Introduction

Jan Faigl

Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague

Lecture 01

Robotic Exploration and Data Collection Planning

Overview of the Lecture

- Part 1 Course Organization
 - Course Goals
 - Means of Achieving the Course Goals
 - Evaluation and Exam
- Part 2 Introduction to Robotics
 - Robots and Robotics
 - Challenges in Robotics
 - What is a Robot?
 - Locomotion

Part I Part 1 – Course Organization

Course

Robotic Exploration and Data Collection Planning (REDCP) https://cw.fel.cvut.cz/wiki/courses/crl-courses/redcp/start

Selected topics from B4M36UIR – Artificial Intelligence in Robotics

https://cw.fel.cvut.cz/wiki/courses/uir

prof. Ing. Jan Faigl, Ph.D. (faiglj@fel.cvut.cz)

Center for Robotics and Autonomous Systems (CRAS)

http://robotics.fel.cvut.cz

Computational Robotics Laboratory (CRL)

http://comrob.fel.cvut.cz

Course Goals

- Become familiar with robotics problems and notion of robotic information gathering.
 - Existing problems and solutions.
- Acquire experience on combining approaches in robotic exploration program.

Tasks

• Acquire knowledge of robotic data collection planning.

Course Organization and Evaluation

Selected topics on robotic exploration and data collection planning in 6 lectures.

With 2-3 more lectures as an option.

- Task 1 (t1-exploration) Implementation of frontier-based exploration that combine six tasks.
 - t1a-ctrl Open-loop robot motion control
 - t1b-react Reactive obstacle avoidance
 - t1c-plan Grid based path planning
 - t1d-map Map building
 - tle-frontiers Determining frontiers as possible goal locations for exploration
 - tlf-exploration Mobile robot exploration
 - Implement exploration pipeline with CoppeliaSim (and Python).
- **Task 2** (t2-tspn) Implementation of the solver to the data collection planning.
 - t2-tspn Close Enough Traveling Salesman Problem.

Data collection planning

- Implement unsupervised learning-based solver (in Python).
- Task(s) evaluation in January 2023.

Jan Faigl, 2022

Resources and Literature

- Introduction to AI Robotics, *Robin R. Murphy* MIT Press, 2000
- The Robotics Primer, *Maja J. Mataric* MIT Press, 2007
- Planning Algorithms, *Steven M. LaValle* Cambridge University Press, 2006
- Modern Robotics: Mechanics, Planning, and Control, *Kevin M. Lynch, Frank C. Park* Cambridge University Press, 2017
- Lectures "comments" on the textbooks, slides, and your notes.
- Selected research papers on particular topics providing further info.

Jan Faigl, 2022

REDCP - Lecture 01: Introduction

http://planning.cs.uiuc.edu

Background and context

Background and context

Further Books 1/2

Principles of Robot Motion: Theory, Algorithms, and Implementations, H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun MIT Press, Boston, 2005

Introduction to Autonomous Mobile Robots, 2nd Edition, Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza MIT Press, 2011

Computational Principles of Mobile Robotics, *Gregory Dudek and Michael Jenkin* Cambridge University Press, 2010

Further Books 2/2

Robot Motion Planning and Control, Jean-Paul Laumond Lectures Notes in Control and Information Sciences, 2009 http://homepages.laas.fr/jpl/book.html

Probabilistic Robotics, Sebastian Thrun, Wolfram Burgard, Dieter Fox MIT Press, 2005

http://www.probabilistic-robotics.org/

Robotics, Vision and Control: Fundamental Algorithms in MATLAB, Peter Corke Springer, 2011

Communicating Any Issue Related to the Course

- Use e-mail for communication
 - Put REDCP to the subject of your message

Development Tools

Python

Eventually C/C++ (gcc or clang).

• CoppeliaSim – robotic simulator.

http://www.coppeliarobotics.com/

- Sources and libraries provided by **Computational Robotics Laboratory**.
- Any other open source libraries.
- Information resources (IEEE Xplore, ACM, Science Direct, Springer Link)
 - IEEE Robotics and Automation Letters (RA-L), IEEE Transactions on Robotics (T-RO), International Journal of Robotics Research (IJRR), Journal of Field Robotics (JFR), Field Robotics (FR), Robotics and Autonomous Robots (RAS), Autonomous Robots (AuRo), etc.
 - IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Robotics: Science and Systems (RSS), IEEE International Conference on Robotics and Automation (ICRA), European Conference on Mobile Robots (ECMR), etc.

Overview of the Lectures

- 1. Course information. Introduction to (AI) robotics.
- 2. Robotic Paradigms and Control Architectures.
- 3. Path planning.
- 4. Robotic exploration.
- 5. Multi-goal planning.
- 6. Data collection planning.
- Curvature-Constrained Data Collection Planning. Ontional Randomized Sampling-based Motion Planning Methods.
 - Overview of the research in Computational Robotics Laboratory.

Optional

Optional

Part II

Part 2 – Introduction to Robotics

Jan Faigl, 2022

Challenges in Robotics

What is a Robot?

Locomotion

- Robots and Robotics
- Challenges in Robotics
- What is a Robot?
- Locomotion

Jan Faigl, 2022

What is Understood as Robot?

Rossum's Universal Robots (R.U.R)

Cyberdyne T-800

Industrial robots

NS-5 (Sonny)

Artificial Intelligence (AI) is probably most typically understand as an intelligent robot. REDCP – Lecture 01: Introduction

15 / 44

Locomotion

Intelligent Robots

- React to the environment sensing.
- Adapt to the current conditions.
- Make decision and new goals. As in robotic exploration.

- Even though they are autonomous systems, the behaviour is relatively well defined.
- Adaptation and ability to solve complex problems are implemented as algorithms and techniques of Artificial Intelligence.

In addition to mechanical and electronical design, robot Rege control, sensing, etc.

Stacionary vs Mobile Robots

• Robots can be categorized into two main groups.

Stationary (industrial) robots

Mobile robots

- Stationary robots defined (limited) working space, but efficient motion is needed.
 - Motion planning tasks is a challenging problem.
- Mobile robot it can move, and therefore, it is necessary to address the problem of navigation, which a combination of localization, mapping, and planning.

A S

Jan Faigl, 2022

Locomotion

Stationary Robots

- Conventional robots needs separated and human inaccessible working space because of safety reasons.
- Collaborative robots share the working space with humans.



Jan Faigl, 2022

Types of Mobile Robots

- According to environment: ground, underground, aerial, surface, and underwater.
- Based on the locomotion: wheeled, tracked, legged, modular.

REDCP - Lecture 01: Introduction

Challenges in Robotics

What is a Robot?

Locomotion

- Robots and Robotics
- Challenges in Robotics
- What is a Robot?
- Locomotion

Jan Faigl, 2022

Challenges in Robotics

- Autonomous vehicles cars, delivery, etc.
- Consumable robots toys, vacuum cleaner, lawn mover, pool cleaner
- Robotic companions
- Search and rescue missions
- Extraterrestrial exploration
- Robotic surgery
- Multi-robot coordination

In addition to other technological challenges, new efficient AI algorithms have to be developed to address the nowadays and future challenges.

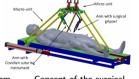
Robotic Surgery

Evolution of Laparoscopic Surgery

Complex operations with shorter postoperative recovery

- Precise robotic manipulators and teleoperated surgical robotic systems
- Further step is automation of surgical procedures.

One of the main challenges is planning and navigation in tissue.



Tissue model

Robotic arm of the Da Vinci surgical system

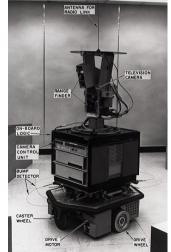
Concept of the surgical system

Surgical droid 2-1B

Locomotion

Artificial Intelligence and Robotics

Artificial Intelligence (AI) field originates in 1956 with the summary that a intelligent machine needs:


- Internal models of the world;
- Search through possible solutions;
- Planning and reasoning to solve problems;
- Symbolic representation of information;
- Hierarchical system organization;
- Sequential program execution.

M. Mataric, Robotic Primer

Al-inspired robot – Shakey

Artificial Intelligence laboratory of Stanford Research Institute (1966-1972)

 Shakey – perception, geometrical map building, planning, and acting – early Al-inspired robot with purely deliberative control. See, e.g., https://www.youtube.com/watch?v=q%dn6ynwpiI

Robotics in REDCP

- Fundamental problems related to motion planning and mission planning with mobile robots.
- The discussed motion planning methods are general and applicable also into other domains and different robotic platforms including stationary robotic arms.

Robotics is interdisciplinary field

- Electrical, mechanical, control, and computer engineering;
- **Computer science** filds such as machine learning, artificial intelligence, computational intelligence, machine perception, etc.
- Human-Robot interaction and cognitive robotics are also related to psychology, brainrobot interfaces to neuroscience, robotic surgery to medicine, etc.

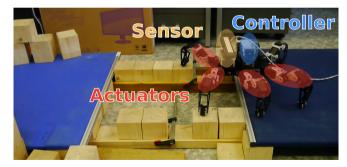
In REDCP, we will touch a small portion of the whole field, mostly related to motion planning and mission planning that can be "encapsulated" as **robotic information gathering**.

Challenges in Robotics

What is a Robot?

Locomotion

- Robots and Robotics
- Challenges in Robotics
- What is a Robot?
- Locomotion



Jan Faigl, 2022

What is a Robot?

A robot is an autonomous system which exists in the physical world, can sense its environment, and can act on it to achieve some goals.

- The robot has a physical body in the physical world – embodiment.
- The robot has sensors and it can sense/perceive its environment.
- A robot has effectors and actuators it can act in the environment.
- A robot has **controller** which enables it to be **autonomous**.

Embodiment

• The robot body allows the robot to act in the physical world.

E.g., to go, to move objects, etc.

- Software agent is not a robot.
- Embodied robot is under the same physical laws as other objects.
 - Cannot change shape or size arbitrarily.
 - It must use actuators to move.
 - It needs energy.
 - It takes some time to speed up and slow down.
- Embodied robot has to be aware of other bodies in the world.
 - Be aware of possible collisions.
- The robot body influences how the robot can move.

Notice, faster robots look smarter.

Sensing / Perception

- Sensors are devices that enable a robot to perceive its physical environment to get information about itself and its surroundings.
- Exteroceptive sensors and proprioceptive sensors.
- Sensing allows the robot to know its **state**.
- State can be observable, partially observable, or unobservable.
 - State can be discrete (e.g., on/off, up/down, colors) or continuous (velocity).
 - State space consists of all possible states in which the system can be.
 - Space refers to all possible values.
 - **External state** the state of the world as the robot can sense it.
 - Internal state the state of the robot as the robot can perceive it.

E.g., remaining battery.

Sensors

- Proprioceptive sensors measure internal state, e.g., encoders, inclinometer, inertial navigation systems (INS), compass, but also Global Navigation Satellite System (GNSS), e.g., GPS, GLONASS, Galileo, BeiDou.
- Exteroceptive (proximity) sensors measure objects relative to the robot.
 - Contact sensors e.g., mechanical switches, physical contact sensors that measure the interaction forces and torques, tactile sensors etc.
 - Range sensors measure the distance to objects, e.g., sonars, lasers, IR, RF, time-of-flight.
 - Vision sensors complex sensing process that involves extraction, characterization, and information interpretation from images.

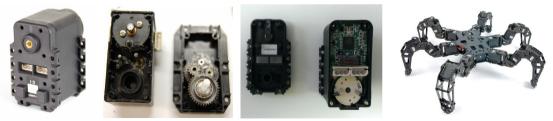
Action

- Effectors enable a robot to take an action.
 - They use underlying mechanisms such as muscles and motors called actuators.
- Effectors and actuators provide two main types of activities.
 - Locomotion moving around;
 - Manipulation handling objects.

Robotic arms

Mobile robotics – robots that move around.

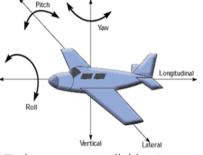
Locomotion mechanisms – wheels, legs, modular robots, but also propellers etc.


With more and more complex robots, a separation between mobile and manipulator robots is less strict and robots combine mobility and manipulation.

Effectors and Actuators

- **Effector** any device on a robot that has an effect on the environment.
- Actuator a mechanism that allows the effector to execute an action or movement, e.g., motors, pneumatics, chemically reactive materials, etc.
- Electric motors Direct-Current (DC) motors, gears.
 - Servo motors can turn their shaft to a specific position.

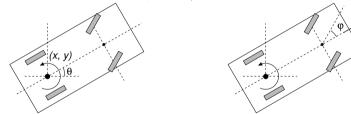
DC motor + gear reduction + position sensor + electronic circuit to control the motor.



Hexapod with 3 servo motors (joints) per each leg has 18 servo motors in the total.

Degrees of Freedom (DOF)

- Degree of Freedom (DOF) is the minimal required number of independent parameters to completely specify the motion of a mechanical system. It defines how the robot can move.
 In 3D space, a body has usually 6 DOF (by convention).
 - Translational DOF x, y, z.
 - **Rotational DOF** *roll*, *pitch*, and *yaw*.



Controllable DOF (CDOF) – the number of the DOF that are controllable, i.e., a robot has an actuator for such DOF.

DOF vs CDOF

- If a vehicle moves on a surface, e.g., a car, it actually moves in 2D.
- The body is at the position $(x, y) \in \mathbb{R}^2$ with an orientation $\theta \in \mathbb{S}^1$.
- A car in a plane has DOF = 3, (x, y, θ) but CDOF=2, (v, φ) .

Only forward/reverse direction and steering angle can be controlled.

That is why a parallel parking is difficult.

- A car cannot move in an arbitrary direction, but 2 CDOF can get car to any position and orientation in 2D.
- To get to a position, the car follows a continuous trajectory (path), but with discontinuous velocity.
 Uncontrollable DOF makes the movement more complicated.

Ratio of CDOF to the Total DOF

- The ratio of Controllable DOF (CDOF) to the Total DOF (TDOF) represents how easy is to control the robot movement.
- Holonomic (CDOF=TDOF, the ratio is 1) holonomic robot can control all of its DOF.
- Nonholonomic (CDOF<TDOF, the ratio < 1) a nonholonomic robot has more DOF that it can control.</p>
 E.g., a car.
- Redundant (CDOF>TDOF, the ratio > 1) a redundant robot has more ways of control.

17 CDOF

24 TDOF, 18 CDOF Hexapod walking robot

REDCP - Lecture 01: Introduction

Jan Faigl, 2022

Challenges in Robotics

What is a Robot?

Locomotion

- Robots and Robotics
- Challenges in Robotics
- What is a Robot?
- Locomotion

Jan Faigl, 2022

Locomotion

• Locomotion refers how the robot body moves from one location to another location.

From the Latin Locus (place) and motion.

- The most typical effectors and actuators for ground robots are wheels and legs.
- Most of the robots need to be stable to work properly.
 - **Static stability** a robot can stand, it can be static and stable.

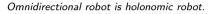
Biped robots are not statically stable, more legs make it easier. Most of the wheeled robots are stable.

Statically stable walking – the robot is stable all the times.

E.g., hexapod with tripod gait.

 Dynamic stability – the body must actively balance or move to remain stable, the robots are called dynamically stable.

E.g., inverse pendulum.


ICC

ω

≜X

Locomotion – Wheel Robots

- One of the most simple wheeled robots is differential drive robot.
 - It has two drived wheels on a common axis.
 - It may use a castor wheel (or ball) for stability.
 - It is nonholonomic robot.

 v_l and v_r are velocities along the ground of the left and right wheels, respectively.

•
$$\omega = \frac{v_r - v_l}{l}$$
, $R = \frac{l}{2} \frac{v_l + v_r}{v_r - v_l}$

• For $v_l = v_r$, the robot moves straight ahead.

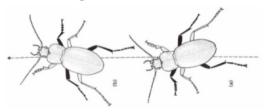
R is infinite.

• For $v_l = -v_r$, the robot rotates in a place.

R is zero.

Simple motion control can be realized in a turn-move like schema.

Further motion control using path following or trajectory following approaches with feedback controller based on the position of the robot to the path / trajectory.



REDCP - Lecture 01: Introduction

R

Locomotion – Legged Robots (Gaits)

- Gait is a way how a legged robot moves.
- A gait defines the order how the individual legs lift and lower and also define how the foot tips are placed on the ground.
- Properties of gaits are: stability, speed, energy efficiency, robustness (how the gait can recover from some failures), simplicity (how complex is to generate the gait).
- A typical gait for hexapod walking robot is **tripod** which is stable as at least three legs are on the ground all the times.

Gullan et al., The Insects: An outline of entomology, 2005

lida et al. 2008

Jan Faigl, 2022

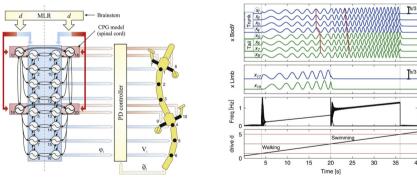
REDCP - Lecture 01: Introduction

Legs layout

Locomotion of Hexapod Walking Robot

Six identical leg each consisting of three parts called Coxa, Femur, and Tibia (3 DoF).

- The movement is a coordination of the stance and swing phases of the legs defined by the gait, e.g., tripod.
- A stride is a combination of the leg movement with the foot tip on the ground (during the stance phase) and the leg movement in a particular direction (in the swing phase) within one gait cycle.

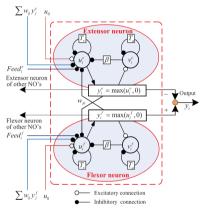

•
$$T_{Stance}$$
, T_{Swing} , and $T_{Stride} = T_{Stance} + T_{Swing}$ defines the duty factor $\beta = T_{Stance} / T_{Stride}$

Tripod $\beta = 0.5$

• Various gaits can be created by different sequences of stance and swing phases.

Central Pattern Generator (CPG)

- Central Pattern Generators (CPGs) are neural circuits to produce rhythmic patterns for various activities, i.e., locomotor rhythms to control a periodic movement of particular body parts.
- Salamander CPG with 20 amplitude-controlled phase oscillators.


Auke Jan Ijspeert, Neural Networks, 2008

Example of Rhythmic Pattern Oscillator

- Matsuoka oscillator model based on biological concepts of the extensor and flexor muscles.
- Van der Pol oscillator

$$\frac{d^2x}{dt^2}-\mu(1-x^2)\frac{dx}{dt}+x=0.$$

- The rhythmic patterns define the trajectory of the leg end point (foot tip).
- Joint angles can be computed from the foot tip coordinates using the Inverse Kinematics.

Matsuoka, K. (1985). Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics 52, 367–376

An example of simple CPG to control hexapod walking robot will be shown during the labs.

Jan Faigl, 2022

Control Architectures

• A single control rule may provide simple robot behaviour.

Notice, controller can be feed-forward (open-loop) or feedback controller with vision based sensing.

- Robots should do more than just avoiding obstacles.
- The question is "How to combine multiple controllers together?"
- Control architecture is a set of guiding principles and constraints for organizing the robot control system.
 - Guidelines to develop the robotic system to behave as desired.

It is not necessary to know control architectures for simple robotic demos and tasks. But it is highly desirable to be aware of architectures for complex robots.

Summary of the Lecture

Jan Faigl, 2022

Topics Discussed

Information about the Course

- Overview of robots, robotics, and challenges
 - Robot Embodied software agent
 - Sensor, Controller, Actuators
 - Degrees of Freedom (DOF) and Controllable DOF
 - Mobile Robot Locomotion
 - Locomotion Gaits for Legged Robots
 - Central Pattern Generator

Next: Robotic Paradigms and Control Architectures

Topics Discussed

Information about the Course

- Overview of robots, robotics, and challenges
 - Robot Embodied software agent
 - Sensor, Controller, Actuators
 - Degrees of Freedom (DOF) and Controllable DOF
 - Mobile Robot Locomotion
 - Locomotion Gaits for Legged Robots
 - Central Pattern Generator
- Next: Robotic Paradigms and Control Architectures

