
Functional Programming
Lecture 6: Imperative scheme and parallelism

Viliam Lisý
Rostislav Horčík

Artificial Intelligence Center
Department of Computer Science

FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz
xhorcik@fel.cvut.cz

Last lecture

• We do not need to modify the state if we
compute a function

• States break nice properties of pure FP

• Make the pure part of programs as large as
possible

• States can sometimes be useful

– random access in O(1)

– memoization

"Classes and objects"

(define (make-account balance)
(define (withdraw x)

(if (>= balance x)
(begin (set! balance (- balance x))

balance)
(error "Not enough money!!!")))

(define (deposit x)
(set! balance (+ balance x))
balance)

(define (dispatch name)
(cond ((eq? name 'withdraw) withdraw)

((eq? name 'deposit) deposit)
(else (error "Unknown request"))))

dispatch)

Lists modifications

In R5RS, we can modify lists using

set-car!, set-cdr!

List are immutable by default with #lang scheme

Need to use mcons, mcar, set-mcar!,…

(set-car! x y)

x = ((a b) c d), y = (e f) x = ((e f) c d), y = (e f)

(set-cdr! x y)

x = ((a b) c d), y = (e f) x = ((a b) e f), y = (e f)

Append!

| ||

1 32

| ||

4 65

Append!

| ||

1 32

| ||

4 65

Queue

Insert

Delete

Queue
(define (make-q)

(let ((front '()) (rear '()))
(define (in x)

(let ((new (list x)))
(if (null? front)

(begin (set! front new) (set! rear new))
(begin (set-cdr! rear new) (set! rear new)))))

(define (out)
(let ((x (car front)))
(set! front (cdr front))
x))

(define (dispatch name)
(cond
((eq? name 'in) in)
((eq? name 'out) out)))

dispatch))

Circular “lists”

| ||

1 32

Circular “lists”

(define (make-cyclic-list! ls)

(define (cyc! xs)

(if (null? (cdr xs))

(begin (set-cdr! xs ls) ls)

(cyc! (cdr xs))

))

(cyc! ls))

(define week (make-cyclic-list!

'(mon tue wed thu fri sat sun)))

Hash tables in Racket

There are many variants of hash tables

Create a hash table comparing with equal?

(make-hash)

Associate v with key in hash

(hash-set! hash key v)

(hash-ref hash key [failure-result])

(hash-ref! hash key to-set)

hash-remove!, hash-update!

Memoization

(define (memoize f)

(let ((table (make-hash)))

(lambda args

(hash-ref! table

args

(lambda ()

(display "X")

(apply f args))))))

Concurrency and Parallelism
in Racket

• Thread (concurrency)
– preempt each other without cooperation
– share state: variables, function definitions, etc.
– in Racket, they run on one OS thread

• Futures (parallelism)
– evaluate an expression in parallel to the main program
– block on operations that may not run safely in parallel

• Places (parallelism)
– separate instances of scheme
– communicate using message passing

Threads

Run on single OS thread
No speed-up
Waiting for slow/external event: I/O, sockets, etc.

Operations on threads
(thread thunk) returns thread descriptor
thread-suspend, thread-resume, kill-thread

Thread mailboxes
(thread-send th msg), (thread-receive)

Channels
(make-channel), (channel-put ch v)

(channel-get ch), (channel-try-get ch)

Threads example

A

B

C

msg

msg

msg

Displaying
results

Threads example

A

B

C

msg

msg

msg

results

Displayer

Futures

(require racket/future)

(future thunk)

Starts evaluating an expression (given as thunk)

Blocks when an operation may not be safely executed

Returns a "future"

(touch future)

Finish evaluating the expression in the main thread

If the expression is already evaluated, return the result

As in promise, additional touches just return the result

Future map

Executes a given function on each element of a
list in parallel and returns the results
(define (future-map f list)

(let ((res

(map (lambda (x)

(future (lambda () (f x))))

list)))

(map touch res)))

Futures can be visualized and analyzed using
(require future-visualizer)

(visualize-futures expr)

Home assignment 3

Genetic programming

Evolution inspired local search in structured data

Survival of the fittest!!!

Individual: program for the robot in the maze

Population: collection of the programs

New generation: selection, mutation, cross-over

Fitness function: see Home assignment 2

Summary

• We do not need to modify the state

• It breaks nice properties of FP

• It can sometimes be useful

– random access in O(1)

– objects

– circular data structures

– memoization

• Concurrency and parallelism

