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Mixed paradigm languages

Functional programming is great

easy parallelism and concurrency 

referential transparency, encapsulation

compact declarative code

Imperative programming is great

more convenient I/O

better performance in certain tasks

There is no reason not to combine paradigms
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UK Job Market (May 2020) 
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Most popular websites

Source: Wikipedia
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Scala

Quite popular with industry

Multi-paradigm language

• simple parallelism/concurrency

• able to build enterprise solutions

Runs on JVM
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Scala vs. Haskell

• Adam Szlachta's slides
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Is Java 8 a Functional Language?

Based on:
https://jlordiales.me/2014/11/01/overview-java-8/

Functional language
first class functions

higher order functions

pure functions (referential transparency)

recursion

closures

currying and partial application
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First class functions

Previously, you could pass only classes in Java

Java 8 has the concept of method reference
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File[] directories = new File(".").listFiles(new FileFilter() {
@Override
public boolean accept(File pathname) {
return pathname.isDirectory();

}
});

File[] directories = new File(".").listFiles(File::isDirectory);



Lambdas

Sometimes we want a single-purpose function

Java 8 has lambda functions for that
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File[] csvFiles = new File(".").listFiles(new FileFilter() {
@Override
public boolean accept(File pathname) {
return pathname.getAbsolutePath().endsWith("csv");

}
});

File[] csvFiles = new File(".")
.listFiles(pathname -> pathname.getAbsolutePath().endsWith("csv"));



Streams

We want a list of adult users grouped by sex
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public Map<Sex, List<User>> groupUsers(List<User> allUsers) {
Map<Sex, List<User>> result = new HashMap<>();
for (User user : allUsers) {
if (user.getAge() >= 18) {
List<User> currentUsers = result.get(user.getSex());
if (currentUsers == null) {

currentUsers = new ArrayList<>();
result.put(user.getSex(),currentUsers);}

currentUsers.add(user);
}}

return result;}



Streams

In Java 8, we can use higher order functions

Declarative style (and lazy)

easier to understand

easier to parallelize
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public Map<Sex, List<User>> groupUsers(List<User> allUsers) {
return allUsers
.stream()
.filter(user -> user.getAge() >= 18)
.collect(groupingBy(User::getSex));

}

.parallelStream()



Is Java 8 a Functional Language?

Functional language

first class functions

higher order functions

pure functions (referential transparency)

recursion

closures

currying and partial application

No, but it provides many of the nice FP features
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Yes

Yes

No

No tail recursion optimization by default

Only values, variables become final

Yes



FP aspect in mainstream languages
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Haskell + + + + + + + + + +

Java 8 (+) + + +/- - - (+) (+) - (+)

C++14 + + + + - - (+) (+) (+) (+)

Python + + + + + - + (+) (+/-) (+)

JavaScript + + + + + - + (+) (+/-) (+)

MATLAB + + + + - - + (+) - (+)



Erlang

Haskell – complex types + concurrency support

• Immutable data

• Pattern matching

• Functional programming

• Distributed

• Fault-tolerant
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Map Reduce

Distributed parallel big data processing inspired 
by functional programming

– John Hughes's slides
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Lisp for Scripting in SW Tools

• Emacs: extensible text editor

• AutoCAD: technical drawing software

• Gimp: gnu image manipulation program
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Gimp

User scripts in: ~/.gimp-2.8/scripts

Register the function by

script-fu-register

script-fu-menu-register

Filters → Script-Fu → Refresh Scripts

See example source code in a separate file.
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(example form Gimp documentation)



TAKE-AWAYS FROM FP
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Declarative programming

• write what should be done and leave how to 
the optimizer

– particularly interesting in distributed setting

• easier to understand, no need to go back from 
how to what
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Minimizing Side Effects

• reusability

• predictability

• concurrency

• lower mental load (modularity/encapsulation)

It is easier than it seems!
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Immutability

You can use it in any programming language to 

ease parallelization

avoid defensive copying

avoid bugs in hashmaps / sets

consistent state even with exceptions

allows easier caching

It is not as inefficient as it seems!
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Recursion

• Many problems are naturally recursive

– easier to understand / analyze

– less code, less bugs

– combines well with immutability

• A great universal tool
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Exam

Remote test
• recording screen, camera, mic.
• may be asked to explain the solution orally
Schedule
• 40 min test 

– anything hard to evaluate by programming

• 15 min break
• 3h of programming at computers (>50% points)

– ~2 Haskell and ~2 Scheme tasks
– upload system

Dates (tentative):    3.6. 9:00; …
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