
Functional Programming
Lecture 13: FP in the Real World

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science

FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz
1



Mixed paradigm languages

Functional programming is great

easy parallelism and concurrency 

referential transparency, encapsulation

compact declarative code

Imperative programming is great

more convenient I/O

better performance in certain tasks

There is no reason not to combine paradigms

2



UK Job Market (May 2020) 

3



Most popular websites

Source: Wikipedia

4



Scala

Quite popular with industry

Multi-paradigm language

• simple parallelism/concurrency

• able to build enterprise solutions

Runs on JVM

5



Scala vs. Haskell

• Adam Szlachta's slides

6



Is Java 8 a Functional Language?

Based on:
https://jlordiales.me/2014/11/01/overview-java-8/

Functional language
first class functions

higher order functions

pure functions (referential transparency)

recursion

closures

currying and partial application

7



First class functions

Previously, you could pass only classes in Java

Java 8 has the concept of method reference

8

File[] directories = new File(".").listFiles(new FileFilter() {
@Override
public boolean accept(File pathname) {
return pathname.isDirectory();

}
});

File[] directories = new File(".").listFiles(File::isDirectory);



Lambdas

Sometimes we want a single-purpose function

Java 8 has lambda functions for that

9

File[] csvFiles = new File(".").listFiles(new FileFilter() {
@Override
public boolean accept(File pathname) {
return pathname.getAbsolutePath().endsWith("csv");

}
});

File[] csvFiles = new File(".")
.listFiles(pathname -> pathname.getAbsolutePath().endsWith("csv"));



Streams

We want a list of adult users grouped by sex

10

public Map<Sex, List<User>> groupUsers(List<User> allUsers) {
Map<Sex, List<User>> result = new HashMap<>();
for (User user : allUsers) {
if (user.getAge() >= 18) {
List<User> currentUsers = result.get(user.getSex());
if (currentUsers == null) {

currentUsers = new ArrayList<>();
result.put(user.getSex(),currentUsers);}

currentUsers.add(user);
}}

return result;}



Streams

In Java 8, we can use higher order functions

Declarative style (and lazy)

easier to understand

easier to parallelize

11

public Map<Sex, List<User>> groupUsers(List<User> allUsers) {
return allUsers
.stream()
.filter(user -> user.getAge() >= 18)
.collect(groupingBy(User::getSex));

}

.parallelStream()



Is Java 8 a Functional Language?

Functional language

first class functions

higher order functions

pure functions (referential transparency)

recursion

closures

currying and partial application

No, but it provides many of the nice FP features

12

Yes

Yes

No

No tail recursion optimization by default

Only values, variables become final

Yes



FP aspect in mainstream languages

13

Fi
rs

t
cl

as
s 

fu
n

ct
io

n
s

H
ig

h
e

r 
o

rd
e

r 
fu

n
ct

io
n

s

La
m

b
d

a

C
lo

su
re

s

Li
st

 
co

m
p

re
h

e
n

si
o

n
s

R
e

fe
re

n
ti

al
 

tr
an

sp
ar

e
n

cy

C
u

rr
yi

n
g/

p
ar

ti
al

ap
p

lic
at

io
n

D
at

a 
im

m
u

ta
b

ili
ty

P
at

te
rn

 m
at

ch
in

g

La
zy

 e
va

lu
at

io
n

Haskell + + + + + + + + + +

Java 8 (+) + + +/- - - (+) (+) - (+)

C++14 + + + + - - (+) (+) (+) (+)

Python + + + + + - + (+) (+/-) (+)

JavaScript + + + + + - + (+) (+/-) (+)

MATLAB + + + + - - + (+) - (+)



Erlang

Haskell – complex types + concurrency support

• Immutable data

• Pattern matching

• Functional programming

• Distributed

• Fault-tolerant

14



Map Reduce

Distributed parallel big data processing inspired 
by functional programming

– John Hughes's slides

16



Lisp for Scripting in SW Tools

• Emacs: extensible text editor

• AutoCAD: technical drawing software

• Gimp: gnu image manipulation program

17



Gimp

User scripts in: ~/.gimp-2.8/scripts

Register the function by

script-fu-register

script-fu-menu-register

Filters → Script-Fu → Refresh Scripts

See example source code in a separate file.

18
(example form Gimp documentation)



TAKE-AWAYS FROM FP

19



Declarative programming

• write what should be done and leave how to 
the optimizer

– particularly interesting in distributed setting

• easier to understand, no need to go back from 
how to what

20



Minimizing Side Effects

• reusability

• predictability

• concurrency

• lower mental load (modularity/encapsulation)

It is easier than it seems!

21



Immutability

You can use it in any programming language to 

ease parallelization

avoid defensive copying

avoid bugs in hashmaps / sets

consistent state even with exceptions

allows easier caching

It is not as inefficient as it seems!

22



Recursion

• Many problems are naturally recursive

– easier to understand / analyze

– less code, less bugs

– combines well with immutability

• A great universal tool

23



Exam

Remote test
• recording screen, camera, mic.
• may be asked to explain the solution orally
Schedule
• 40 min test 

– anything hard to evaluate by programming

• 15 min break
• 3h of programming at computers (>50% points)

– ~2 Haskell and ~2 Scheme tasks
– upload system

Dates (tentative):    3.6. 9:00; …
24


