Solving Normal-Form Games

Branislav Bošanský, Dominik Seitz

Czech Technical University in Prague

dominik.seitz@aic.fel.cvut.cz

October 12, 2021

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Finding Nash Equilibria (NE)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Finding Nash Equilibria (NE)

		\mathbf{R}
U	(2,1)	(0, 0)
D	(0,0)	(1, 2)

We can also find *mixed* Nash equilibria.

Example: Column player (player 2) plays L with probability p and R with probability (1 - p). Then

$$\mathbb{E}u_1(\mathbf{U}) = \mathbb{E}u_1(\mathbf{D})$$
$$2p + 0(1-p) = 0p + 1(1-p)$$
$$p = \frac{1}{3}$$

Finding Nash Equilibria (NE)

		\mathbf{R}
U	(2,1)	(0, 0)
D	(0,0)	(1, 2)

We can also find *mixed* Nash equilibria.

Example: Column player (player 2) plays L with probability p and R with probability (1 - p). Then

$$\mathbb{E}u_1(\mathbf{U}) = \mathbb{E}u_1(\mathbf{D})$$
$$2p + 0(1-p) = 0p + 1(1-p)$$
$$p = \frac{1}{3}$$

Similarly, we can compute the strategy for player 1 arriving at $(\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3})$ as Nash equilibrium.

Consider the following two-player game:

		R
U	3,2	1, 3
D	1,0	2, -2

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Task 1: Find all NE.

Computing NE in Zero-Sum Games

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We can also compute Nash equilibria for two-player, zero-sum games using linear programming:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We can also compute Nash equilibria for two-player, zero-sum games using linear programming:

$$\max_{s,U} \quad U \tag{1}$$

s.t.
$$\sum_{a_1 \in \mathcal{A}_1} s(a_1)u_1(a_1, a_2) \ge U \qquad \forall a_2 \in \mathcal{A}_2 \qquad (2)$$

$$\sum_{a_1 \in \mathcal{A}_1} s(a_1) = 1 \tag{3}$$

$$s(a_1) \ge 0 \qquad \forall a_1 \in \mathcal{A}_1$$
 (4)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Consider the following zero-sum normal-form game (the row player is maximizing the utility, the column player is minimizing):

	\mathbf{L}	Μ	R
U	3	4	-1
С	1	2	0
D	0	-1	1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Task 2: Compute a Nash equilibrium.

Consider the following zero-sum normal-form game (the row player is maximizing the utility, the column player is minimizing):

	\mathbf{L}	Μ	\mathbf{R}
U	3	4	-1
С	1	2	0
D	0	-1	1

Task 2: Compute a Nash equilibrium.

Task 3: Alice and Bob are playing a zero-sum game and both of them compute a Nash equilibrium strategy. Before playing, Alice announces which strategy she is going to play. Is Bob going to change strategy?

Computing a Correlated equilibrium is easier compared to Nash and can be found by linear programming:

$$\sum_{s_{-i} \in S_{-i}} p(s_i, s_{-i}) u_i(s_i, s_{-i}) \ge \sum_{s_{-i} \in S_{-i}} p(s_i, s_{-i}) u_i(s'_i, s_{-i})$$

$$\forall i \in \mathcal{N},$$

$$\forall s'_i \in S_i$$

$$\sum_{s \in S} p(s) = 1 \qquad p(s) \ge 0 \quad \forall s \in S$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Task 4: Alice and Bob are driving towards a crossroads. They can either decide to G_0 or S_{top} . If they both decided to go, they will crash. Find a correlated equilibrium that is not a Nash equilibrium.

	G	S
G	-10, -10	5,0
S	0,5	-1, -1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Task 4: Alice and Bob are driving towards a crossroads. They can either decide to G_0 or S_1 top. If they both decided to go, they will crash. Find a correlated equilibrium that is not a Nash equilibrium.

	G	S
G	-10, -10	5,0
\mathbf{S}	0, 5	-1, -1

Task 5: Modify the algorithm so that the correlated equilibrium maximizes the minimum expected utility value of the players.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●