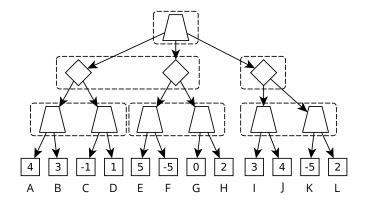
Extensive-Form Games

Branislav Bošanský, Dominik Seitz, José Hilario , Michal Šustr

Czech Technical University in Prague


branislav.bosansky@agents.fel.cvut.cz dominik.seitz@aic.fel.cvut.cz hilarjos@fel.cvut.cz michal.sustr@aic.fel.cvut.cz

October 22, 2019

Previously ... on multi-agent systems (tutorials and lectures).

- **1** Different representations:
 - Normal-Form Games (game matrixes)
 - Extensive-Form Games (game trees)
- **2** Algorithms for computing different solution concepts:
 - Nash equilibrium
 - Correlated equilibrium
 - Stackelberg equilibrium

Task 1: Consider following game. Write down a normal-form representation it.

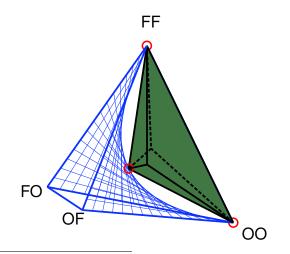
Task 2: Formulate the following game of a small "poker" as an EFG.

- there is an ante of \$1
- \blacksquare there is a limited deck of cards $\{J,J,Q,Q\}$
- each player receives a card
- player 1 either folds or bets \$2
- player 2 either calls or folds
- player with the higher card wins

Task 3: Write down a linear program for computing Nash equilibrium for player (I) for following zero-sum game:

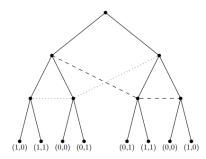
	\mathbf{L}	\mathbf{M}	R
U	1	4	6
D	3	2	5

Task 4. Write down LP for player (II).


Task 5: Consider the game of battle of sexes. Find a CE that is not a NE. Show that it is indeed not a NE.

	Dare	Chicken
Dare	0,0	7,2
Chicken	2,7	6,6

Task 6: Find another game which has CE that is not a convex combination of NE.


Task 7: Prove or disprove that all convex combinations of (two) NE are CE.

Geometry of NE and CE 1 for the game battle of sexes:

¹From https://www.cs.cmu.edu/~ggordon/CE/

Optional Task 8: Consider following game. Write down a normal-form representation it.

Optional homework:

Write down EFG representation of Kuhn poker (see wikipedia for rules).

Don't look at the picture there, only to verify your solution.

Optional homework:

Implement linear program for computing Nash equilibrium for player (I) and (II) for the previously mentioned zero-sum game:

	\mathbf{L}	\mathbf{M}	\mathbf{R}
U	1	4	6
D	3	2	5