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Talk overview

= Intersections of line segments (Bentley-Ottmann)
— Motivation
— Sweep line algorithm recapitulation
— Sweep line intersections of line segments

= |Intersection of planar subdivisions
— See also assignment [21] or [Berg, Section 2.3]

= Intersection of axis parallel rectangles
— See also assignment [26]
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Geometric intersections — what are they for?

One of the most basic problems in computational geometry

= Solid modeling
— Intersection of object boundaries in CSG

= Overlay of subdivisions, e.g. layers in GIS
— Bridges on intersections of roads and rivers
— Maintenance responsibilities (road network x county boundaries)

=  Robotics
— Collision detection and collision avoidance

= Computer graphics
— Rendering via ray shooting (intersection of the ray with objects)
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Line segment intersection
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Line segment intersection

= [ntersection of complex shapes is often reduced to simpler
and simpler intersection problems

= Line segment intersection is the most basic intersection
algorithm

= Problem statement:
Given n line segments in the plane, report all points where
a pair of line segments intersect.

= Problem complexity
— Worst case: I = 0(n?) intersections
— Practical case: only some intersections

— Use an output sensitive algorithm
e O(nlogn + I) optimal randomized algorithm
e O(nlogn + I logn) sweep line algorithm - %
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Plane sweep line algorithm

Sweep line (with status)

‘ Event points

%\ <~ known before
A \

~/ \ Event points

, \ / computed

e

Priority queue
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Plane Sweep Iine algorithm recapitulation

= Horizontal line (sweep line, scan line) I moves

top-down over the set of objects
(or vertical line: left to right)

= The move is not continuous, but f jumps from one
event point to another
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Line segment intersections

Events (waiting in the priority queue) Postupovy plén
= points, where the algorithm actually does something
— Segment end-points
* known at algorithm start
— Segment intersections between neighbors along SL

* discovered as the sweep executes

Status = ordered sequence of segments stav
intersecting the sweep line
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Line segment intersection - Sweep line alg.

= Idea: Avoid testing of pairs of segments far apart
= Compute intersections of neighbors on the sweep line only
= O(nlogn + Ilogn)timein O(n) memory

- 2n steps for end points,

— I steps for intersections (I € (0,n?)),

- 0(logn) search the SL status tree

= Ignore “degenerate cases” (most of them will be solved later on)
— No segment is parallel to the sweep line
— Segments intersect in one point and do not overlap
— No three segments meet in a common point

- : -
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Detecting intersections

= Intersection events must be detected and inserted
to the event queue before they occur

= Given two segments a, b intersecting in point p,
there must be a placement of sweep line ! prior

to p, such that segments a, b are adjacent along /

(only adjacent will be tested for intersection)
— segments a, b are not adjacent when the alg. starts

— segments a, b are adjacent just before point p

=> there must be an event point when a, b become
adjacent and therefore are tested for intersection

=> All intersections are found

> S =~ 4
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Data structures

Sweep line { status = order of segments along /
= Balanced binary search tree 7° of segments

= Coords of intersections with { vary as { moves
=> store pointers to line segments in tree nodes

— Position y of [ is plugged into y = mx + b to get the x

Felkel: Computational geometry
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Data structures

Event queue (postupovy plan, éasovy plan) y Jt"p'down
= Define: Order > (top-down, lexicographic)

p > qiff p, >q, orp, =q, and p, <q, x
top-down, left-right approach
(points on ! treated left to right)

= Operations
— Insertion of computed intersection points
— Fetching the next event to previous e
(highest y below [ or the leftmost right of e)

— Test, if the segment is already present in the queue
(Locate and delete intersection event in the queue)
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Data structures

Event queue (postupovy plan, éasovy plan) y Jt"p'dOW”
= Define: Order > (top-down, lexicographic)

p > qiff p, >q, orp, =q, and p, <q, x
top-down, left-right approach
(points on ! treated left to right)

= Operations
— Insertion of computed intersection points
— Fetching the next event to previous e — Mmusthave
(highest y below [ or the leftmost right of e)_|

— Test, if the segment is already present in the queue
(Locate and delete intersection event in the queue)
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Data structures

Event queue (postupovy plan, éasovy plan) y Jt"p'dOW”
= Define: Order > (top-down, lexicographic)

p > qiff p, >q, orp, =q, and p, <q, x
top-down, left-right approach
(points on ! treated left to right)

= Operations
— Insertion of computed intersection points
— Fetching the next event to previous e — Mmusthave
(highest y below [ or the leftmost right of e)_|

— Test, if the segment is already present in the queue | may
(Locate and delete intersection event in the queue) | have
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Problem with duplicities of intersections

Intersection may be detected many times
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Problem with duplicities of intersections

Intersection may be detected many times

1
S v g
3

3% detected
intersection
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Problem with duplicities of intersections

Intersection may be detected many times

1
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3% detected
intersection

- —.:— -
= == =~ ——
-+  —4
I Felkel: Computational geometry
I)(:(; (13/96)




Data structures

Event queue data structure
3><.}cwletected

a) Heap l o deec

— Problem: can not check duplicated intersection events
(reinvented & stored more than once)

— Intersections processed twice or even more times
— Memory complexity of the queue Q is up to 0(n?)
b) Ordered dictionary (balanced binary tree)
— Can check duplicated events (adds just constant factor)
— Nothing inserted twice

— If non-neighbor intersections are deleted
i.e., if only intersections of neighbors along f are stored

. - then @ memory complexity just 2n + n —1 = 0(n)
- DCGI Felkel: Computational geometry %
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l top-down

Line segment intersection algorithm

Findintersections(S)

Input: A set S of line segments in the plane

Output: The set of intersection points + pointers to segments in each
1. Init an empty event queue Q and insert the segment endpoints

2. init an empty status structure T

3. while Q in not empty

4. remove next event p from Q

3 handleEventPoint(p)

Upper endpoint
Intersection
Lower endpoint

Note: Upper-endpoint events store info about the segment

- - —+
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l top-down

Line segment intersection algorithm

Findintersections(S)

Input: A set S of line segments in the plane

Output: The set of intersection points + pointers to segments in each
1. Init an empty event queue Q and insert the segment endpoints

2. init an empty status structure T

3. while Q in not empty

4. remove next event p from Q

3 handleEventPoint(p)

Upper endpoint Improved algorithm:
Intersection Handles all in p
Lower endpoint In a single step

Note: Upper-endpoint events store info about the segment

- - —+
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handleEventPoint() principle

= Upper endpoint U(p)

— insert p (on line s;) to status T

— add intersections with left and
right neighbors to Q  imersection
= Intersection C(p)
— switch order of segments in T
— add intersections with nearest left
and nearest right neighbor to Q
= Lower endpoint L(p)
— remove p (on s;) from T

— add intersections of left and right ¢
- 77+ peighbors to Q

-~
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More than two segments incident

S1

52

U(p) ={s,} [ starthere
C(p) = {54, 83} | cross on £
1 end here [Berg]

L(p) = {s4 Ss}
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H a n d Ie Eve n ts [modified Berg, page 25]

p

handleEventPoint(p) // precisely: handle all events with point p 7@&)
1.

Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)

2. Search T for all segments S(p) that contain p (are adjacent in T°):
Let L(p) € S(p) = segments whose Lower endpointis p
Let C(p) € S(p) = segments that Contain p in interior
3. if(L(p)u U(p) U C(p) contains more than one segment )
4. report p as intersection together with L(p), U(p), C(p)
5. Delete the segmentsin L(p) U C(p) from T
6. if(U(p)UuUC(p) =0 )then findNewEvent(s;, s,, p)
7. else Insert the segmentsin U(p) U C(p) into T
(order as below ¢, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) U C(p); findNewEvent(s;,s’,p) %@pg
9. s” = rightmost segm. of U(p) U C(p); findNewEvent(s”, s,, p)
— D C GI Felkel: Com(:l;t:jt;n)al geometry .
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p

handleEventPoint(p) // precisely: handle all events with point p 7@&)
1.

Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)

2. Search T for all segments S(p) that contain p (are adjacent in T°):
Let L(p) € S(p) = segments whose Lower endpointis p L(p)
Let C(p) € S(p) = segments that Contain p in interior
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H a n d Ie Eve n ts [modified Berg, page 25]

p

handleEventPoint(p) // precisely: handle all events with point p 7@&)
1.

Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)

2. Search T for all segments S(p) that contain p (are adjacent in T°):
Let L(p) € S(p) = segments whose Lower endpointis p L(p)
Let C(p) € S(p) = segments that Contain p in interior
3. 1f(L(p)u U(p) U C(p) contains more than one segment ) é{
4. report p as intersection o together with L(p), U(p), C(p) C(p)
5. Delete the segmentsin L(p) U C(p) from T
6. if(U(p)UC(p) =0 )thenfindNewEvent(s},s,,p)
7. else Insert the segmentsin U(p) U C(p) into T
(order as below ¢, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) U C(p); findNewEvent(s;,s’,p) %}g
9. s” = rightmost segm. of U(p) U C(p); findNewEvent(s”, s,, p)
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H a n d Ie Eve n ts [modified Berg, page 25]

p

handleEventPoint(p) // precisely: handle all events with point p 7@&)

1. Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)
2. Search T for all segments S(p) that contain p (are adjacent in T°):
Let L(p) € S(p) = segments whose Lower endpointis p L(p)
Let C(p) € S(p) = segments that Contain p in interior
3. 1f(L(p)u U(p) U C(p) contains more than one segment ) é{
4. report p as intersection o together with L(p), U(p), C(p) C(p)
5. Delete the segmentsin L(p) U C(p) from T s'l\bpv ‘/.Sr ¢
6. if(U(p)UC(p) =0)thenfindNewEvent(s,, S%// left & right neighbors
7. else Insert the segmentsin U(p) U C(p) into / reverse order of C(p) in T
(order as below ¢, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) U C(p); findNewEvent(s;,s’,p) %}6
9. s” = rightmost segm. of U(p) U C(p); findNewEvent(s”, s,, p)
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H a n d Ie Eve n ts [modified Berg, page 25]

p

handleEventPoint(p) // precisely: handle all events with point p 7@&)

1. Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)
2. Search T for all segments S(p) that contain p (are adjacent in T°):
Let L(p) € S(p) = segments whose Lower endpointis p L(p)
Let C(p) € S(p) = segments that Contain p in interior
3. if(L(p)u U(p) U C(p) contains more than one segment ) é{
4. report p as intersection o together with L(p), U(p), C(p) C(p)
5. Delete the segmentsin L(p) U C(p) from T s'l\pv ‘/°s,, 0
6. if(U(p)UC(p) =0)thenfindNewEvent(s,, S%// left & right neighbors
7. else Insert the segmentsin U(p) U C(p) into / reverse order of C(p) in T
(order as below ¢, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) U C(p); findNewEvent(s;,s’,p) S/%pg
9. s” = rightmost segm. of U(p) U C(p); findNewEvent(s”, s,., p) s
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H a n d Ie Eve n ts [modified Berg, page 25]

p

handleEventPoint(p) // precisely: handle all events with point p 7@&)

1. Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)
2. Search T for all segments S(p) that contain p (are adjacent in T°):
Let L(p) € S(p) = segments whose Lower endpointis p L(p)
Let C(p) € S(p) = segments that Contain p in interior
3. if(L(p)u U(p) U C(p) contains more than one segment ) é{
4. report p as intersection o together with L(p), U(p), C(p) C(p)
5. Delete the segmentsin L(p) U C(p) from T s'l\pv ‘/°s,, 0
6. if(U(p)UC(p) =0)thenfindNewEvent(s,, S%// left & right neighbors
7. else Insert the segmentsin U(p) U C(p) into / reverse order of C(p) in T
(order as below ¢, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) U C(p); findNewEvent(s;,s’,p) %pﬁ%
9. s” = rightmost segm. of U(p) U C(p); findNewEvent(s”, s,., p) s”
— D C GI Felkel: cOm(:l;t:jt;n)al geometry .
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Detection of new intersections

findNewEvent(s;, s, p) [/ with handling of horizontal segments
Input:  two segments (left & right from p in T) and a current event point p
Output: updated event queue Q with new intersection o

1. if [ (s; and s, intersect below the sweep line {) // intersection below {
Non-overlapping

or (s, intersects s” on £ and to the right of p ) ] // horizontal segment s”

and( the intersection © is not presentin Q) _ ——
2. then o Reported intersection - line 4

o New intersection to Q - line 6,8,9

insert intersection® as a new event into Q

S” = leftmost from U(p) U C(p)
S”" = rightmost from U(p) U C(p) line 8

: lin ” o
line 6 e8 s, and s” intersect on /,

e s; and s, intersect below s” is horizontal and to the right.of p
> -+
+
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Line segment intersections

= Memory 0(I) = 0(n?) with duplicities in Q
or O(n) with duplicities in Q deleted
= Operational complexity
- 2n + I stops

- logn each
=>0(I +n)logn total, where [ € (0,n*)

= The algorithm is by Bentley-Ottmann

Bentley, J. L.; Ottmann, T. A. (1979), "Algorithms for reporting and counting geometric intersections”, IEEE
Transactions on Computers C-28 (9): 643-647, doi:10.1109/TC.1979.1675432 .

See also http://wapedia.mobi/en/Bentley%E2%80%930ttmann algorithm
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Overlay of two subdivisions
(intersection of DCELSs)
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Overlay of two subdivisions

DCEL S,

hole
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Overlay of two subdivisions

DCEL s, DCEL s,
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Overlay is a new planar subdivision

DCEL 0(S,, S,)

- : -+
e fo —a— -+
- -~ -1
I Felkel: Computational geometry
I,(:(; (23 /96)



Sweep line overlay algorithm

Compute new planar subdivision
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Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records and vertices ® ®

Compute intersections ® and new half-edge records
Compute labels of new faces %
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Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records and vertices ® ®

Compute intersections ® and new half-edge records
Compute labels of new faces %
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Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records and vertices ® ®

Compute intersections ® and new half-edge records
Compute labels of new faces %
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Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records and vertices ® ®

Compute intersections ® and new half-edge records
Compute labels of new faces (a,b) %
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The algorithm principle

Copy DCELs of both subdivisions to invalid DCEL D

Transform the result into a valid DCEL for the
subdivision overlay 0(S4,S,)

— Compute the intersection of edges
(from different subdivisions §; N S,)

— Link together appropriate parts of the two DCELSs
* Vertex and half-edge records
* Face records
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At an Event point

. Update queue Q (pop, delete intersections of separated edges below)
and Sweep Ilne StatUS tree T (add/remove/swap edges, intersect with neighbors)
as in line segment intersection algorithm

(cross pointers between edges in tree T and DCEL D to access part of D when processing an intersection)

= For vertex from single subdivision
— No additional work

= For intersection of edges from different subdivisions
— Link both DCELs
— Handle all possible cases
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> S~ o~ = 4
+* 4 =
DCGI Felkel: Computational geometry
(26 / 96)



Three types of intersections

New are intersections of different subdivisions

vertex — vertex: overlap of vertices

vertex — edge: edge passes through a vertex

edge — edge: edges intersect in their interior
(end point or edge overlay)
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Three types of intersections

New are intersections of different subdivisions

vertex — vertex: overlap of vertices

vertex — edge: edge passes through a vertex

Let’s discuss this case,
the other two are similar

edge — edge: edges intersect in their interior
(end point or edge overlay)
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vertex — edge update — the principle

\‘Q

é 4

Before: Before: After:
The geometry two half-edges four half-edges
(two shorter
and
two new)
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Pointers around the end-points of edge e

1. Edge e = (w, u) splits into two edges e’ and ¢'’ at intersection v

e’ = (w,v) e = (v,u)

uhalf-edge w,v) = |2. Shorten half-edge (u,w) to (u,v)
shortened (u, w) Shorten half-edge (w,u) to (w, v) )

3. Create their twin (v, w) for (w, v)

/ N Create their twin (v,u) for (u,v)

4. Set new twin’s next to former edge e next

Its new twin

next(v, u) = next(w,u) now in next(w, v)
next(v, w) = next(u, w) now in next(u, v)
5. Set prev pointers to new twins

prev(next(v,u)) = (v,u)

- prev(next(v,w)) = (v,w)
S o Felkel: Computational geometry
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Pointers around intersection v

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
next(w,v) = x
prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin
next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly
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Time cost for updating half-edge records

= All operations with splitting of edges in
intersections and reconnecting of prev, next
pointers take 0(1) time

= Locating of edge x position in cyclic order
— around single vertex v takes O(deg(v))

— which sums to 0(m) = number of edges processed by
the edge intersection algorithm = 0(n) = 0(1) per step

— The overall complexity is not increased
O(nlogn + klogn)
k = complexity of the overlay (=intersections)

n = |S¢| + 1S, Complexity of the input subdivisions

= == =~ ——
-+  —4
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Face records for the overlay subdivision

= Create face records for each face f in 0(51,5,)

— Each face f has it unique outer boundary (CCW)
(except the background that has none)

— Each face has one OuterComponent(f) edge
— All faces together = #outer boundaries + 1 background

= InnerComponents(f) — list of edges of holes (cw)

= Label of f in 51 Used for Boolean operations
= Label of fin S, suchas ;N Sz, S1U Sz S1\S

Polygon examples: % 9)2

o ofe e e —— tegeC[O

—~ DC I Felkel: Computational geometry
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Extraction of faces

= Traverse cycles in DCEL (Tarjan alg. DFS) ...0(n)

= Decide, if the cycle is outer or inner boundary
— Find the leftmost vertex of the cycle (bottom leftmost)
— Incident face lies to the left of edges
— Angle < 180° = outer (around)
— Angle > 180° = inner (hole)

Leftmost
vertex

- —:_ -+
A e e e —f—
> -~ -
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I)(:(; (33/96)




Which boundary cycles bound same face?

= Single outer boundary shares the face with its
holes — inner boundaries

= Graph
— Node for each cycle
©) inner

outer € unbounded

— Arc if inner cycle has half-edge immediately to the left
of the leftmost vertex

— Each connected component — set of cycles of one face

e A o = ——
> -~ -
—~ DC I Felkel: Computational geometry
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Graph G of faces and their relations

@hfﬁner (cw)
outer (ccw)
unbounded

Connected componentin G

' v — represents a face f with its holes

— connects outer face with its.holes
InnerComponents(f)

-+  —4
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Graph G construction

ldea — during sweep line, we know the nearest left
edge for every vertex v (and half-edge with origin v)

1. Make node for every cycle
(graph traversal)

2. During plane sweep,

— store pointer to graph node for
each edge

— remember the leftmost vertex and
its nearest left edge <«

5 (e——)

new arc 3. Create arc between cycles of the
leftmost vertex an its nearest left

i edge
-+  —4 bt
I Felkel: Computational geometry
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Face label determination

For intersection v of two edges:
During the sweep-line

In both new pieces, remember the
face of half-edge being split into two

After
Label the face by both labels

For face in other face (hole):
Known half-edge label only from S;

Use graph G to locate outer boundary
label for face from S,

(or store containing face f of other
subdivision for each vertex)
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Map overlay algorithm

MapOverlay(S4, S,)
Input:  Two planar subdivisions S; and S, stored in DCEL

Output: The overlay of §; and S, stored in DCEL D

1. Copy both DCELs for of S; and S, into DCEL D

2. Use plane sweep to compute intersections of edges from S; and S, (intersection)
Update vertex and edge records in D when the event involves edges of both S, S,
Store the half-edge to the left of the event point at the vertex in D

3. Traverse D (depth-first search) to determine the boundary cycles

2. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5.  for each connected component in G do

6. C < the unique outer boundary cycle holes

7. f < the face bounded by the cycle C.

8. Create a face record for f

9 OuterComponent(f) « some half-edge of C ,

10. InnerComponents(f) « list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycle C and the holes

12. Label each face of 0(S;, S,) with the names of the faces of §; and S, containing it
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Store the half-edge to the left of the event point at the vertex in D

5. Traverse D (depth-first search) to determine the boundary cycles // O(n)

2. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5.  for each connected component in G do i

6. C < the unique outer boundary cycle holes

7. f < the face bounded by the cycle C.

8. Create a face record for f _ /] 0(k)

9 OuterComponent(f) « some half-edge of C ,

10. InnerComponents(f) « list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycle C and the holes

2. Label each face of 0(S;, S,) with the names of the faces of S; and S, containing it
Felkel: Computational geome

PIOCT 58196) P Oo(nlogn + klogn) )RR



Running time

The overlay of two planar subdivisions with total
complexity n can be constructed in
O(nlogn + klogn)

where k = complexity of the overlay (=intersections)

- : -+
A e e e —f—
> -~ -
I Felkel: Computational geometry
(; (39/96)
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Axis parallel rectangles
intersection

- : -+
= == =~ ——
-+  —4
I Felkel: Computational geometry
I)(:(; (40/96)



Intersection of axis parallel rectangles

= Given the collection of n isothetic rectangles,

report all intersecting parts

A

Fe

/"' - - - \\‘
. Overlap W

Fy

(Inclusion )

o’ o o~ == =

»
»

Alternate sides
belong to two

pencils of lines
(trsy pfimek)

(often used with
points in infinity
= axis parallel)
2D => 2 pencils

(7]

Felkel: Computational geometry

(411 96)
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Brute force intersection

Brute force algorithm
Input:  set S of axis parallel rectangles
Output: pairs of intersected rectangles

1. For every pair (1;,17) of rectangles € S,i # j
2. if (r; N7, # @) then
3. report (13, 17)

Analysis
Preprocessing: None.

Query: O(N?) (g’) = N(A;_l) € O(N?).

Storage: O(N)

- o~
>~ o~ =~ 4 —I
+

- ==

7 DCGI



Plane sweep intersection algorithm

S
y
not active
rectangle
active
rectangle
- — X
+ sweep line

+++++ [Drtina]

—~ Dc I Felkel: Computational geometry
(; (43 /96)



Plane sweep intersection algorithm

= Vertical sweep line moves from left to right
= Stops at every x-coordinate of a rectangle

(either at its left side or at its right side).
= active rectangles — a set

[ ]

L1

= rectangles currently intersecting the sweep line

— left side event of a rectangle [ — start
=> the rectangle is added to the active set.
— right side ] —end

=> the rectangle is deleted from the active set.
= [he active set used to detect rectangle intersection

o’ o o~ == =

—~ DC I Felkel: Computational geometry
( ; (44 /96)
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Interval tree as sweep line status structure

= Vertical sweep-line => only y-coordinates along it

= [he status tree is drawn horizontal - turn 90° right
as if the sweep line (y-axis) is horizontal

T - -

not active
ectangle

>

active
ectangl

- —.:_ -+
= == =~ ——
-+  —4
I Felkel: Computational geometry
I)(:(; (45/96)



Intersection test — between pair of intervals

= Giventwointervals I = [y, y,] and I' = |y, v, ]
the condition I n I'is equivalent to one of these

mutually exclusive conditions: 1st variant
V1 Y2
/ v
a <y < . *
) VIS V1SV , 5
OR
V1 Y2
b) vi <y1 =3 : : .
Y1 Y2
Intervals along the sweep line a) b) b)
T T T T H - - - - FF
e e et 3 Intersection (fork)
-~ DCGI Felkel: Computational geometry %

(46 / 96)



Intersection test — between pair of intervals

= Giventwointervals I = [y, y,] and I' = |y, v, ]
the condition I n I’ is equivalent to both of these

conditions simultaneously: ond yariant
Vi Y2
v
1) v, < . .
) Vi S V2 Vi Vs
AND
, Y1 Y2
2)y1 = ) f : .
Intervals along the sweep line V1 Y2
2) 1,2) 1,2) 1,2) 1)
O L L L L A B I e

e e ot S Intersection (fork)
-+~ -~ -
-~ DCGI Felkel: Computational geometry
(47 /96)
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Intersection test — between pair of intervals

= Giventwointervals I = [y, y,] and I' = |y, v, ]
the condition I n I’ is equivalent to both of these

conditions simultaneously: ond yariant
y.{ 3:5
v
1) v < . *
) Vi <V, Vi , Vs
311
AND )
, Y1 Y2
2)y1 = ) f : .
Intervals along the sweep line V1 Y2
2) 1,2) 1,2) 1,2) 1)
T T T &I T mem Ty T

e e ot S Intersection (fork)
+* 4 =
-~ DCGI Felkel: Computational geometry
(47 796)



Intersection test — between pair of intervals

= Given two intervals I = [y, y,] and I’ = [y}, y}]

the condition I n I’ is equivalent to both of these
conditions simultaneously:

2"d variant
1 %
v <y, ’ * °
V1 / Y2 ;
311 Y2
AND E - :
V1 Y2
2) y1 <3 | f : .
Intervals along the sweep line V1 Y2
2) 1,2) 1,2) 1,2) 1)
R L A = A N

+++++ Intersection (fork)
+* 4 =
-~ DCGI Felkel: Computational geometry
(47 796)



Static interval tree — stores all end point y,

= Letv=y,,.4 bethe median of end-points of segments

= §; :segments of S that are completely to the left of y,,,.q4
= Shneq- Segments of S that contain y,,,.4

= S, :segments of S that are completely to the right of y,,.4

Smed

Sy

_>y

Ymed

o [Vigneron]
s S -~ ——
-+ -+ -+
—~ DC I Felkel: Computational geometry
(; (48 /96) |
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Static interval tree — stores all end point y,

= Letv=y,,.4 bethe median of end-points of segments

= §; :segments of S that are completely to the left of y,,,.q4
= Shneq- Segments of S that contain y,,,.4

= S, :segments of S that are completely to the right of y,,.4

~aned

Sy

“toilet brush”

_>y

Ymed

o [Vigneron]
s S -~ ——
-+ -+ -+
—~ DC I Felkel: Computational geometry
(; (48 /96) |

Fo+ +




Static interval tree — Example

'.8 l <—
S3 ; S9
— Sy
%
S6
S5 0
Smed 57

Left ends —ascending —>
Right ends — descending <—

5y

Interval tree on Interval tree on
S3 and sx So and s~

-
- i [Vigneron]
- DCGI Felkel: Computational geometry J
(49 / 96)




Static interval tree [edeisbrunnerso;

= Stores intervals along y sweep
line T

= 3 kinds of information /‘
- end points

- incident
intervals

- active nodg

5 ¢
1 2 |3 |4 |5 |6




Primary structure — static tree for endpoints

Static — known

v = midpoint of all T
from beginning

segment endpoints  ~ _--
H(v) = value (y-coord) of v /




Secondary lists of incident interval end-pts.

ML(v) — left endpoints of interval containing v Dynamic

(sorted ascending)
MR(v) — right endpoints ./
(descending)

7\
5 6

o
. e s T S -
B
+++++ ®
-+ -+~ [Kukral]
-+ DCGI Felkel: Computational geometry
(52 / 96)




Active nodes — Intersected by the sweep line

Subset of all nodes currently LPTR | Dynamic
intersected by the sweep line Active node
(nodes with intervals) / , 4‘ ~BTR
7
Active node 2 ,/ \
— e

Active node

1 2 3 4 5 6

o’ e [Kukral]

o DC GI Felkel: Computational geometry :>
(53 /96)



Entries in the event queue

——0

. (Xi »YiL,Yir»t)
(xq,1, 3, lef)
(x,,2,4, left)
(x3,1, 3, right)
(x4,2,4, right)

\_Y_I
Static nodes in the SL status tree

. 1,2,3,4

- —.:_ ——
o mfe f f
> -~ -
I Felkel: Computational geometry
+
I,(:(; (54 /96)
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Query = sweep and report intersections

Rectanglelntersections( S )
Input:  Set S of rectangles
Output: Intersected rectangle pairs

1. Preprocess(S) /] create the interval tree T (for y-coords)

/[ and event queue Q

(for x-coords)

2. while(Q #0)do

3. Get next entry (x;, y;, yig, t) from Q II't €{left| ri&ht}

4. if (t=left) //leftedge [ LU

5. a) QuerylInterval (y;;, y;r,root(T)) // report intersections
0. b) Insertinterval (y;; y;r,root(T)) // insert new interval
7. else // right edge []

8. c) Deletelnterval (y;; yir, root(T))

g



Preprocessing

Preprocess( S )
Input:  Set S of rectangles
Output: Primary structure of the interval tree T and the event queue Q

1. T =PrimaryTree(S) // Construct the static primary structure
I/ of the interval tree -> sweep line STATUS T

2. [/ Init event queue Q with vertical rectangle edges in ascending order ~x
// Put the left edges with the same x ahead of right ones (lexicographic)

3. fori=1ton

4, insert((xiL,yiL, Yirs left), Q) /I left edges of i-th rectangle

5. insert((xiR,yiL, YiRs right), Q) // right edges

- - —+
7 DCGI |




Interval tree — primary structure construction

PrimaryTree(S) I/ only the y-tree structure, without intervals
Input:  Set S of rectangles

Output:  Primary structure of an interval tree T

1. §, = Sort endpoints of all segments in S according to y-coordinate
2. T=BST(S,))

3. return T

BST(S,)

if( |[S,|=0) return null

yMed = median of S, // the smaller item for even S,.size
L = endpoints p, < yMed

R = endpoints p, > yMed

t = new IntervalTreeNode( yMed )

t.left =BST(L)

t.right = BST(R)

return ¢t

—
—
+

+ + + + 4+
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Interval tree — search the intersections

Queryinterval ( b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [ b, € ] HS) o enal beha
b | Je
® - ®

Other new interval being
tested for intersection

|

Crosses A,B

Crdgsses A,B,C

4——.—-——————.———-—.-—.—.-—.—.—.—.—

@ Cross.B
H
Crosses A,B,C
@
Crosses C
® r
Crosses nothin
o &
Stored intervals A 5 i
- of active rectangles C‘ °
> S o~ —— ® v oV
- -+ -+

7 DCGI &= UIJDTR—o. o ] [T.RP.TR ,_',_] .




Interval tree — search the intersections

Queryinterval (b, e, T)
Input: Interval of the edge and currenttree T _ _
Output: Report the rectangles that intersect [ b, e ] H(v) Newinterval being

. tested for intersection
1. if( T = null ) return Q
b | ¥ e
@ A ®

Other new interval being
tested for intersection

|

Crosses A,B

Crdgsses A,B,C

4——.—-——————.———-—.-—.—.-—.—.—.—.—

@ Cross.B
H
Crosses A,B,C
@
Crosses C
® r
Crosses nothin
o &
Stored intervals A 5 i
- of active rectangles C‘ °
> S o~ —— ® v oV
- -+ -+

7 DCGI & UIJDTR—o. . ] [T.RP.TR ,_',_] .




Interval tree — search the intersections

Queryinterval ( b, e, T)

Input: Interval of the edge and currenttree T
Output: Report the rectangles that intersect [ b, e ]
1. if( T = null ) return

2. i=0;if(b <H(v)<e) // forks at this node ° | v e

H(V) New interval being
Q tested for intersection

Other new interval being
tested for intersection

|

Crosses A,B

Crdgsses A,B,C

4——.—-——————.———-—.-—.—.-—.—.—.—.—

@ Cross.B
H
Crosses A,B,C
@
Crosses C
® r
Crosses nothin
o &
Stored intervals A 5 i
- of active rectangles C‘ °
> S o~ —— ® v oV
- -+ -+

7 DCGI & UIJDTR—o. . ] [T.RP.TR ,_',_] .




Interval tree — search the intersections

Queryinterval ( b, e, T)

Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [ b, e ] H(v) te’:;"; Ifztre.r:ir:::in
1. if( T = null ) return @ /

2. i=0; if(b < H(v) <e) /I forks at this node > BN

3. while LMEOA T =>=Hh 1 && (i < Count(v)) // Repor{t all intervals inM

4, Reportintersection; i++

Other new interval being
tested for intersection

|

|
|
|
?

Crosses A,B
Crdsses A,B,C. Cross.B
H
Crosses A,B,C
@
C C
® rosses
Crosses nothin
o 5
/Stored intervals + A 5 $
- of active rectangles —3 °
- ++: —7—_ — ® v C oV
- -+ -+
7 = | (zrerR ,_',_]
. ® ® .
DCGI a | :




Interval tree — search the intersections

Queryinterval ( b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [ b, e ] H(v) te’:;"; Ifr:)trelrr\\ltaelrls)ee(l::il)n
1. if( T = null ) return @ /

2. i=0; if(b < H(v) <e) /I forks at this node > BN

3 while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++

5 Queryinterval( b,e, T.LPTR ) e // jump to active ©thernewintervalbeing

tested for intersection

|

Crosses A,B
o

I
I
|
I
I
|
i@ _Cross.B
P "0

gsses A,B,C
Crosses A,B,C
@
C C
® rosses
Crosses nothin
o 5
/Stored intervals + A 5 $
- of active rectangles —3 °
S ® \ 4 C .V
> S~ o~ 4
- -+ -+
7 = | (zrerR ,_',_]
. ® ® .
DCGI a | :




Interval tree — search the intersections

Queryinterval ( b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [ b, e ] H(v) te’:;"; Ifr:)trelrr\\ltaelrls)ee(l::il)n

1. if( T = null ) return @ /

2. i=0; if(b < H(v) <e) /I forks at this node > BN

3 while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++

5 Querylinterval( b,e, T.LPTR ) e— // jump to active; = "ewene being
6 Queryinterval( b,e, T.RPTR )e— [/ node below

|

Crosses A,B
o

I
I
I
I
I
|
i@ _Cross.B
P "0

gsses A,B,C
Crosses A,B,C
@
C C
® rosses
Crosses nothin
o 5
/Stored intervals + A 5 $
- of active rectangles —3 °
S ® \ 4 C .V
> S~ o~ 4
- -+ -+
7 = | (zrerR ,_',_]
. ® ® .
DCGI a | :




Interval tree — search the intersections

Queryinterval ( b, e, T)

Input: Interval of the edge and currenttree T
Output: Report the rectangles that intersect [ b, €] H(v) ot for i
1. if( T = null ) return @ /

2. i=0; if(b < H(v) <e) /I forks at this node > BN

3 while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++

5. Queryinterval( b,e, T.LPTR ) e— /[ jump to active.
6

7

New interval being

Other new interval being
tested for intersection

|

Crosses A,B
o

Querylinterval( b,e, T.RPTR )— // node below
else if (H(v) < b <e) // search RIGHT (<)

I

I

I

I

I

|

r g Cross.B
H

gsses A,B,C
Crosses A,B,C
@
C C
® rosses
Crosses nothin
o 5
/Stored intervals + A 5 $
- of active rectangles —3 °
S ® \ 4 C .V
> S~ o~ 4
- -+ -+
7 = | (zrerR ,_',_]
. ® ® .
DCGI a | :




Interval tree — search the intersections

Queryinterval ( b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [ b, e ] H(v) te’:;"; Ifr:)trelrr\\ltaelrls)ee(l::il)n
1. if( T = null ) return @ /
2. i=0; if(b < H(v) <e) /I forks at this node > BN
3. while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++
5. Querylnterval( b,e,T.LPTR ) s //jump to actlve: O e e e
6. Queryinterval( b,e, .RPTR )e— // node below . 1
7. elseif (H(v) <b<e) //search RIGHT (+-) | Crosets A5
8. while (MR(v).[i] >= b) && (i < Count(v)) 9
0. Reportintersection; i++ p—=IRR0olBle  (CrossB
° Crosses A,B,C
® Crosses C
./Crosses noth|n$
: A
o S e | B
S DCGI <:| \\[T.L’DTR—.. ° ] [T.RP.TR ,—.,_] +




Interval tree — search the intersections

Queryinterval ( b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [ b, e ] H(v) te’:;"; Ifr:)trelrr\\ltaelrls)ee(l::il)n
1. if( T = null ) return @ /
2. i=0; if(b < H(v) <e) /I forks at this node > BN
3. while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++
5. Querylnterval( b,e,T.LPTR ) s //jump to actlve: O e e e
6. Queryinterval( b,e, .RPTR )e— // node below . 1
7. elseif (H(v) <b<e) //search RIGHT (+-) | Crosets A5
8. while (MR(v).[i] >= b) && (i < Count(v)) 9
0. Reportintersection; i++ p—=IRR0olBle  (CrossB
10.  Queryinterval( b,e, T.RPTR )e—e o CrOSSeSABC
® Crosses C
./Crosses nothina
; A
o S e | B
S DCGI <:| \\[T.L’DTR—.. ° ] [T.RP.TR ,—.,_] +




Interval tree — search the intersections

Queryinterval ( b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [ b, e ] H(v) te’:;"; Ifr:)trelrr\\ltaelrls)ee(l::il)n
1. if( T = null ) return @ /
2. i=0; if(b < H(v) <e) /I forks at this node > BN
3. while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++
5. Querylnterval( b,e,T.LPTR ) s //jump to actlve: O e e e
6. Queryinterval( b,e, .RPTR )e— // node below . 1
7. elseif (H(v) <b<e) //search RIGHT (+-) | Crosets A5
8. while (MR(v).[i] >= b) && (i < Count(v)) |
0. Reportintersection; i++ p—=IRR0olBle  (CrossB
10.  Queryinterval( b,e, T.RPTR )e—e o CrOSSeSABC
11. else // b <e < H(v) //[search LEFT(-g) Crossesc_
° Crosses nothina
‘. . A
o S e | B
S DCGI <:| \\[T.L’DTR—.. ° ] [T.RP.TR ,—.,_] +




Interval tree — search the intersections

Queryinterval ( b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [ b, e ] H(v) te’:;"; Ifr:)trelrr\\ltaelrls)ee(l::il)n
1. if( T = null ) return @ /
2. i=0; if(b < H(v) <e) /I forks at this node > BN
3. while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++
5. Querylnterval( b,e, .LPTR )e— // jump to actlve: Other new interval being
6. Queryinterval( b,e, .RPTR )e— // node below . 1
7. elseif (H(v) <b<e) //search RIGHT (+-) | Crosets A5
8. while (MR(v).[i] >= b) && (i < Count(v)) i+ + T
0. Reportintersection; i++ p—=IRR0olBle  (CrossB
10.  Queryinterval( b,e, T.RPTR )e—e o CrOSSeSABC
11. else // b <e < H(v) //[search LEFT(-g) Crossesc_
12. while (ML(V)[l] <= e) .Crosses nothina
13. Reportintersection; i++ stored interv:t |.A —e
. T of active rect glef ! C‘ 3 ! ]
S DCGI <:| \\[T.L’DTR—.. ° ] [T.RP.TR ,—.,_] +




Interval tree — search the intersections

Queryinterval ( b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [ b, e ] H(v) te’:;"; Ifr:)trelrr\\ltaelrls)ee(l::il)n
1. if( T = null ) return @ /
2. i=0; if(b < H(v) <e) /I forks at this node > BN
3. while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++
5. Querylnterval( b,e, .LPTR )e— // jump to actlve: Other new interval being
6. Queryinterval( b,e, .RPTR )e— // node below . 1
7. elseif (H(v) <b<e) //search RIGHT (+-) | Crosets A5
8. while (MR(v).[]] >= b) && (i < Count(v)) .
0. Reportintersection; i++ p—=IRR0olBle  (CrossB
10.  Queryinterval( b,e, T.RPTR )e—e o CrOSSeSABC
11. else // b <e < H(v) //[search LEFT(-g) Crossesc_
12. while (ML(V)[l] <= e) .Crosses nothina
13. Reportintersection; i++ (stored .nterv:t |. A —e
_14. = -QuerylInterval( b,e, T.LPTR ) ofactiverectapgles |~ :
S DCGI <:| \\[T.L’DTR—.. ° ] [T.RP.TR ,—.,_] +




Interval tree - interval insertion

Insertinterval ( b, e, T)
Input: Interval [b,e] and interval tree T
Output: T after insertion of the interval

New interval
1 oy = rOOt(T ) H(V) being inserted
2. while(v!=null) // find the fork node @ /
3. i if(H(v)<b<e) | ’ :
4. v =v.right // continue right |
5. elseif (b<e<H(WV) . .
6. v = v.left // continue left |
7. else // b <H(v) <e //insertinterval . e— .
8. set v node to active ¢ 1
9. i connect LPTR resp. RPTR to its parent (active node above)
10. ¢ insert [b,e] into list ML(v) — sorted in ascending order of b’s
11. ¢ insert [b,e] into list MR(v) — sorted in descending order of e’s
12. break
13. endwhile

14, return T %
”  DCGI |

o+ 4+



Example 1

Felkel: Computational geometry
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Example 1 — static tree on endpoints

H(v) — value of node v

e [Drtina]
-+ -+ -+
—~ DC I Felkel: Computational geometry
+
(; (61/96)

Fo+ + +



Interval insertion [1,3] a) Query Interval O

Search MR(Vv) or ML(v): —— b < H(v) <e

MR(V) is empty 1 <)< 3
No active sons, stop

1

|:| Active rectangle
O Current node

@ Active node

—-~

DCGI

[Drtina]
Felkel: Computational geometry
(62 / 96)



Interval insertion [1,3]

b) Insert Interval &

1

|:| Active rectangle
O Current node

@ Active node

—-~

b<H(v)<e

?1<2)=<37?

DCGI

Felkel: Computational geometry
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Interval insertion [1,3] b) Insert Interval [
b<H(v)<e

? 1 <)< 3 fork
=> to lists

[ X

|:| Active rectangle
(O current node A

’ Active node [Drtinal %
S o Felkel: Computational geometry
DCGI 3




Interval insertion [2,4] a) Query Interval [

Search MR(v) only: -« H(v) <b<e
MR(V)[1] = 3 > 22 2)<2<4
=> |ntersection

|:| Active rectangle
O Current node
@ Active node

7 DCGI

[Drtina]
Felkel: Computational geometry
(65 / 96)



Interval insertion [2,4] b) Insert Interval &
b<H(v)<e

2=(2)=4 fork
=> to lists

|:| Active rectangle
O Current node

‘ Active node [Drtina] %
= Felkel: Computational geometry
DCGI e




Interval delete [1,3] ]

|:| Active rectangle
O Current node =

@ Active node [Drtina %
S o Felkel: Computational geometry
DCGI e




Interval delete [1,3]

|:| Active rectangle
O Current node
@ Active node

A

”  DCGI

Felkel: Computational geometry
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Interval delete [2,4]

|:| Active rectangle
O Current node
@ Active node

”  DCGI

Felkel: Computational geometry
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Interval delete [2,4] 1
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Query = sweep and report intersections

Rectanglelntersections( S )
Input:  Set S of rectangles

Il this is a copy of the slide before
Il just to remember the algorithm

Output: Intersected rectangle pairs

1. Preprocess(S) /] create the interval tree T (for y-coords)
// and event queue Q (for x-coords)

2. while (Q +0)do

3. Get next entry (x;, y;, yig, t) from Q II't e{left] ri&ht}

4. if (t=left) //leftedge [ LU

5. a) QuerylInterval (y;;, y;r,root(T)) // report intersections

6. b) Insertinterval (y;; y;r,root(T)) // insert new interval

7. else // right edge []

8. c) Deletelnterval (y;; yir, root(T))

fet
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Empty tree

Search for and delete node with interval [4,6]
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Complexities of rectangle intersections

= n rectangles, s intersected pairs found

= O(nlogn) preprocessing time to separately sort
— X-coordinates of the rectangles for the plane sweep
— the y-coordinates for initializing the interval tree.

= The plane sweep itself takes O(nlogn + s) time,
so the overall time is O(nlogn + s)

= 0O(n) space

= This time is optimal for a decision-tree algorithm
(i.e., one that only makes comparisons between
rectangle coordinates).
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