
Lecture 11: Haskell IO

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.

Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

May, 2020

Viliam Lisý Functional Programming 1 / 26



Haskell is Purely Functional

Functions have no side effects

outputs depend only on inputs
calling function with same arguments multiple times produces
the same output
order of executing independent functions is arbitrary
Haskell functions cannot change files or print

Pseudo-functions like rand() or getchar() in C

return different value each call
change files, network, content of the screen

Viliam Lisý Functional Programming 2 / 26



Haskell is Purely Functional

Optimizations are pure function transformations

rearrange calls, cache results
omits calling functions, unless their results are used (lazy)
might automatically parallelize (but granularity )
easier to prove correctness of optimizations

Optimization in C must be more conservative

We want to keep purely functional nature

But we want to be able to interact, change files, etc.

Viliam Lisý Functional Programming 3 / 26



IO Actions

Haskell separates the part of the program with side effects
using values of special types

(IO a) is an action, which when executed produces a value of
type a

getChar :: IO Char

getLine :: IO String

putStrLn :: String -> IO ()

IO actions can be passed from function to function, but are
not executed in standard evaluation

Viliam Lisý Functional Programming 4 / 26



Main

Haskell program executes an action returned by function main in
module Main

main :: IO ()

main = putStrLn "Hello, World!"

Running the program

$ ghc <filename.hs>; ./<filename>

$ runghc <filename.hs>

Viliam Lisý Functional Programming 5 / 26



Sequencing actions

In order to call multiple functions, they need to provide arguments
for some other function

g(f1, f2, . . . , fn)

In pure functional programming

fi can be called in an arbitrary order

are called only when we need the return value

When do we need the return value of putStrLn?

Viliam Lisý Functional Programming 6 / 26



Combining actions

(>>) :: IO a -> IO b -> IO b

infixl 1 >>

(x >> y) is the action that performs x, dropping the result, then
performs y and returns its result.

main = putStrLn "Hello" >> putStrLn "World"

Viliam Lisý Functional Programming 7 / 26



Combining actions: bind

(>>=) :: IO a -> (a -> IO b) -> IO b

infixl 1 >>=

x >>= f is the action that first performs x, passes its result to f,
which then computes a second action to be performed.

main = putStrLn "Hello, what is your name?"

>> getLine

>>= \n -> putStrLn ("Hello, " ++ n ++ "!")

x >> y = x >>= _ -> y

Viliam Lisý Functional Programming 8 / 26



Combining actions: return

return :: a -> IO a

Transforms a value to IO action.

Used,e.g., to define the return value of a composed action, or

main :: IO ()

main = return "Viliam" >>= \name

-> putStrLn ("Hello, " ++ name ++ "!")

Viliam Lisý Functional Programming 9 / 26



Did we solve the problem?

There is no function

unsafe :: IO a -> a

hence all values related to side effects are ”in” IO.

Everything outside IO is safe for all optimizations.

IO can be seen as

a flag for values that came form functions with side effects

a container for separating unsafe operations

Viliam Lisý Functional Programming 10 / 26



Monad

IO is a special case of generally useful pattern

class Applicative m => Monad (m :: * -> *) where

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

return :: a -> m a

fail :: String -> m a

Based on category theory

Way of meaningfully sequencing computations

1 Creating a (separated) boxed value

2 Creating functions for modifying them within the boxes

Viliam Lisý Functional Programming 11 / 26



do Notation

Using monads leads to long sequences of operations chained by
operators >>, >>=

main = putStrLn "Hello, what is your name?" >>

getLine >>= \name ->

putStrLn ("Hello, " ++ name ++ "!")

Do notation just makes these sequences more readable
(it is rewritten to monad operators before compilation)

main = do putStrLn "Hello, what is your name?"

name <- getLine

putStrLn ("Hello, " ++ name ++ "!")

Viliam Lisý Functional Programming 12 / 26



do Notation

do is a syntax block, such as where and let

action on a separate line gets executed

v <- x runs action x and binds the result to v

let a = b defines a to be the same as b until the end of the
block (no need for in)

Viliam Lisý Functional Programming 13 / 26



Derived Primitives

Creating more complex IO actions from simpler

getLine :: IO String

getLine = do x <- getChar

if x == '\n' then

return []

else

do xs <- getLine

return (x:xs)

Viliam Lisý Functional Programming 14 / 26



Derived Primitives

The same without the do notation

getLine2 :: IO String

getLine2 = getChar >>= \x

-> if x == '\n' then

return []

else getLine2 >>= \xs

-> return (x:xs)

Viliam Lisý Functional Programming 15 / 26



Derived Primitives

Writing a string to the screen:

putStr :: String -> IO ()

putStr [] = return ()

putStr (x:xs) = do putChar x

putStr xs

Writing a string and moving to a new line:

putStrLn :: String -> IO ()

putStrLn xs = do putStr xs

putChar '\n'

Viliam Lisý Functional Programming 16 / 26



IO Actions as Values

IO actions cannot be executed outside of IO

They can still be used as any other values

return them from functions

add them to lists

ioActions :: [IO ()]

ioActions = [print "Hello!",

putStr "just kidding",

getChar >> return ()]

Viliam Lisý Functional Programming 17 / 26



Combining a list of actions

sequence_ :: [IO a] -> IO ()

sequence_ [] = return ()

sequence_ (x:xs) = do x

sequence_ xs

main = sequence_ ioActions

Viliam Lisý Functional Programming 18 / 26



Hangman

Consider the following version of hangman:

One player secretly types in a word.

The other player tries to deduce the word, by entering a
sequence of guesses.

For each guess, the computer indicates which letters in the
secret word occur in the guess

The game ends when the guess is correct.

Viliam Lisý Functional Programming 19 / 26



Hangman

We adopt a top down approach to implementing hangman in
Haskell, starting as follows:

hangman :: IO ()

hangman = do putStrLn "Think of a word: "

word <- sgetLine

putStrLn "Try to guess it:"

play word

Viliam Lisý Functional Programming 20 / 26



Hangman

The action sgetLine reads a line of text from the keyboard,
echoing each character as a dash:

sgetLine :: IO String

sgetLine = do x <- getCh

if x == '\n' then

do putChar x

return []

else

do putChar '-'

xs <- sgetLine

return (x:xs)

Viliam Lisý Functional Programming 21 / 26



Hangman

The action getCh reads a single character from the keyboard,
without echoing it to the screen:

import System.IO

getCh :: IO Char

getCh = do hSetEcho stdin False

x <- getChar

hSetEcho stdin True

return x

Viliam Lisý Functional Programming 22 / 26



Hangman

The function play is the main loop, which requests and processes
guesses until the game ends.

play :: String -> IO ()

play word =

do putStr "? "

guess <- getLine

if guess == word then

putStrLn "You got it!"

else

do putStrLn (match word guess)

play word

Viliam Lisý Functional Programming 23 / 26



Hangman

The function match indicates which characters in one string occur
in a second string.

For example:

> match "haskell" "pascal"

"-as--ll"

match :: String -> String -> String

match xs ys =

[if x `elem` ys then x else '-' | x <- xs]

Viliam Lisý Functional Programming 24 / 26



Assignment 5

Viliam Lisý Functional Programming 25 / 26



Summary

Haskell IO is separated using IO actions

can be executed and cause side effects
can be used as values in Haskell functions
are a monad

Monads are general constructions, which

define special operators >>, >>=, return

are “containers” that often hold data
can be used by do notation

We made a complete executable program in Haskell

Viliam Lisý Functional Programming 26 / 26


