ALTERNATIVES TO NASH EQUILIBRIUM

Tomáš Kroupa

Al Center
Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

MOTIVATION

- While the Nash equilibrium assumes that players act independently, people often condition their choices on shared signals:
 - an app's recommendation
 - a traffic light
 - a price announcement
 - a weather forecast
- Correlated equilibrium captures realistic coordination that the Nash equilibrium often misses

COORDINATION INCREASES WELFARE

Bach or Stravinski

- Two pure NE: (B, B) and (S, S)
- The mixed NE: $p_1^*(B) = p_2^*(S) = 2/3$ with utility 2/3 for either player

How to choose between (B, B) and (S, S)?

- 1. Mediator generates the outcome randomly, p(B,B) = p(S,S) = 0.5
- 2. Each player receives private recommendation which action to play
- 3. Following the recommended actions yields a utility of 3/2 for each

METAGAME FOR CORRELATION OF ACTIONS

Extensive-form game with imperfect information $\Gamma(p)$

- 1. The mediator uses a probability distribution p over $\mathbf{S} = S_1 \times \cdots \times S_n$ to generate randomly an action profile $\mathbf{s} = (s_1, \dots, s_n) \in \mathbf{S}$
- 2. The mediator tells each player i only s_i
- 3. Each player *i* is free to choose any action $s_i' \in S_i$
- 4. The resulting utility is $u_i(s'_1, ..., s'_n)$

STRATEGIES IN THE METAGAME

- A strategy of player i in game $\Gamma(p)$ is a mapping $\sigma_i : S_i \to S_i$ from private recommendations to individual actions
- In particular, the strategy follow the recommendation is given by

$$\sigma_i^*(s_i) \coloneqq s_i \quad \text{for all } s_i \in S_i$$

• The expected utility of player *i* under $(\sigma_1^*, \dots, \sigma_n^*)$ is

$$\sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} p(\mathbf{s}_{-i} \mid s_i) \cdot u_i(s_i, \mathbf{s}_{-i}) \qquad \text{for all } s_i \in S_i$$

CORRELATED EQUILIBRIUM

Players follow the recommendations as long as they have no incentive to deviate, given their knowledge of the signal.

Definition

A correlated equilibrium (CE) in a strategic game is a probability distribution p over **S** such that $(\sigma_1^*, \ldots, \sigma_n^*)$ is a Nash equilibrium in $\Gamma(p)$:

$$\sum_{\mathbf{s}_{-i}\in\mathbf{S}_{-i}}p(\mathbf{s}_{-i}\mid s_i)\cdot u_i(s_i',\mathbf{s}_{-i}) \leq \sum_{\mathbf{s}_{-i}\in\mathbf{S}_{-i}}p(\mathbf{s}_{-i}\mid s_i)\cdot u_i(s_i,\mathbf{s}_{-i}),$$

for every player i and every $s_i, s_i' \in S_i$ such that $p(s_i) > 0$.

CORRELATED EQUILIBRIUM, EQUIVALENTLY

Proposition

The following are equivalent for a probability distribution p over **S**.

- 1. p is a correlated equilibrium.
- 2. For each player i and all $s_i, s_i' \in S_i$,

$$\sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} p(s_i, \mathbf{s}_{-i}) \cdot u_i(s_i', \mathbf{s}_{-i}) \leq \sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} p(s_i, \mathbf{s}_{-i}) \cdot u_i(s_i, \mathbf{s}_{-i}).$$

EXAMPLE

Bach or Stravinski

$$\begin{array}{c|cccc}
B & S & & & & & & & & & & \\
B & 2,1 & 0,0 & & & & & & & & \\
S & 0,0 & 1,2 & & & & & & & & \\
\end{array}$$

$$\begin{array}{c|ccccc}
p(B,S) \leq 2p(B,B) \\
2p(S,B) \leq p(S,S) \\
2p(S,B) \leq p(B,B) \\
p(B,S) \leq 2p(S,S)$$

Selected correlated equilibria:

- 1. $p(B,B) = \alpha$, $p(S,S) = 1 \alpha$, for any $\alpha \in (0,1)$
 - 2. p(B,B) = 1
 - 3. p(S,S) = 1
 - 4. p(B,B) = p(S,S) = 2/9, p(B,S) = 4/9, p(S,B) = 1/9

NASH EQUILIBRIUM INDUCES CORRELATED EQUILIBRIUM

Proposition

Any NE (p_1^*, \ldots, p_n^*) of a strategic game induces a CE p^* such that

$$p^*(\mathbf{s}) = \prod_{i \in N} p_i^*(s_i) \qquad \forall \mathbf{s} \in \mathbf{S}.$$

- Since correlated equilibrium is more general than Nash equilibrium, the former may be computationally tractable
- Computing a single CE can be formulated as an LP problem with $|S_1 \times \cdots \times S_n|$ variables

COMPUTATION OF CE

Select the CE maximizing the social welfare

$$\sum_{i \in N} \sum_{\mathbf{s} \in \mathbf{S}} p(\mathbf{s}) u_i(\mathbf{s}).$$

$$\begin{array}{c|c} B & S \\ B & 2,1 & 0,0 \\ S & 0,0 & 1,2 \end{array} \qquad \begin{array}{c} \text{subject to} \\ p(B,S) \leq 2p(B,B) \\ 2p(S,B) \leq p(S,S) \\ 2p(S,B) \leq p(B,B) \\ p(B,S) \leq 2p(S,S) \end{array}$$

Maximize 3p(B,B) + 3p(S,S)

The optimal solution: $p(B,B) = \alpha$, $p(S,S) = 1 - \alpha$, for any $\alpha \in [0,1]$

MOTIVATION

- One agent (leader) commits to an action, others (followers) react
 - defender ⇒ attackers
 - platform ⇒ users
 - price-making firm ⇒ competitive fringe
- Computationally tractable and deployed in practice
 - security games (U.S. airport and wildlife protection)
 - patrolling
- We focus on the 2-player case (one leader and one follower)

PUBLIC COMMITMENT TO AN ACTION

Example (Conitzer, 2006)

$$\begin{array}{c|cc}
c & d \\
a & 2,1 & 4,0 \\
b & 1,0 & 3,1
\end{array}$$

Strategy profile (a, c) is the only NE

The row player (leader) publicly commits to:

- 1. Action b, the column player (follower) plays d and utilities are (3,1)
- 2. Mixed strategy $p_1(a) = p_1(b) = 1/2$, then the follower's best responses are c and d since $U_2(p_1,c) = U_2(p_1,d) = 1/2$, and each yields different utility for the leader: $U_1(p_1,c) = 3/2$, $U_1(p_1,d) = 7/2$

TWO-PLAYER STACKELBERG GAME

Player 1 (leader) and player 2 (follower) interact as follows:

- 1. The leader publicly commits to a mixed strategy $p_1 \in \Delta_1$.
- 2. The follower then selects a pure strategy $s_2 \in BR_2(p_1)$.

Bilevel optimization

The leader wants to solve the problem

$$\max_{p_1 \in \Delta_1} U_1(p_1, s_2)$$

depending on

$$s_2 \in BR_2(p_1) = \underset{s'_2 \in S_2}{\operatorname{argmax}} U_2(p_1, s'_2)$$

which is typically non-unique. We need a tie-breaking rule to select s_2 .

TIE-BREAKING RULES

1. If $|BR_2(p_1)| = 1$ for every $p_1 \in \Delta_1$, the leader solves

$$\max_{p_1 \in \Delta_1} U_1(p_1, s_2)$$
 where $BR_2(p_1) = \{s_2\}$

- 2. Otherwise we assume that the follower breaks ties
 - to the disadvantage of the leader
 - in favor of the leader

WEAK AND STRONG STACKELBERG EQUILIBRIUM

The follower picks $s_2 \in BR_2(p_1)$

1. to the disadvantage of the leader:

$$\max_{p_1 \in \Delta_1} \min_{s_2 \in \mathsf{BR}_2(p_1)} U_1(p_1, s_2)$$

2. in favor of the leader:

$$\max_{p_1 \in \Delta_1} \max_{s_2 \in \mathsf{BR}_2(p_1)} U_1(p_1, s_2)$$

Definition

- 1. Weak SE (p_1^*, s_2^*) is a solution to the 1st problem.
- 2. Strong SE (p_1^*, s_2^*) is a solution to the 2nd problem.

WEAK SE MAY NOT EXIST

Example

$$c \quad d \\ a \mid 2,1 \mid 4,0 \mid \\ b \mid 1,0 \mid 3,1 \mid$$

$$BR_{2}(p_{1}) = \begin{cases} d \quad 0 \leq p_{1} < 1/2 \\ \{c,d\} \quad p_{1} = 1/2 \\ c \quad 1/2 < p_{1} \leq 1 \end{cases}$$

1. Weak SE doesn't exist since there is no maximizer of function

$$p_1 \in [0,1]$$
 $\mapsto \min_{s_2 \in \mathsf{BR}_2(p_1)} U_1(p_1,s_2) = \begin{cases} p_1 + 3 & 0 \le p_1 < 1/2 \\ p_1 + 1 & 1/2 \le p \le 1 \end{cases}$

2. Strong SE for the leader is given by $p_1^* = 1/2$

HOW TO COMPUTE STRONG SE?

$$\max_{p_1 \in \Delta_1} \max_{s_2 \in \mathsf{BR}_2(p_1)} U_1(p_1, s_2) = \max_{s_2 \in S_2} \max_{\substack{p_1 \in \Delta_1 \\ s_2 \in \mathsf{BR}_2(p_1)}} U_1(p_1, s_2)$$

Algorithm based on LP

• For each $s_2 \in S_2$ solve the LP:

$$\max \quad U_1(p_1,s_2)$$
 subject to
$$U_2(p_1,s_2) \geq U_2(p_1,t_2) \qquad \forall \, t_2 \in S_2$$

$$p_1 \in \Delta_1$$

• Strong SE p_1^* is the optimal solution for an LP with the maximal value

SE IN TWO-PLAYER ZERO-SUM GAMES

Proposition

In any two-player zero-sum game, weak SE and strong SE coincide, and both are equal to the set of NE.

- In a two-player zero-sum game, whether a player publicly discloses their strategy or not is inconsequential
- This stands in stark contrast with general-sum games