; X ‘IR

b, X — 5 :
= -

p; X J(;& ol

where we introduced rows of p1, pp, p3 of P and a 4 x 1 vector X as follows

p, >
Py = plzp and xzﬁﬁ] (5.15)
P3

Notice that the projection equation is not linear. It is a rational function of
the first order polynomials in elements of X.

§4 Projection ray Having an image point i,, we can construct its pro-

jection ray p in space. The ray consists of all points Y that can project to
ily. In (C, B), the ray is emanating from the origin C. We parametrize it by
real n and express it in (O, §) by vector Xs

R i R
Yp = n[f]:nxﬁ
Xs = naA'%+Cs (5.16)

Notice that X5 (5.16) can also be obtained for a given 7 by solving the
system of linear equations (5.12) for X;.
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5.2 Computing image projection matrix from
images of six points
0

Let us now consider the task of finding the B; from measurements. We o .

shall consider the situation when we can measure points in space as well A

as their projection in the image. Consider a pair of such measurements

[x,y,2]" % [u,0]". There holds %
®

u
Alo QX (5.17)
1 X
for somereal A, 3 x 4 matrix Qand 4 x 1 coordinate vector X. Notice that we /
introduced new symbols A and Q to emphasize that they are determined

, C
by Equation[5.17lup to a non-zero scale

|
I
o

_ N R
I

Q= &R (5.18) —
—_— /P X 5_
We will see that this will have further consequences. X o= /o
Introduce symbols for rows of Q A
-
-
q — X
Q- [qi ] (5.19) Wel |70
a3 A A
and rewrite the above matrix equation as \ J
Au = q/X (5.20) \\/
Ao = qX (5.21)

A = aiX (5.22) ??/b = ®\
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Eliminate A from the first two equations using the third one

(q3T X)u qlTX (5.23)
(3 X)v = qyX (5.24)
move all to the left hand side and reshape it using x'y = y'x
X'q — X )gs = 0 (5.25)
X'q2— (0X)aqs = 0 (5.26)
Introduce vector of parameters (which are elements of Q)
12 |
-
a=[a/ @ @] C [k (5.27)
and express thgabove two equation:';n matrix form
/\'\ ULXT
xyz 10000 —ux —uy —uz —u _ 0
OOOOxyzl—vx—vy—vz—vq_
S q = 0(528)

X! "X

Every correspondence [x,y,z]" & [u,v]" brings two rows into the

matrix M (5.28). We need therefore at least 6 correspondences in general

position to obtain 11 linearly independent rows in Equation[5.28]to obtain
a one-dimensional space of solutions.

If Q is a solution to Equation then 7 Q is also a solution and both

determine the same projection for any positive T since

(1Q) X = 7(QX) = 7 (AXp) = (TA) X (5.29)

Assuming B; = 7Qleads to A = 17/7. We see that we can’t recover B but
only its non-zero multiple. Therefore, when solving Equation|5.28 we are
looking for one-dimensional subspace of 3 x 4 matrices of rank 3. Such a
subspace determines one projection. Also note that the zero matrix does
not represent any interesting projection.
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Notice that when considering more correspondences, M becomes

X1 Y1 Z21 1 0 0 0 0 —uixy —uilyy —u1z7 —Uq
X2 Y2 22 1 0 0 0 0 —UpXp —U2Y2 —UZp —Up

AN 2 A2

—_

0 0 0 0 X1 1 21 —01X1 —01Yy1 —01Z1 —0q
0 0 0 0 X2 Y2 22 1 —UxXp —02Y2 —0U2Z —02

(5.30)
Matrix M can be more concisely rewritten as
xT o7 T
X1 0 —Uu1 Xl
T oT T
X2 0 —Uy X2

T T T
0 X2 —02 X2

with 07 = [0,0,0,0].

11
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- -

§1 A more general procedure for computing Q We shall next develop
and alternative formulation for finding matrix Q. Let us come back to
Equation5.17

Al = QX (5.32) A

Above, we have eliminated A assuming i3 = 1. Let us now present an
alternative procedure for eliminating A, which works for any non-zero
il = [u,0,w]",i.e. even when w = 0. The trick is to realize that

_ Nl R

0
§3 Vector product as a linear mapping It is interesting to see that for
all X, i/ € R? there holds
X2 Yz — X312 —X3 X2 n
X x ]7 =|—xX1ys+x3y1 | = 0 —x Y2 (1.51)
X1Y2 — X2 1 —X2 X 0] |lys
and thus we can introduce matrix
0 —X3 X2
@e=| x» 0 —x (1.52)
and write K AF0
Ixi=[2,7 (1.53)
0= x (Al) =il x QX = [il], QX T vi
=ux (At) =1 x = [u o _
x %), = - 1%,
q)X‘ %3 %‘( (
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§1 Kronecker product LetAbeak x [ matrix and B be a m x n matrix

a1 aiz - a4y
az1 dz - Ay

A= 7 T |eR™ and BeR™" (1.83)
Akl A2 - Ak

then km x [n matrix

a11B apB --- ayB
a1B a»nB --- ayB

C=A®B=| | . . (1.84)
agp B apB .-+ ayB

is the matrix of the Kronecker product of matrices A, B (in this order).
Notice that this product is associative, i.e. (A®B)®C = A® (B®C), but
it is not commutative, i.e. A® B # B® A in general. There holds a useful

1.5 Operations with matrices & tensors

Matrices are a powerful tool which can be used in many ways. Here
we review a few useful rules for matrix manipulation. The rules are
often studied in multi-linear algebra and tensor calculus. We shall not
review the theory of multi-linear algebra but will look at the rules from
a phenomenological point of view. They are useful identities making an
effective manipulation and concise notation possible.

a
identity (A®B)T = AT® BT. uz
§2 Matrix vectorization Let Abe an m x n matrix

Am1

ain a2 - a2
a ay -+ dy a

A = %1 ] 'n e RM™xn (1.85) = ©v(A) = ) e W 3 4
Aml Om2 - Amn Am2

A1n
We define operator v(.): R™*" — R™" which reshapes an m x n matrix A A2
into a mn x 1 matrix (i.e. into a vector) by stacking columns of A one above :
another a

L “mn |
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§3 From matrix equations to linear systems Kronecker product of
matrices and matrix vectorization can be used to manipulate matrix equa-
tions in order to get systems of linear equations in the standard matrix
form Ax = b. Consider, for instance, matrix equation

AXB=C (1.91)

with matrices A € R"*k, X € R**/, B ¢ RI*", C ¢ R"*". It can be verified by

direct computation that
v(AXB) = (B'® A)v(X) <—| (1.92)

This is useful when matrices A, Band C are known and we use Equation 1.91
to compute X. Notice that matrix Equation 1.91 is actually equivalent to
mn scalar linear equations in k! unknown elements of X. Therefore, we
should be able to write it in the standard form, e.g., as

Mo(X) = v(C) (1.93)

with some M € R("M**) We can use Equation|1.92 to get M = BT ® A
which yields the linear system

v(AXB) = 9(C) (1.94)
B'®A)v(X) = v(C) (1.95)
1
[Lz]x QX = 0

s 7(—)47('—‘(1

0

QX

=
_ Q=
N
o
_ N R
Il

il x (Ail) =1 x QX = [i], QX
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This gives three equations for each if <> X correspondence. However, only

two of them are linearly independet since [if],, has rank two. Now, we are
in the position to employ Equation [1.95} which gives

[, QX = 0
x'qQ" [L—[]I - 0 v(AXB) = kV‘o"«/ (A—l$>
ox'Q" [@x) = v(0) (B'® A)o(x) =
([, ®x")o@Q") = o)
0 —w v
([ w 0 u]@)XT) v(Q") = o(eh) Eacqg 4o ,Lw\,|o(4>_w\,c'w{’
-0 u 0 — ¥
o7 —wx" oxT B
wX’ 0" —ux" | v@Q") = o0 - T
[vXT ux’ QT} ’ ’ [(Lq]x & X1

For more correspondences numbered by i, we then get

<
(1
o

B —wq Xir ] X;r ]
w ] X

: [ 6 Jyx @
w1 X[ o' —up X/ =
w2 X, 07 —wX) [v@Q") = @ (540) L p— —)

: 36 x|z
—o X! wX o' M ® c
—02 X;— [Z%) X; QT

which if, for w = 1, is equivalent to Equation Notice that v(Q") = q
from Equation|5.30
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