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Efficiency of Single-Item Auctions?

Efficiency in single-item auctions: the item allocated to the agent 
who values it the most.

With independent private values (IPV):

Note: Efficiency (often) lost in the correlated value setting.
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Auction Efficient

English (without reserve price)
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Sealed bid second price

Sealed bid first price
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yes

no

yes

no



Optimal Auctions



Optimal Auction Design

The seller's problem is to design an auction mechanism which 
has a Nash equilibrium giving him/her the highest possible 
expected utility.
▪ assuming individual rationality

Second-prize sealed bid auction does not maximize expected 
revenue → not the best choice if profit maximization is important 
(in the short term).
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Designing an Optimum Auction

We assume the IPV setting and risk-neutral bidders.

Each bidder 𝑖’s valuation is drawn from some strictly increasing 
cumulative density function 𝐹𝑖(𝑣), having probability density 
function 𝑓𝑖(𝑣) that is continuous and bounded below.
▪ Allow 𝐹𝑖 𝑣 ≠ 𝐹𝑗 𝑣 : asymmetric valuations

The risk neutral seller knows each 𝐹𝑗 and has zero value for the 
object.

The auction that maximizes the seller's expected revenue subject  
to individual rationality and Bayesian incentive-compatibility for 
the buyers is an optimal auction. 
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Example

2 bidders, 𝑣𝑖 uniformly distributed on [0,1].

Second-price sealed bid auction.
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Outcome without reserve price

0 1

0

1

Bidder 1 wins

Bidder 2 wins

𝑥

1 wins and pays 𝑥
(his lowest winning bid)

𝑥 𝒗𝟏

𝒗𝟐

lost revenue

Player 1

P
layer 2
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𝑅

Outcome with reserve price
Some reserve price improves revenue.

𝒗𝟏0 1

0

1

𝒗𝟐
Bidder 1 wins

Bidder 2 wins

Revenue 

increased

Revenue 

increased

𝑅
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Outcome with reserve price

Bidding true value is still the dominant strategy, so:
1. [Both bides below 𝑅]: No sale.

This happens with probability 𝑅2 and then revenue=0

2. [One bid above the reserve and the other below]: Sale at reserve price 𝑹
This happens with probability 2 1 − 𝑅 𝑅 and the revenue= R

3. [Both bids above the reserve]: Sale at the second highest bid.
This happens with probability 1 − 𝑅 2 and the 

revenue= 𝐸 min 𝑣𝑖 min 𝑣𝑖 ≥ 𝑅 =
1+2𝑅

3

Expected revenue = 2 1 − 𝑅 𝑅2 + 1 − 𝑅 2 1+2𝑅

3

=
1 + 3𝑅2 − 4𝑅3

3

Maximizing: 0 = 2𝑅 − 4𝑅2, i.e., 𝑅 =
1

2
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Outcome with reserve price

Reserve price of Τ1 2: revenue= Τ5 12

Reserve price of 0: revenue= Τ1 3 = 4/12

Tradeoffs:
▪ Lose the sale when both bids below 1/2: but low revenue then in any case 

and probability 1/4 of happening.

▪ Increase the sale price when one bidder has low valuation and the other 
high: happens with probability 1/2.

Setting a reserve price is like adding another bidder: it increases 
competition in the auction.
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Optimal Single Item Auction
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Definition (Virtual valuations)

Consider an IPV setting where bidders are risk neutral and each 
bidder 𝑖’s valuation is drawn from some strictly increasing 
cumulative density function 𝐹𝑖(𝑣), having probability density 
function 𝑓𝑖(𝑣). We then define:
where

• Bidder 𝑖’s virtual valuation is 𝜓𝑖 𝑣𝑖 = 𝑣𝑖 −
1−𝐹𝑖 𝑣𝑖

𝑓𝑖 𝑣𝑖

• Bidder 𝑖’s bidder-specific reserve price 𝑟𝑖
∗ is the value for 

which 𝜓𝑖 𝑟𝑖
∗ = 0

Example: uniform distribution over [0,1]: 𝜓 𝑣 = 2𝑣 − 1



Example virtual valuation functions
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𝜙1(𝑣1)

𝜙1(𝑣2)

𝑣1



Optimal Single Item Auction

Can be understood as a second-price auction with a reserve price, 
held in virtual valuation space rather than in the space of actual 
valuations.

Remains dominant-strategy truthful.
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Theorem (Optimal Single-item Auction)

The optimal (single-good) auction is a sealed-bid auction in 
which every agent is asked to declare his valuation. The good is 
sold to the agent 𝒊 = 𝐚𝐫𝐠𝐦𝐚𝐱𝐢𝝍𝒊( ෝ𝒗𝒊), as long as ෝ𝑣𝑖 > 𝑟𝑖

∗. 
If the good is sold, the winning agent 𝑖 is charged the smallest 
valuation that it could have declared while still remaining the 
winner: 

inf 𝑣𝑖
∗: 𝜓𝑖 𝑣𝑖

∗ ≥ 0 ∧ ∀𝑗 ≠ 𝑖, 𝜓𝑖 𝑣𝑖
∗ ≥ 𝜓𝑗(ෝ𝑣𝑗)



Second-Price Auction with Reservation Price

Symmetric case: second-price auction with reserve price 𝑟∗

satisfying: 𝜓 𝑟∗ = 𝑟∗ −
1−𝐹 𝑟∗

𝑓 𝑟∗
= 0

▪ Truthful mechanism when  𝜓 𝑣 is non-decreasing.

▪ Uniform distribution over [0, 𝑝]: optimum reserve price = 𝑝/2.

Second-price sealed bid auction with Reserve Price is not efficient!
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Second-Price Auction with Reservation Price

Why does this increase revenue?
▪ Reservation prices are like competitors: increase the payments of winning 

bidders.

▪ The virtual valuation can increase the impact of weak bidders’ bids, making 
the more competitive.

▪ Bidders with higher expected valuations bid more aggressively.
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Optimal Auctions: Remarks

For optimal revenue one needs to sacrifice some efficiency.

Optimal auctions are not detail-free: 
▪ they require the seller to incorporate information about the bidders’ 

valuation distributions into the mechanism

▪ → rarely used in practice

Theorem (Bulow and Klemperer): revenue of an efficiency-
maximizing auction with k+1 bidder is at least as high as that of 
the revenue-maximizing one with k bidders.

➔ better to spend energy on attracting more bidders
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Multi-unit Auctions
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Multi-unit Auctions

Multiple identical copies of the same good on sale.

Multi-unit Japanese auction:
▪ After each increment, the bidder specifies the amount he is willing to buy at 

that price

▪ The amount needs to decrease over time: cannot buy more at a higher pirce

▪ The auction is over when the supply equals or exceeds the demand.
▪ Various options if supply exceeds demand

Similar extension possible for English and Dutch auctions.
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Single-unit Demand
Assume there are 𝑘 identical goods on sale and risk-neutral 
bidders who only want one unit each.

𝑘 + 1st-price auction is the equivalent of the second-price 
auction: sell the units to the 𝑘 highest bidders for the same price, 
and to set this price at the amount offered by the highest losing 
bid.

Note: Seller will not always make higher profit by selling more 
items! Example: 
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Combinatorial Auctions

Auctions for bundles of goods.

Let 𝒢 = {𝑔1, … , 𝑔𝑛} be a set of items (goods) to be auctioned

A valuation function 𝑣𝑖: 2
𝒢 ↦ ℝ indicates how much a bundle 

𝐺 ⊆ 𝒢 is worth to agent 𝑖.

We typically assume the following properties:
▪ normalization: 𝑣 ∅ = 0

▪ free disposal: 𝐺1 ⊆ 𝐺2 implies 𝑣 𝐺1 ≤ 𝑣 𝐺2
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Example

Buying a computer gaming rig: PC, Monitor, Keyboard and mouse.

Different types/brands available for each category of items. 
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Non-Additive Valuations

Combinatorial auctions are interesting when the valuation 
function is not additive.

Two main types on non-additivity.
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Substitutability

The valuation function 𝑣 exhibits 
substitutability if there exist two 
sets of goods 𝐺1, 𝐺2 ⊆ 𝐺 such that 
𝐺1 ∩ 𝐺2 = ∅ and 𝑣 𝐺1 ∪ 𝐺2 <
𝑣 𝐺1 + 𝑣(𝐺2). Then this condition 
holds, we say that the valuation 
function 𝑣 is subadditive.

Complementarity

The valuation function 𝑣 exhibits 
complementarity if there exist two 
sets of goods 𝐺1, 𝐺2 ⊆ 𝐺 such that 
𝐺1 ∩ 𝐺2 = ∅ and 𝑣 𝐺1 ∪ 𝐺2 >
𝑣 𝐺1 + 𝑣(𝐺2). Then this condition 
holds, we say that the valuation 
function 𝑣 is superadditive.

Ex: Left and right shoe.Ex: Two different brands of TVs.



How to Sell Goods with Non-Additive 
Valuations?

1. Ignore valuations dependencies and sell sequentially via a 
sequence of independent single-item auctions.

→ Exposure problem: A bidder may bid aggressively for a set of goods in 
the hope of winning a bundle but only succeed in winning a subset (a thus 
paying too much).

2. Run separate but connected single-item auctions 
simultaneously.
▪ a bidder bids in one auction he has a reasonably good indication of what is 

transpiring in the other auctions of interest.

3. Combinatorial auction: bid directly on a bundle of goods.
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Allocation in Combinatorial Auction

Allocation is a list of sets 𝐺1, … , 𝐺𝑛 ⊆ 𝒢, one for each agent 𝑖 such that 
𝐺𝑖 ∩ 𝐺𝑗 = ∅ for all 𝑖 ≠ 𝑗 (i.e. not good allocated to more than one 
agent)

Which way to choose an allocation for a combinatorial auction?

→ The simples is to maximize social welfare (efficient allocation): 

𝑈 𝐺1, … , 𝐺𝑛, 𝑣1, … , 𝑣𝑛 =

𝑖=1

𝑛

𝑣𝑖(𝐺𝑖)
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Simple Combinatorial Auction Mechanism

The mechanism determines the social welfare maximizing 
allocation and then charges the winners their bid (for the bundle 
they have won), i.e., 𝜌𝑖 = ො𝑣𝑖 .

Example:

OPEN INFORMATICS / MULTIAGENT SYSTEMS: AUCTIONS

Is this incentive-compatible? No.



VCG auction

A Vickrey–Clarke–Groves (VCG) auction is a type of sealed-bid 
auction of multiple items. Bidders submit bids that report their 
valuations for the items, without knowing the bids of the other 
bidders. The auction system assigns the items in a socially 
optimal manner: it charges each individual the harm they cause 
to other bidders.[1]

Vickrey–Clarke–Groves (VCG) auction, an analogy to second-
price sealed bid single-unit auctions, exists for the combinatorial 
setting and it is dominant-strategy truthful and efficient. 
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https://en.wikipedia.org/wiki/Socially_optimal
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VCG example

Suppose two apples are being auctioned among three bidders.
▪ Bidder A wants one apple and is willing to pay $5 for that apple.

▪ Bidder B wants one apple and is willing to pay $2 for it.

▪ Bidder C wants two apples and is willing to pay $6 to have both of them but 
is uninterested in buying only one without the other.

First, the outcome of the auction is determined by maximizing 
social welfare: 
▪ the apples go to bidder A and bidder B, since their combined bid of $5 + $2 

= $7 is greater than the bid for two apples by bidder C who is willing to pay 
only $6. 

▪ Thus, after the auction, the value achieved by bidder A is $5, by bidder B is 
$2, and by bidder C is $0 (since bidder C gets nothing). 
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VCG example

Payment of bidder A: 
▪ an auction that excludes bidder A, the social-welfare maximizing outcome would 

assign both apples to bidder C for a total social value of $6. 

▪ the total social value of the original auction excluding A's value is computed as 
$7 - $5 = $2. 

▪ Finally, subtract the second value from the first value. Thus, the payment 
required of A is $6 − $2 = $4.

Payment of bidder B: 
▪ the best outcome for an auction that excludes bidder B assigns both apples to 

bidder C for $6. 

▪ The total social value of the original auction minus B's portion is $5. Thus, the 
payment required of B is $6 − $5 = $1.

Finally, the payment for bidder C is ($5 + $2) − ($5 + $2) = $0.

After the auction, A is $1 better off than before (paying $4 to gain $5 of 
utility), B is $1 better off than before (paying $1 to gain $2 of utility), 
and C is neutral (having not won anything).
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Winner Determination Problem
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Definition

The winner determination problem for a combinatorial auctions, 
given the agents’ declared valuations ෝ𝑣𝑖 is to find the social-
welfare-maximizing allocation of goods to agents. This problem 
can be expressed as the following integer program

maximize 

𝑖∈𝑁



𝑍⊆𝒵

ෝ𝑣𝑖 𝑍 𝑥𝑍,𝑖

subject to 

𝑍,𝑗∈𝑍



𝑖∈𝑁

𝑥𝑍,𝑖 ≤ 1 ∀𝑗 ∈ 𝒵



𝑍⊆𝒵

𝑥𝑍,𝑖 ≤ 1 ∀𝑖 ∈ 𝑁

𝑥𝑍,𝑖 = 0,1 ∀𝑍 ⊆ 𝒵, 𝑖 ∈ 𝑁



Complexity of the Winner Determination 
Problem

Equivalent to a set packing problem (SSP) which is known to be 
NP-complete.

Worse: SSP cannot be approximated uniformly to a fixed 
constant.

Two possible solutions:
▪ Limit to instance where polynomial-time solutions exist.

▪ Heuristic methods that drop the guarantee of polynomial runtime, 
optimality or both.
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Restricted instances

Use relaxation to solve WDP in polynomial time: Drop the 
integrality constraint and solve as a standard linear program.

The solution is guaranteed to be integral when the constraints 
matrix is unimodular.

Two important real-world cases fulfills this condition.
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Contiguous ones property 
(continuous bundles of goods)

Tree-structured bids



Heuristics Methods

Incomplete methods do not guarantee to find optimal solution.

Methods do exist that can guarantee a solution that is within 
1/√𝑘 of the optimal solution, where 𝑘 is the number of goods.

Works well in practice, making it possible to solve WDPs with 
many hundreds of goods and thousands of bids.
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Auctions Summary

Auctions are mechanisms for allocating scarce resource among 
self-interested agent

Mechanism-design and game-theoretic perspective

Many auction mechanisms: English, Dutch, Japanese, First-price 
sealed bid, Second-price sealed bid

Desirable properties: truthfulness, efficiency, optimality, ...

Rapidly expanding list of applications worth billions of dollars

Reading:
▪ [Shoham] – Chapter 11 

▪ [Maschler] – Chapter 12
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