UNIVERSITY

IN PRAGUE CENTER

[
P A

Functional Programming
Lecture 4: Closures and lazy evaluation

Viliam Lisy

Artificial Intelligence Center
Department of Computer Science
FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

Last lecture

* Functions with variable number of arguments
* Higher order functions

— map, foldr, foldl, filter, compose

Binding scopes

A portion of the source code where a value is
bound to a given name

e Lexical scope
— functions use bindings available where defined
* Dynamic scope

— functions use bindings available where executed

Ben Wood's slides

Eval

Eval is a function defined in the top level context

(define x 5)
(define (f v)
(eval '(+ x v)))

Fails because of lexical scoping
Otherwise the following would be problematic

(define (eval x)

(eval—-expanded (macro-expand Xx)))

Eval in R5RS

(eval expression environment)

Where the environment is one of
(interaction-environment) (global defines)

(scheme-report-environment x) (before
defines)

(null-environment x) (only special forms)

None of them allows seeing local bindings

Cons

(define (my-cons X V)
(lambda (m)

(m X vy)))

(define (my-car p)
(p (lambda (x y) x)))

(define (my-cdr s)
(p (lambda (x y) vy)))

currying

Transforms function to allow partial application
notcurried f:AXB->C
curried fiA > (B - C(C)

notcurried f:AXBXC—->D
curried f:A - (B - (C - D))

Picture: Haskell Curry from Wikipedia

currying

(define (my-curryl f)
(lambda args
(lambda rest (apply f (append args rest)))))

(define (my-curry f)
(define (c—-wrap f stored-args)
(lambda args
(let ((all (append stored-args args)))
(1f (procedure—-arity-includes?
f (length all))
(apply £ all)
(c—wrap £ all)))))
"()))

(c—wrap £

Lazy if using and/or

(define (my-if t a b)
(or (and t a) b))

(define (my-lazy-1if t ac bc)
(or (and t (ac)) (bc)))

(my—-lazy-1f (< 1 2)
(lambda () (print "true"))
(lambda () (print "false"))

Syntax macros

(define-syntax macro-1if
(syntax—-rules ()
((macro-1f t a Db)
(my—-lazy-1f
t
(lambda () a
(lambda () Db

)
)

Lazy evaluation

lambda () can be used to delay evaluation
Delayed function is called "thunk"
Useful for

Lazy evaluation of function argument (call by name)
Streams — potentially infinite lists

Delay / Force

(define-syntax w—-delay
(syntax-rules ()

((w—delay expr) (lambda () expr))))

(define-syntax w—-force
(syntax-rules ()

((w—force expr) (expr))))

Streams

(define (ints—-from n)
(cons n
(w—delay (ints—-from (+ n 1)))))

(define nat-nums
(ints—-from 1))

(define (first 1) (car 1))
(define (rest 1)
(1f (pair? (cdr 1)) (cdr 1)

(w—force (cdr 1))))

Lazy map

(define (lazy map £ 1list)
(1f (null? list) 1list
(cons (f (car 1list))
(w—delay (lazy map f
(rest 1list))))

Home assignment 2

Population evaluator
— evaluate a collection of programs for the robot
— (evaluate
<prgs>
<palrs>
<threshold>

<stack size>)

Summary

* Binding scopes
— Lexical vs. dynamic
* Closures
— Code + environment pointer

— Way to "store data" in a function
— Tool for lazy evaluation

e Streams

