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1 NORMAL-FORM GAMES

Exercise 1.

Alice and Bob play Rock-Paper—Scissors, but Bob’s fingers hurt preventing
him from signalling “Scissors”. Model this scenario as a zero-sum game and
find its equilibrium.

Exercise 2.

We present the game called Battle of the Sexes. Its name is derived from the
situation where a couple (Alice and Bob) is trying to plan what to do on
Saturday. The alternatives are going to a concert (C) or watching a foot-
ball match (F). Bob prefers football and Alice prefers the concert, but both
prefer being together to being alone, even if that means agreeing to the less-
preferred recreational activity.

Bob

C F
Alice C121100
F|100]1,2

Find equilibrium strategies of this game.

Exercise 3.
Consider a two-person zero-sum game with the payoff matrix

A= [a b], a,b,c,d e R.
c d

Find equilibrium strategies of the row and column player.
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Exercise 4.
Show that the following two-player zero-sum game doesn’t have an equi-
librium in pure strategies. The strategy space of each player is the set

X =0, 11—0, e, %, 1} and the payoff function of Player 1 is
1
u(sy, sp) = m/ 1,82 € X.

Exercise 5.
Consider following utility matrix two-person normal-form game, where row
player is a leader, which publicly announces its strategy

F
a b c d e
T124(16,4|90|1,2|7,4
B|8,4|04|36|1,5|0,0

L

Find Strong and Weak Stackelberg Equilibrium

Exercise 6.
The two-player zero-sum game with the payoff matrix for the first player

Player 2
0 1
o[ 1 ]-1
Pl
ayer1 . 1

is called Matching Pennies. In this game, each player chooses one bit (or a
side of the coin), 0 or 1, in the following way: each player inserts into an
envelope a slip of paper on which his choice is written. The envelopes are
sealed and submitted to a referee. If both players have selected the same
bit, Player 2 pays one dollar to Player 1. If they have selected opposite bits,
Player 1 pays one euro to Player 2. Find an equilibrium of this game.
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SOLUTIONS

Solution 1.
This is a matrix game which can be described by the payoff matrix for Alice:

0 -1

Since this is a two-person zero-sum game, its solution can be recovered by
two dual linear programming problems. For Alice we solve the problem
with variables xp and x = (x1, xp, x3)T:

Maximize xg

subject to ATx—1x9 >0,

3
Y xi=1,
i=1
x > 0.
The problem for Bob has variables yp and y = (y1,12)T:
Minimize yo

subject to Ay — 1y <0,

2
Yyi=1,
i=1

y > 0.

Equivalently, we can write:

Maximize xg

subject to xp —x3 —x9 >0,
—x1+x3—x0 >0,
X1+x+x3=1,
xX1,%2,x3 2> 0,

and

Minimize yg

subjectto —y2 —yo <0,
y1i—Y <0,
—n+y2—yo <0,
n+y2=1,
y1,y2 = 0.

The solutions of those two problems are

x*=(0,3,%)T and y*=(33)7.

The value of game is equal to the common value in the optima, xj = y; = 3.

3
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Solution 2.

It is easy to verify that both strategy profiles (C,C) and (F, F) are equilib-
ria in pure strategies. We will show that the game has a mixed strategy
equilibrium, too.

Let x € [0,1] and y € [0, 1] be the probabilities of playing C for Alice and
Bob, respectively. Since each player has only two pure strategies, the set
of all mixed strategies can be viewed as the unit interval [0,1]. Thus, the
expected utility of Alice is Ua(x,y) = 2xy + (1 — x)(1 — y) and the expected
utility of Bob is Ug(x,y) = xy +2(1 — x)(1 —y), for all x,y € [0, 1].

Now, we compute the best responses of both players. For Alice this is the
mapping defined by

Paly) = argmaxUa(x,y),  y<[01]
xe[0,1]
and analogously for Bob. We get
0 0<y<}, 0 0<x<3,
Baly) =41[0,1] y=13, Be(x)=41001] x=3%,
1 l<y<y, 1 Z<x<1
Ba B
1 1
0 1 9 1
Y x

We know that (x*,y*) € [0,1]?> would correspond to an equilibrium in mixed
strategies if, and only if,

x" € Ba(y") and y* € Bp(x").
Biapz

(1)

1

Y

The geometric interpretation of the condition (1) is that (x*,y*) € [0,1]? is
the point of the common intersection of the graphs of p4 a . Therefore we

obtain a mixed strategy equilibrium in which Alice plays the mixed strategy

(3,1) and Bob uses the mixed strategy (3,3).
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Solution 3.

Letx = (x,1—x)Tay = (x,1 —y)T be the vectors of mixed strategies for
the row and column player, respectively, where x,y € [0,1]. Note that each
such vector is fully determined by its first coordinate since every player has
only two strategies. The expected payoff of the row player is then given by
the function U: [0,1]?> — R such that

U(x,y) =xTAy = (a+d—b—c)xy+ (b—d)x+ (c —d)y + d.

By von Neumann’s minimax theorem, an equilibrium mixed strategy profile
exists, and it necessarily corresponds to the saddle point (x*,y*) of U. By
elementary analysis, we know that (x*, y*) must satisfy the condition

o V) =5, ) =0,

which reads as
(a+d—b—c)y+b—d=(@a+d—b—c)x+c—d=0.
Assume that a +d — b — ¢ # 0. Then the only solution is

X" =(x",1—x")T = Hd%b_c(d—c,a —b)T,

Yy = 1—y)T =g (d—Dba—c)T.
Since the Hessian of U

0 a+d—b—c
a+d—-b—c 0

is indefinite, (x*,y*) is indeed the saddle point.
Now, let a +d — b — ¢ = 0. The function U becomes

U(x,y) = (b—d)x+ (c—d)y +d.

First, suppose b > d and ¢ > d. Since a = b+ c —d we obtain ¢ > ¢ and
a > b. For example, the matrix A can be

10 4
A_[5 1]‘

This matrix has a saddle point in the first row and the second column. Thus,
the game will have an equilibrium in pure strategies. We can proceed analo-
gously in the three remaining cases: b > dandc <d,b<dandc>d, b <d
and ¢ < d.

Solution 4.

It suffices to show that the function u has no saddle point. This is equivalent
to the fact that the minmax value v of Player 2 is strictly greater than maxmin
value v of Player 1. Specifically, these values are

ers?ggé[(sl),

0 = min f(s2),
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where f and f are the functions defined by

f(s1) = 5261&1“(51152),

f(s2) = glg;((u(sllsz),

for all s1,s2 € X. It is easy to check that

1

1+ (s1—1)2

f(sl) _ 145(51 1)
1+s2

for all s; € X,

Nl—= O
INA
=L
IN

A

1)

iy

IN

_ N
<

and

f(s2) =1, sp € X.

Hence v; = f (%) = % < 71 = 1, so u has no saddle point. Thus, the game
has no equilibrium in pure strategies. However, note that it must have at
least one equilibrium in mixed strategies by von Neumann'’s theorem.

Solution 5.

Since the leader has only two actions, we may visualize the expected utility
based on the policy announced by the leader.

6

5}
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s.(B) s.(B)

When computing the Stackelberg equilibrium, the follower always takes a
best response to the leader’s policy. Best responses are as follows

ab,e st(B) =0,
)

a,b 0<si(B) <2,
BR(SL) = )
a,b,c,d sp(b) =3,
c % < SL(b) <1,
6
5F c d
a,b
¢ z
s 3 ]
1t Q 1
0 0.§67 1

s.(B)
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Now we know, based on the policy of the leader, what are the follower best
responses. Now we have to figure out which best response the follower
would take.

Let us define functions B(s;) and B(s.), which, based on the leader’s pol-
icy, give pure action that the follower should play to maximize or minimize
the leader’s utility. Similarly we define function B(s.) and B(s.) that corre-
sponds to the expected utility for leader when it fixes its policy.

B(sL) = argmax ur(sg,ar) B(sr) = argmin ug(sy,ar)

ﬂFGBR(SL) LIFGBR(SL)

The policies are then

e s (B)=0, a 0<sr(B) <3,
b 0<sy(B) <3, b 1<s(B)<?
BlsL) = . > B(sL) = X , 0
a 3 < SL(B) S 37 d SL(B) - 37
¢ 2<s(B)<1, c 3<s(B)<1,
9 9
8| 8|
7 : 7 :
e e
6 : 6 :
o o0 c 149 c 7
= 4l | = 4l |
31 4 3l «a
b b
2 : 2 :
d d
1 ; . 1 : &
0 0.33 0.67 1 0 0.33 067 1
s.(B) s.(B)

Strong Stackelberg equilibrium from the left plot is strategy sp.(B) = 0 be-
cause this maximizes the leader’s utility. Weak Stackelberg equilibrium does
not exist, because if we take ¢ > 0 and policy s (B) = 3 + e. When lowering
the value of ¢, we always get better utility, and when ¢ = 0, the value of
action c is 5, which is the best we can get. But when & = 0, the utility drops
to 1, because optimal action changes to d. Therefore we cannot set such ¢,
which would maximize the value, so the Weak Stackelberg equilibrium does
not exist.

Solution 6.

Matching Pennies is a two-player zero-sum game, so we can formulate the
equilibrium problem as a linear programming problem, analogously to Ex-
ercise 1. However, we will take a different approach and find the solution in
a more elementary way.

First, it can be easily checked that the game has no solution in pure strate-
gies. Let x € [0,1] and y € [0, 1] denote the probabilities of selecting zero bit
for Player 1 and 2, respectively. The expected utility of Player 1 is then the
function given by U(x,y) = 4xy — 2x — 2y + 1, for every x,y € [0,1]. For any
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choice x € [0,1] of Player 1, Player 2 will select the most harmful strategy
for Player 1. This implies that Player 1 gets in this worst case scenario

2x—1 0<x<1i,
{(x) := min U(x,y) =<0 x =3, x € [0,1].
y<[0,1] 1
1-2x ;<x<1,

Player 1 can secure the maxmin value

¢
max (x) (2)

which is equal to the minmax value of Player 2 by von Neumann’s theorem.

The equilibrium strategy of Player 1 is then any solution to the optimization
problem (2). The only such solution is x* = }. Repeating this analysis for
Player 2 and the minmax value, we arrive at the same solution y* = % for
Player 2. In conclusion, the only equilibrium strategy for each player is to
randomize uniformly between the two choices.
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