

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

INTERSECTIONS OF LINE SEGMENTS AND AXIS ALIGNED RECTANGLES, OVERLAY OF SUBDIVISIONS PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount], [Kukral], and [Drtina]

Version from 20.11.2024

Talk overview

- Intersections of line segments (Bentley-Ottmann)
 - Motivation
 - Sweep line algorithm recapitulation
 - Sweep line intersections of line segments
- Intersection of planar subdivisions
 - See also assignment [21] or [Berg, Section 2.3]
- Intersection of axis parallel rectangles
 - See also assignment [26]

Geometric intersections – what are they for?

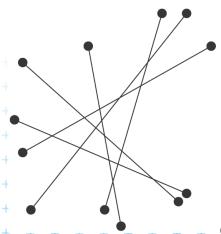
One of the most basic problems in computational geometry

- Solid modeling
 - Intersection of object boundaries in CSG
- Overlay of subdivisions, e.g. layers in GIS
 - Bridges on intersections of roads and rivers
 - Maintenance responsibilities (road network × county boundaries)
- Robotics
 - Collision detection and collision avoidance
- Computer graphics
 - Rendering via ray shooting (intersection of the ray with objects)

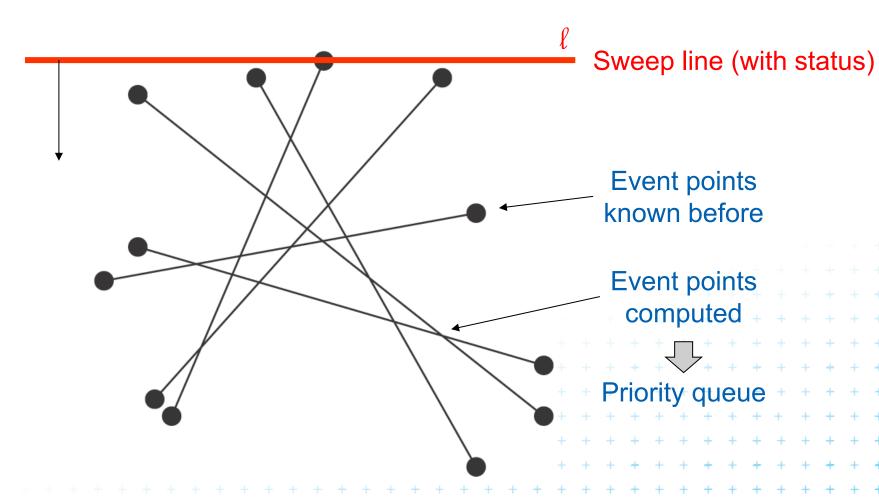
Line segment intersection

Line segment intersection

- Intersection of complex shapes is often reduced to simpler and simpler intersection problems
- Line segment intersection is the most basic intersection algorithm
- Problem statement:
 Given n line segments in the plane, report all points where a pair of line segments intersect.
- Problem complexity
 - Worst case: $I = O(n^2)$ intersections
 - Practical case: only some intersections
 - Use an output sensitive algorithm
 - $O(n \log n + I)$ optimal randomized algorithm
 - $O(n \log n + I \log n)$ sweep line algorithm %



Plane sweep line algorithm



Plane sweep line algorithm recapitulation

- Horizontal line (sweep line, scan line) l moves top-down over the set of objects (or vertical line: left to right)
- The move is not continuous, but ℓ jumps from one event point to another

Line segment intersections

Events (waiting in the priority queue)

Postupový plán

- = points, where the algorithm actually does something
- Segment end-points
 - known at algorithm start
- Segment intersections between neighbors along SL
 - discovered as the sweep executes

Status = ordered sequence of segments intersecting the sweep line \(\ell \)

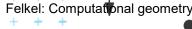
Stav

Line segment intersection - Sweep line alg.

- Idea: Avoid testing of pairs of segments far apart
- Compute intersections of neighbors on the sweep line only
- $O(n \log n + I \log n)$ time in O(n) memory
 - 2*n* steps for end points,
 - I steps for intersections $(I \in \langle 0, n^2 \rangle)$,
 - $O(\log n)$ search the SL status tree
- Ignore "degenerate cases" (most of them will be solved later on)
 - No segment is parallel to the sweep line
 - Segments intersect in one point and do not overlap
 - No three segments meet in a common point

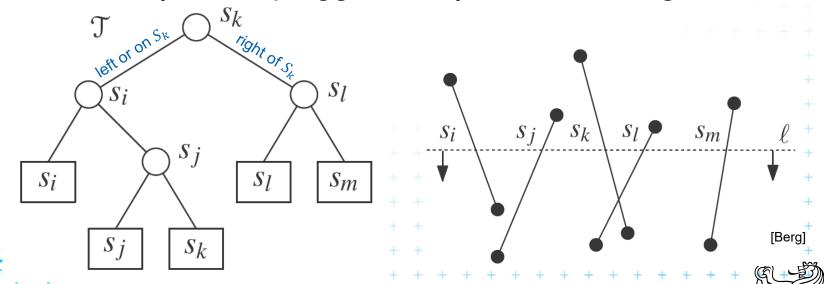
Detecting intersections

- Intersection events must be detected and inserted to the event queue before they occur
- Given two segments a, b intersecting in point p, there must be a placement of sweep line ℓ prior to p, such that segments a, b are adjacent along ℓ (only adjacent will be tested for intersection)
 - segments a, b are not adjacent when the alg. starts
 - segments a, b are adjacent just before point p
 - => there must be an event point when a, b become adjacent and therefore are tested for intersection
 - => All intersections are found



Sweep line ℓ status = order of segments along ℓ

- Balanced binary search tree T of segments
- Coords of intersections with ℓ vary as ℓ moves
 => store pointers to line segments in tree nodes
 - Position y of ℓ is plugged into y = mx + b to get the x



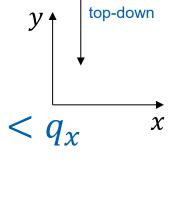
Event queue (postupový plán, časový plán)

- Define: Order > (top-down, lexicographic)
 - p > q iff $p_y > q_y$ or $p_y = q_y$ and $p_x < q_x$ top-down, left-right approach (points on ℓ treated left to right)
- Operations
 - Insertion of computed intersection points
 - Fetching the next event to previous e (highest y below ℓ or the leftmost right of e)
 - Test, if the segment is already present in the queue (Locate and delete intersection event in the queue)

top-down

Event queue (postupový plán, časový plán)

- Define: Order > (top-down, lexicographic)
 - p > q iff $p_y > q_y$ or $p_y = q_y$ and $p_x < q_x$ top-down, left-right approach (points on ℓ treated left to right)
- Operations
 - Insertion of computed intersection points
 - Fetching the next event to previous e (highest y below ℓ or the leftmost right of e)_
 - Test, if the segment is already present in the queue (Locate and delete intersection event in the queue)

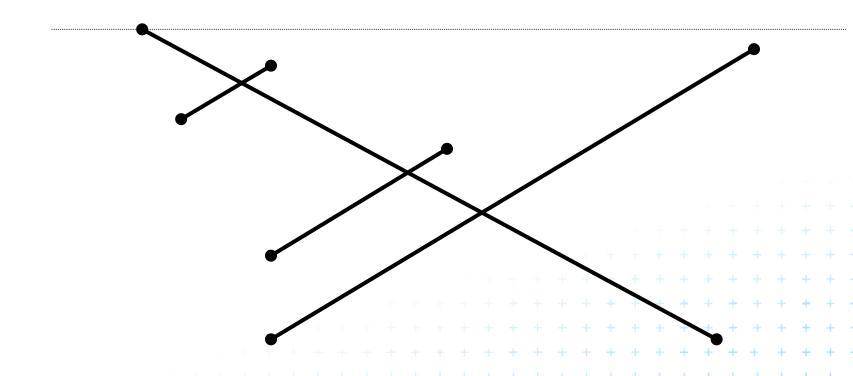


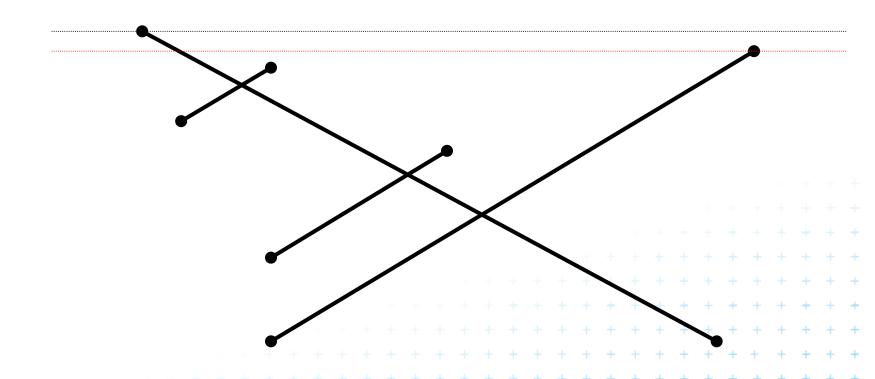
Event queue (postupový plán, časový plán)

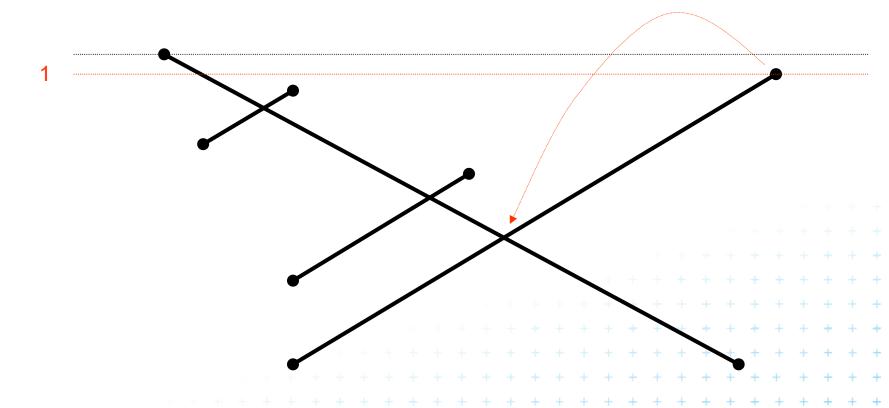
- Define: Order > (top-down, lexicographic)
 - p > q iff $p_y > q_y$ or $p_y = q_y$ and $p_x < q_x$ top-down, left-right approach (points on ℓ treated left to right)
- Operations
 - Insertion of computed intersection points
 - Fetching the next event to previous e (highest y below ℓ or the leftmost right of e)_
 - Test, if the segment is already present in the queue | may
 (Locate and delete intersection event in the queue) | have

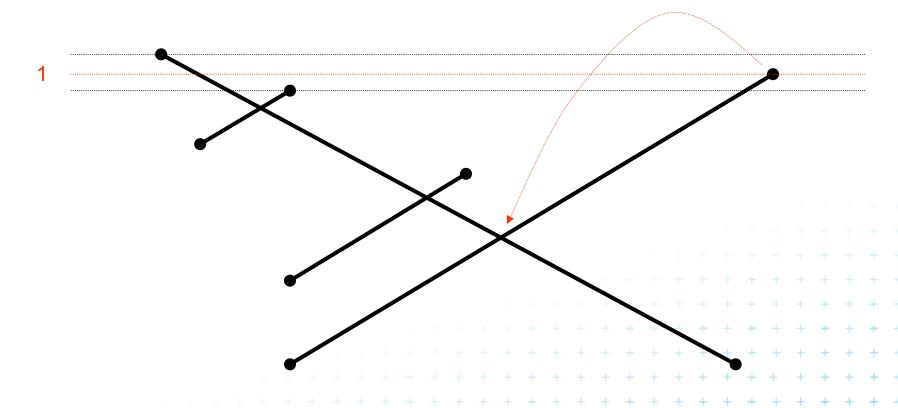
top-down

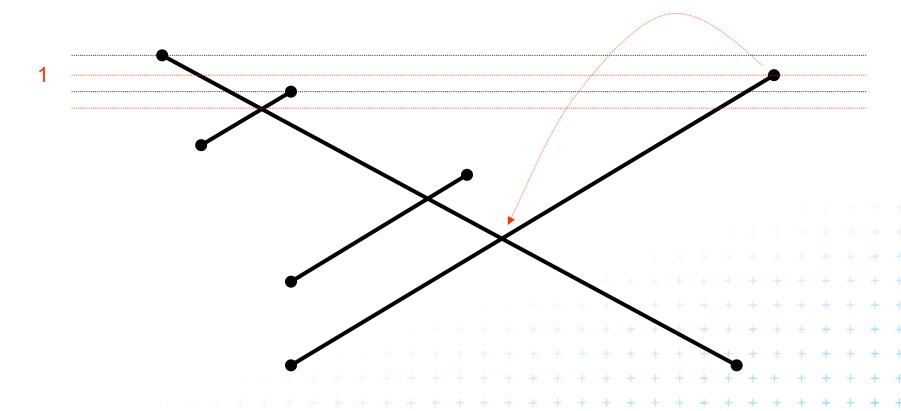


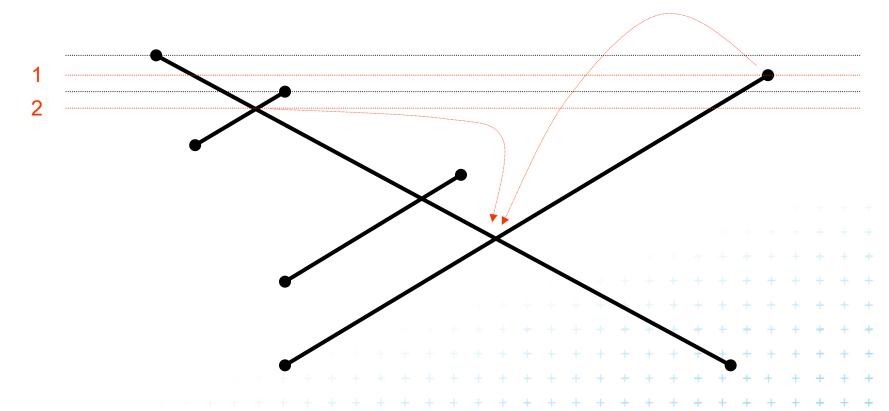


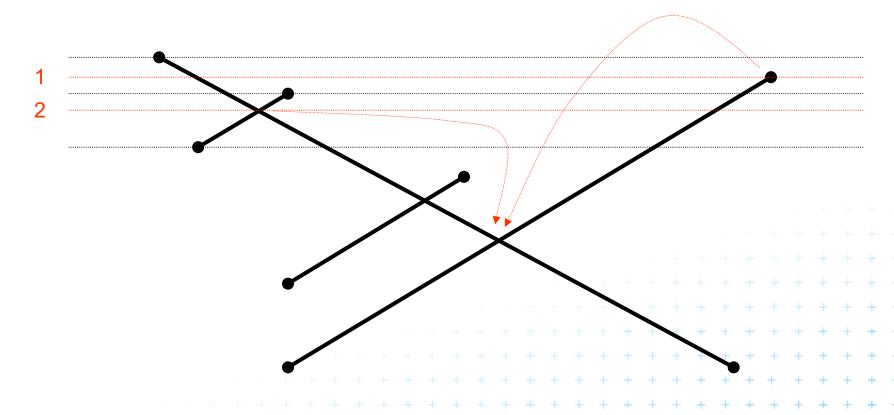


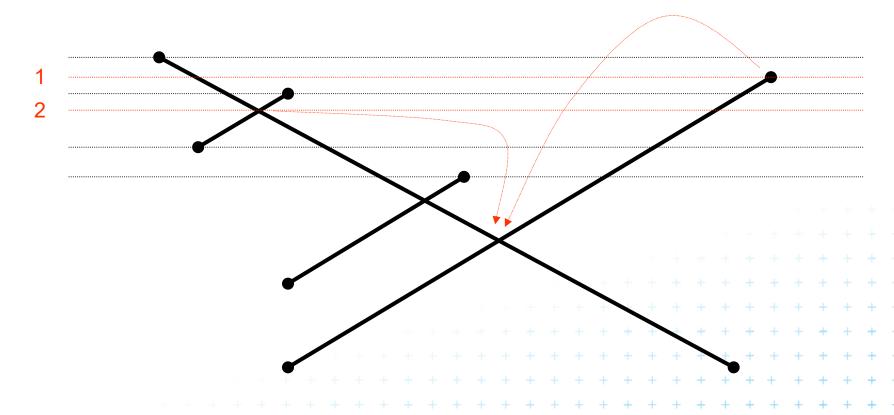


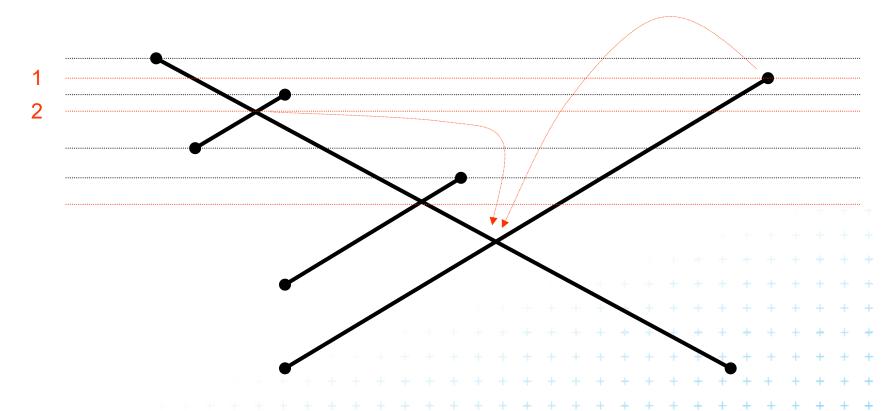


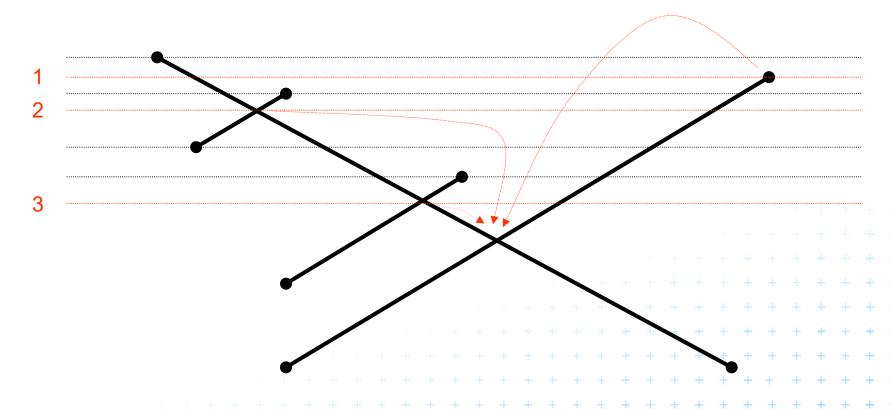


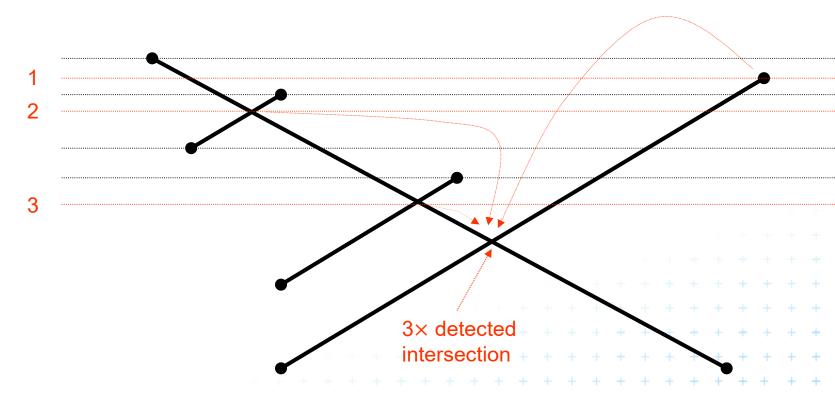


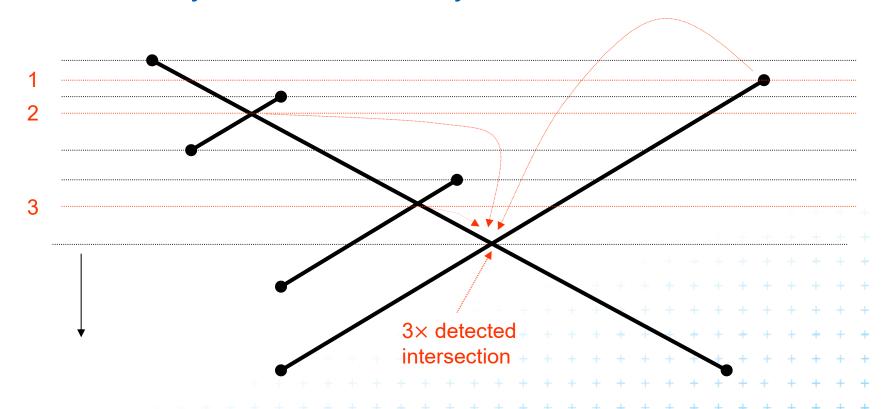






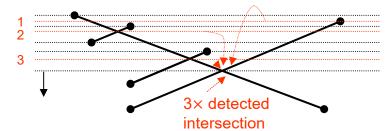






Event queue data structure

a) Heap



- Problem: can not check duplicated intersection events (reinvented & stored more than once)
- Intersections processed twice or even more times
- Memory complexity of the queue Q is up to $O(n^2)$

b) Ordered dictionary (balanced binary tree)

- Can check duplicated events (adds just constant factor)
- Nothing inserted twice
- If non-neighbor intersections are deleted i.e., if only intersections of neighbors along ℓ are stored then Q memory complexity just 2n + n 1 = Q(n)

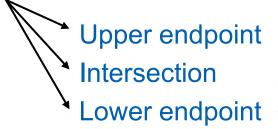
Line segment intersection algorithm

FindIntersections(S)

Input: A set *S* of line segments in the plane

Output: The set of intersection points + pointers to segments in each

- 1. init an empty event queue Q and insert the segment endpoints
- 2. init an empty status structure *T*
- 3. while Q in not empty
- 4. remove next event p from Q
- 5. handleEventPoint(p)



Note: Upper-endpoint events store info about the segment

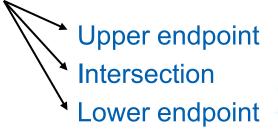
Line segment intersection algorithm

FindIntersections(S)

Input: A set *S* of line segments in the plane

Output: The set of intersection points + pointers to segments in each

- 1. init an empty event queue Q and insert the segment endpoints
- 2. init an empty status structure T
- 3. while Q in not empty
- 4. remove next event p from Q
- 5. handleEventPoint(p)



Improved algorithm:
Handles all in pin a single step

Note: Upper-endpoint events store info about the segment

handleEventPoint() principle

• Upper endpoint U(p)

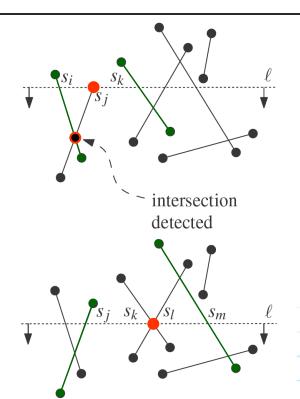
- insert p (on line s_i) to status T
- add intersections with left and right neighbors to Q

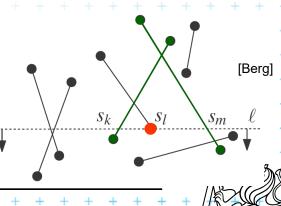
• Intersection C(p)

- switch order of segments in \mathcal{T}
- add intersections with nearest left and nearest right neighbor to Q

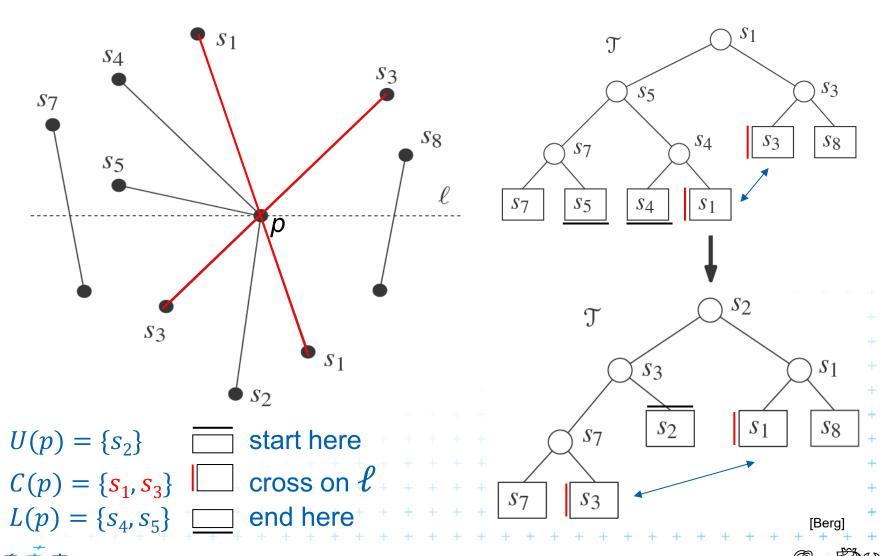
• Lower endpoint L(p)

- remove p (on s_l) from T
- add intersections of left and right
 neighbors to Q

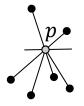




More than two segments incident

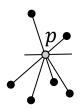


- Let U(p) = set of segments whose Upper endpoint is p. These segments are stored with the event point p (will be added to T)
- Search \mathcal{T} for all segments S(p) that contain p (are adjacent in \mathcal{T}): Let $L(p) \in S(p)$ = segments whose Lower endpoint is pLet $C(p) \in S(p)$ = segments that Contain p in interior
- **if**($L(p) \cup U(p) \cup C(p)$ contains more than one segment) 3.
- report p as intersection together with L(p), U(p), C(p)
- Delete the segments in $L(p) \cup C(p)$ from \mathcal{T} 5.
- if $(U(p) \cup C(p) = \emptyset)$ then find New Event (s_l, s_r, p) 6.
- **else** Insert the segments in $U(p) \cup C(p)$ into \mathcal{T} (order as below ℓ , horizontal segment as the last)
- $s' = \text{leftmost segm. of } U(p) \cup C(p); \text{ findNewEvent}(s_l, s', p)$ 8.
- s'' = rightmost segm. of $U(p) \cup C(p)$; findNewEvent(s'', s_r, p) 9.

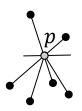




- Let U(p) = set of segments whose Upper endpoint is p. These segments are stored with the event point p (will be added to T)
- Search \mathcal{T} for all segments S(p) that contain p (are adjacent in \mathcal{T}): Let $L(p) \in S(p)$ = segments whose Lower endpoint is pLet $C(p) \in S(p)$ = segments that Contain p in interior
- **if**($L(p) \cup U(p) \cup C(p)$ contains more than one segment) 3.
- report p as intersection together with L(p), U(p), C(p)
- Delete the segments in $L(p) \cup C(p)$ from \mathcal{T} 5.
- if $(U(p) \cup C(p) = \emptyset)$ then find New Event (s_l, s_r, p) 6.
- **else** Insert the segments in $U(p) \cup C(p)$ into \mathcal{T} (order as below ℓ , horizontal segment as the last)
- $s' = \text{leftmost segm. of } U(p) \cup C(p); \text{ findNewEvent}(s_l, s', p)$ 8.
- s'' = rightmost segm. of $U(p) \cup C(p)$; findNewEvent(s'', s_r, p) 9.



- Let U(p) = set of segments whose Upper endpoint is p. These segments are stored with the event point p (will be added to T)
- Search \mathcal{T} for all segments S(p) that contain p (are adjacent in \mathcal{T}): Let $L(p) \in S(p)$ = segments whose Lower endpoint is pLet $C(p) \in S(p)$ = segments that Contain p in interior
- **if**($L(p) \cup U(p) \cup C(p)$ contains more than one segment) 3.
- report p as intersection \circ together with L(p), U(p), C(p)
- Delete the segments in $L(p) \cup C(p)$ from \mathcal{T} 5.
- if($U(p) \cup C(p) = \emptyset$) then findNewEvent(s_l, s_r, p) 6.
- **else** Insert the segments in $U(p) \cup C(p)$ into \mathcal{T} (order as below ℓ , horizontal segment as the last)
- $s' = \text{leftmost segm. of } U(p) \cup C(p); \quad \text{findNewEvent}(s_l, s', p)$ 8.
- s'' = rightmost segm. of $U(p) \cup C(p)$; findNewEvent(s'', s_r, p) 9.



- Let U(p) = set of segments whose Upper endpoint is p. These segments are stored with the event point p (will be added to T)
- **Search** \mathcal{T} for all segments S(p) that contain p (are adjacent in \mathcal{T}): Let $L(p) \in S(p)$ = segments whose Lower endpoint is pLet $C(p) \in S(p)$ = segments that Contain p in interior
- **if**($L(p) \cup U(p) \cup C(p)$ contains more than one segment) 3.
- report p as intersection \circ together with L(p), U(p), C(p)
- Delete the segments in $L(p) \cup C(p)$ from \mathcal{T} 5.
- if $(U(p) \cup C(p) = \emptyset)$ then find New Event (s_l, s_r, p) // left & right neighbors 6.
- **else** Insert the segments in $U(p) \cup C(p)$ into \mathcal{T} // reverse order of C(p) in \mathcal{T} (order as below ℓ , horizontal segment as the last)
- $s' = \text{leftmost segm. of } U(p) \cup C(p); \text{ findNewEvent}(s_l, s', p)$ 8.
- s'' = rightmost segm. of $U(p) \cup C(p)$; findNewEvent(s'', s_r , p)

 $\mathbf{handleEventPoint}(\mathbf{p})$ // precisely: handle all events with point p

- Let U(p) = set of segments whose Upper endpoint is p. These segments are stored with the event point p (will be added to T)
- **Search** \mathcal{T} for all segments S(p) that contain p (are adjacent in \mathcal{T}): Let $L(p) \in S(p)$ = segments whose Lower endpoint is pLet $C(p) \in S(p)$ = segments that Contain p in interior
- **if**($L(p) \cup U(p) \cup C(p)$ contains more than one segment) 3.
- report p as intersection \circ together with L(p), U(p), C(p)
- Delete the segments in $L(p) \cup C(p)$ from \mathcal{T} 5.
- if $(U(p) \cup C(p) = \emptyset)$ then find New Event (s_l, s_r, p) // left & right neighbors 6.
- **else** Insert the segments in $U(p) \cup C(p)$ into \mathcal{T} // reverse order of C(p) in \mathcal{T} (order as below ℓ , horizontal segment as the last)
- $s' = \text{leftmost segm. of } U(p) \cup C(p); \text{ findNewEvent}(s_l, s', p)$ 8.
- s'' = rightmost segm. of $U(p) \cup C(p)$; findNewEvent(s'', s_r , p)

 $\mathbf{handleEventPoint}(\mathbf{p})$ // precisely: handle all events with point p

- Let U(p) = set of segments whose Upper endpoint is p. These segments are stored with the event point p (will be added to T)
- Search \mathcal{T} for all segments S(p) that contain p (are adjacent in \mathcal{T}): Let $L(p) \in S(p)$ = segments whose Lower endpoint is pLet $C(p) \in S(p)$ = segments that Contain p in interior
- **if**($L(p) \cup U(p) \cup C(p)$ contains more than one segment) 3.
- report p as intersection \circ together with L(p), U(p), C(p)
- Delete the segments in $L(p) \cup C(p)$ from \mathcal{T} 5.
- if $(U(p) \cup C(p) = \emptyset)$ then find New Event (s_l, s_r, p) // left & right neighbors 6.
- **else** Insert the segments in $U(p) \cup C(p)$ into \mathcal{T} // reverse order of C(p) in \mathcal{T} (order as below ℓ , horizontal segment as the last)
- $s' = \text{leftmost segm. of } U(p) \cup C(p); \text{ findNewEvent}(s_l, s', p)$ 8.
- s'' = rightmost segm. of $U(p) \cup C(p)$; findNewEvent(s'', s_r, p)

Detection of new intersections

findNewEvent (s_l, s_r, p) // with handling of horizontal segments

Input: two segments (left & right from p in T) and a current event point p updated event queue Q with new intersection •

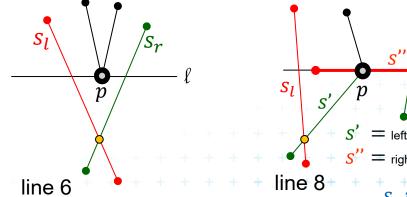
1. if [(s_l and s_r intersect below the sweep line ℓ) // intersection below ℓ or (s_r intersects s" on ℓ and to the right of p)] // horizontal segment s"

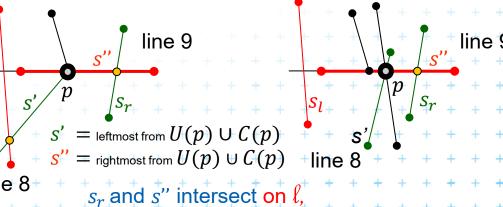
and(the intersection \circ is not present in Q)

2. then

insert intersection \circ as a new event into Q

- o Reported intersection line 4
- New intersection to Q line 6,8,9





 s_l and s_r intersect below

s" is horizontal and to the right of p

Line segment intersections

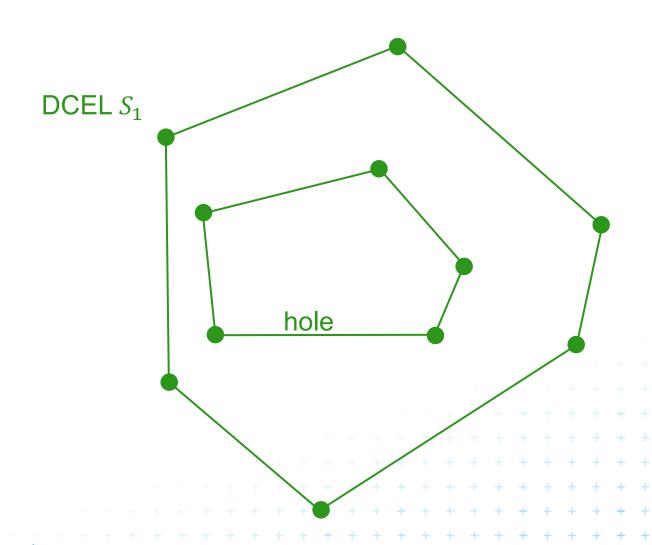
- Memory $O(I) = O(n^2)$ with duplicities in Q or O(n) with duplicities in Q deleted
- Operational complexity
 - -2n+I stops
 - $-\log n$ each
 - $=> O(I+n)\log n$ total, where $I \in \langle 0, n^2 \rangle$
- The algorithm is by Bentley-Ottmann

Bentley, J. L.; Ottmann, T. A. (1979), "Algorithms for reporting and counting geometric intersections", *IEEE Transactions on Computers* **C-28** (9): 643-647, doi:10.1109/TC.1979.1675432.

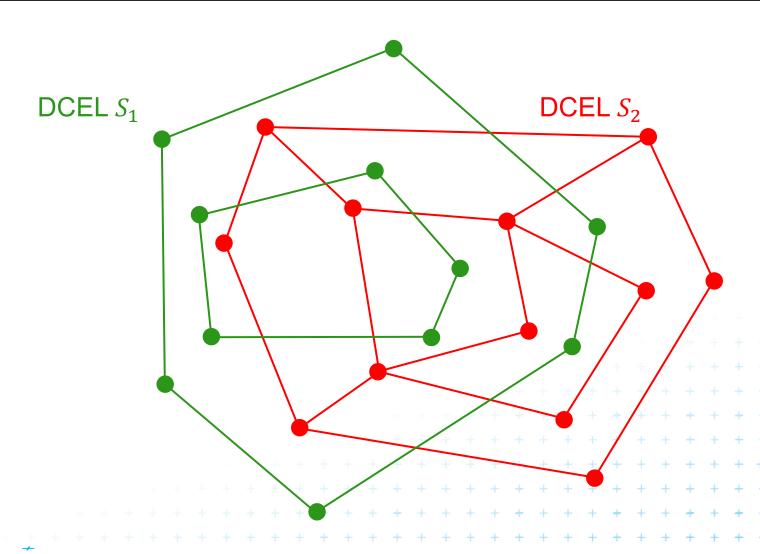
See also http://wapedia.mobi/en/Bentley%E2%80%93Ottmann-algorithm

Overlay of two subdivisions (intersection of DCELs)

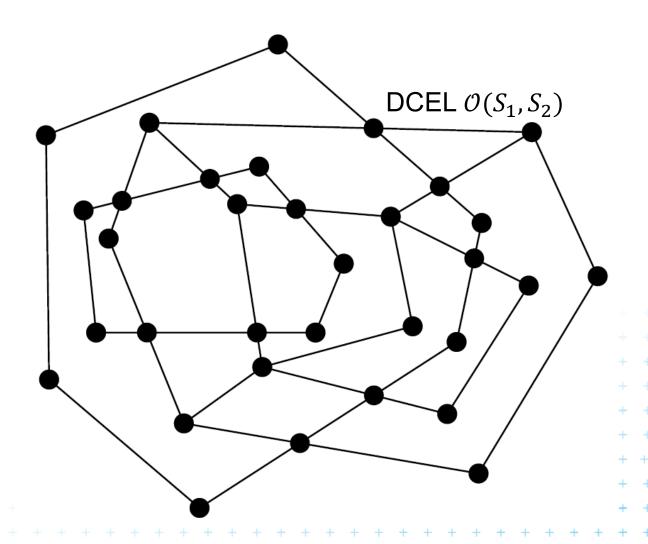
Overlay of two subdivisions

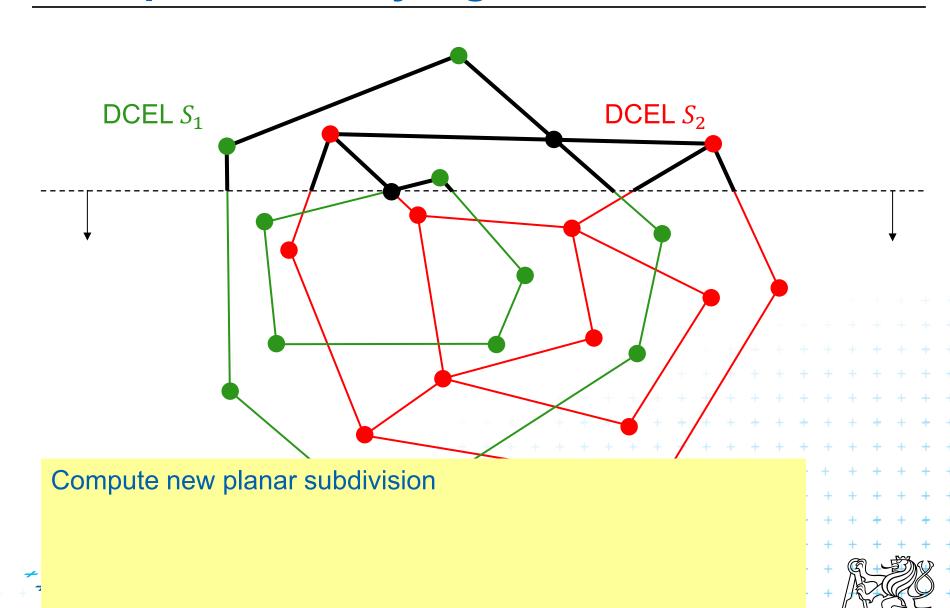


Overlay of two subdivisions

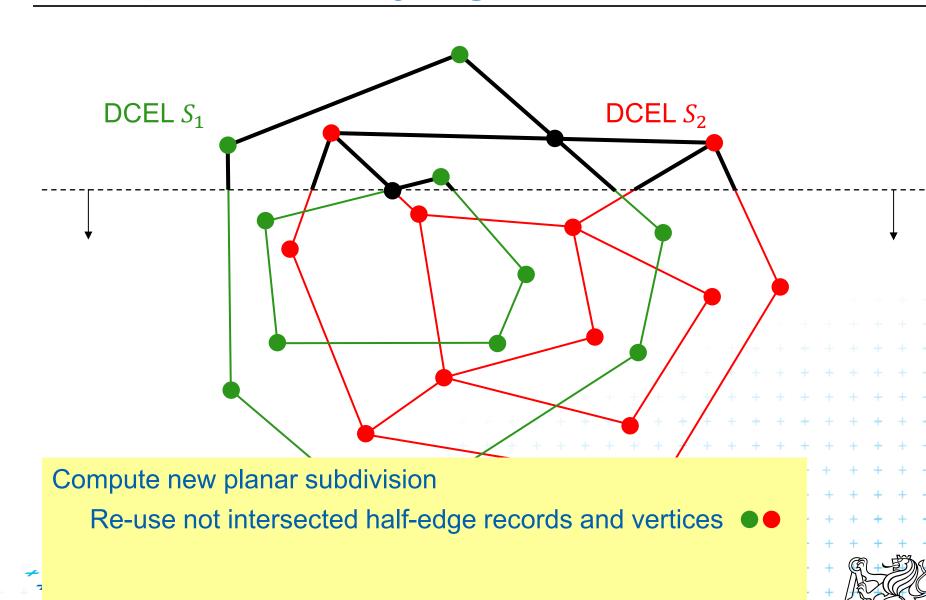


Overlay is a new planar subdivision

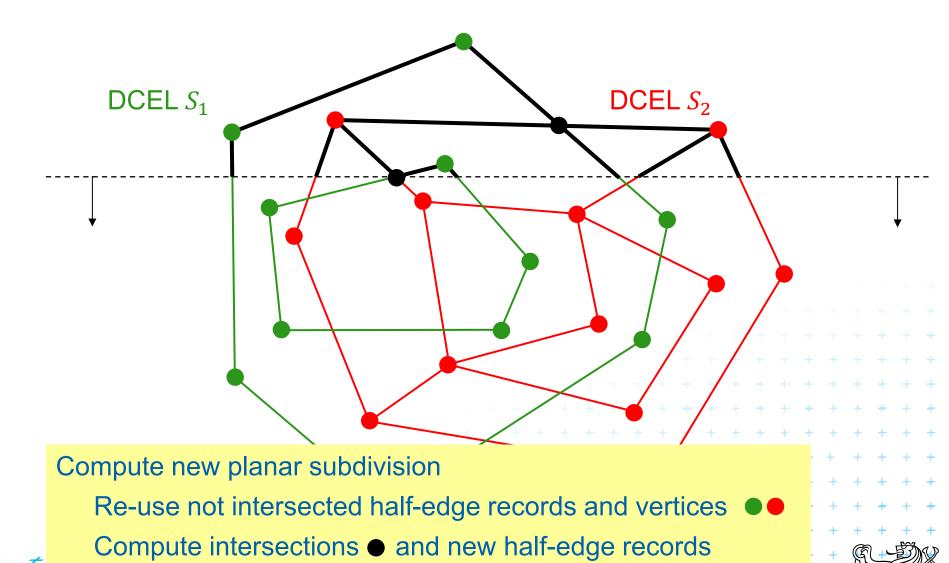




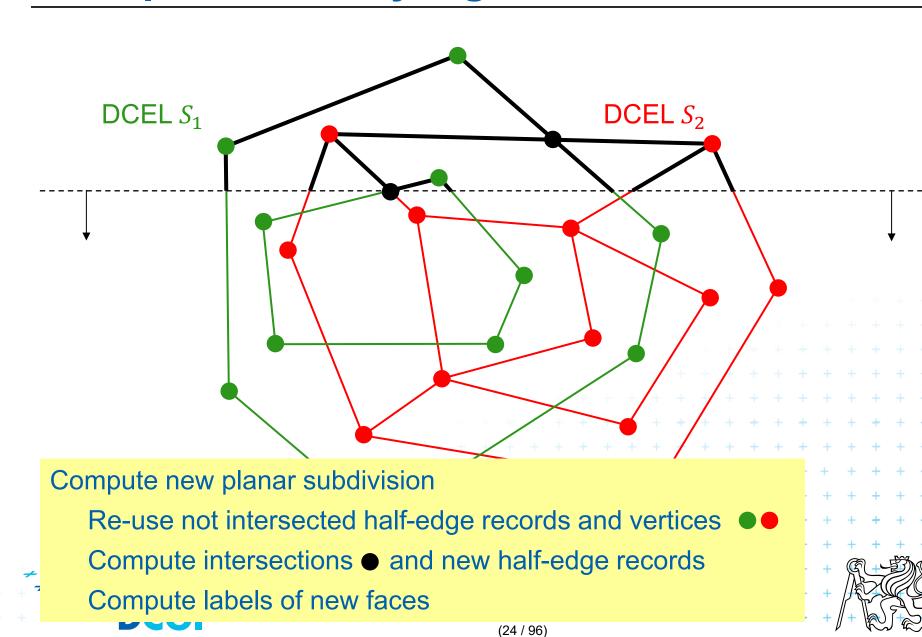
(24 / 96)



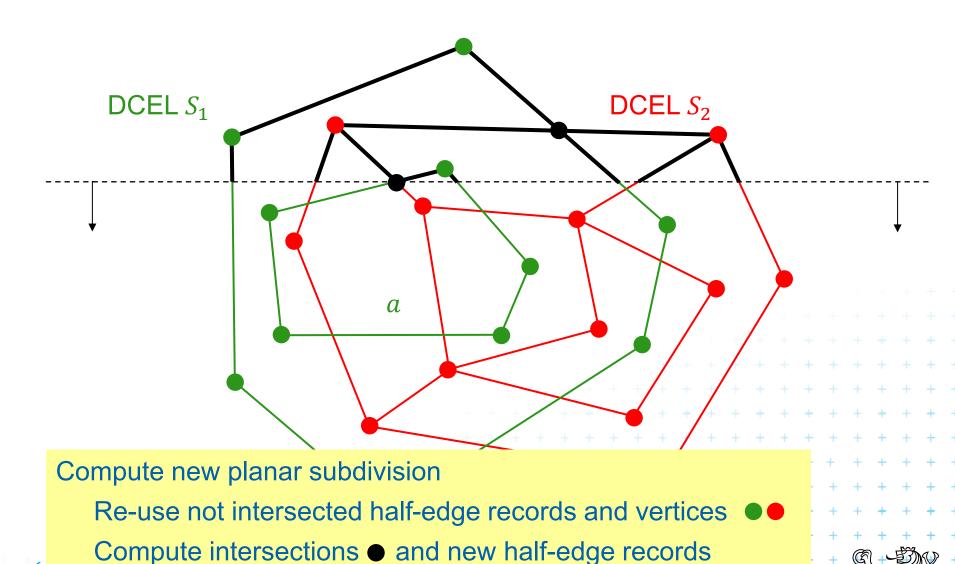
(24 / 96)

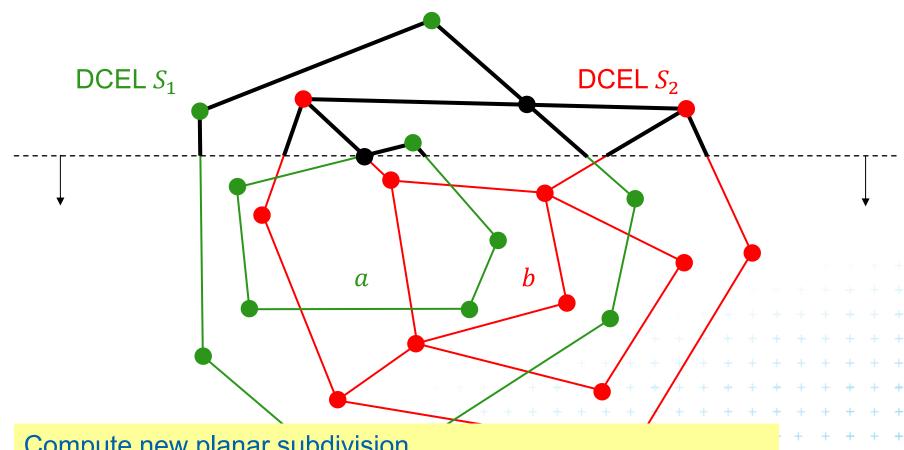


(24 / 96)



Compute labels of new faces



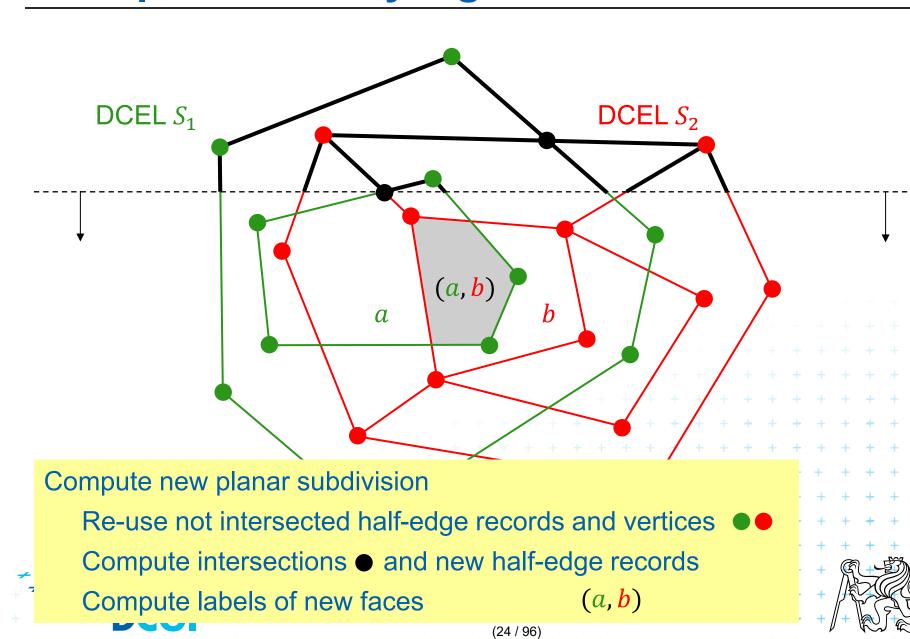


Compute new planar subdivision

Re-use not intersected half-edge records and vertices ••

Compute intersections ● and new half-edge records

Compute labels of new faces



The algorithm principle

Copy DCELs of both subdivisions to invalid DCEL \mathcal{D}

Transform the result into a valid DCEL for the subdivision overlay $\mathcal{O}(S_1, S_2)$

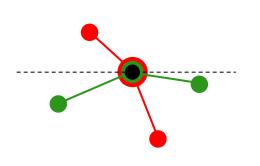
- Compute the intersection of edges (from different subdivisions $S_1 \cap S_2$)
- Link together appropriate parts of the two DCELs
 - Vertex and half-edge records
 - Face records

At an Event point

Update queue Q (pop, delete intersections of separated edges below) and sweep line status tree \mathcal{T} (add/remove/swap edges, intersect with neighbors) as in line segment intersection algorithm (cross pointers between edges in tree \mathcal{T} and DCEL \mathcal{D} to access part of \mathcal{D} when processing an intersection)

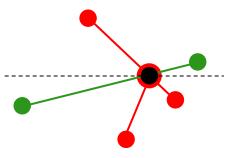
- For vertex from single subdivision
 - No additional work
- For intersection of edges from different subdivisions
 - Link both DCELs
 - Handle all possible cases

Three types of intersections

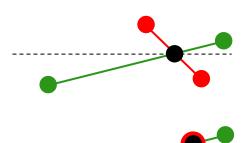


New are intersections of different subdivisions

vertex – vertex: overlap of vertices

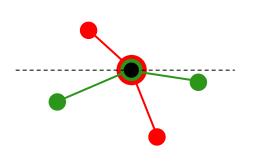


vertex – edge: edge passes through a vertex



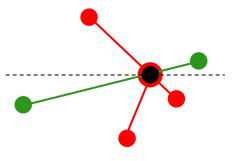
edge – edge: edges intersect in their interior (end point or edge overlay)

Three types of intersections



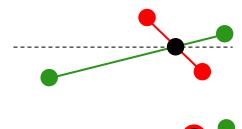
New are intersections of different subdivisions

vertex – vertex: overlap of vertices



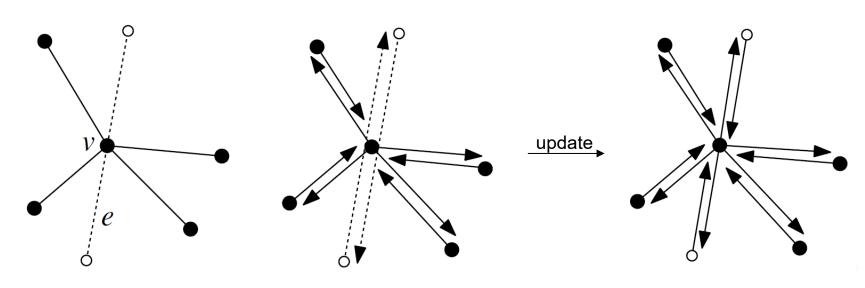
vertex – edge: edge passes through a vertex

Let's discuss this case, the other two are similar



edge – edge: edges intersect in their interior (end point or edge overlay)

vertex – edge update – the principle



Before:

The geometry

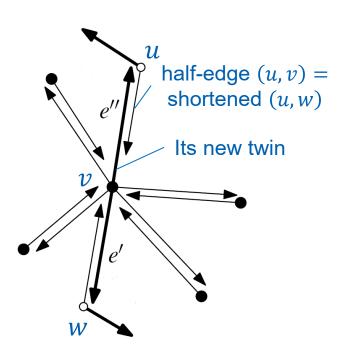
Before:

two half-edges

After:

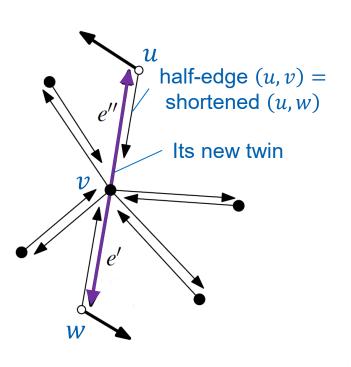
four half-edges

two shorter and two new)



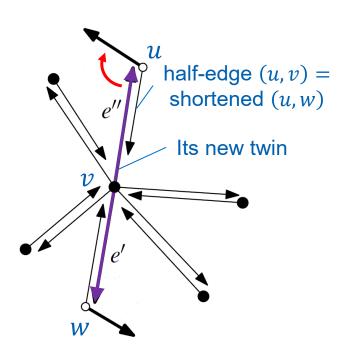
$$e' = (w, v) \qquad e'' = (v, u)$$

- 2. Shorten half-edge (u, w) to (u, v)Shorten half-edge (w, u) to (w, v)
- 3. Create their twin (v, w) for (w, v)Create their twin (v, u) for (u, v)
- 4. Set new twin's next to former edge e next next(v, u) = next(w, u) now in next(w, v) next(v, w) = next(u, w) now in next(u, v)



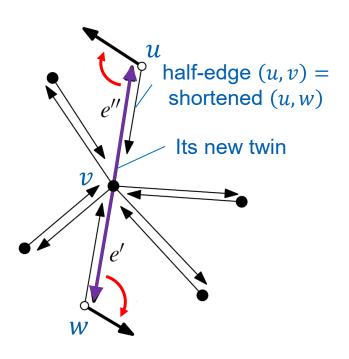
$$e' = (w, v) \qquad e'' = (v, u)$$

- 2. Shorten half-edge (u, w) to (u, v)Shorten half-edge (w, u) to (w, v)
- 3. Create their twin (v, w) for (w, v) Create their twin (v, u) for (u, v)
 - 4. Set new twin's next to former edge e next next(v, u) = next(w, u) now in next(w, v) next(v, w) = next(u, w) now in next(u, v)
 - 5. Set prev pointers to new twins $\operatorname{prev}(\operatorname{next}(v,u)) = (v,u)$ $\operatorname{prev}(\operatorname{next}(v,w)) = (v,w)$



$$e' = (w, v) \qquad e'' = (v, u)$$

- 2. Shorten half-edge (u, w) to (u, v)Shorten half-edge (w, u) to (w, v)
- 3. Create their twin (v, w) for (w, v) Create their twin (v, u) for (u, v)
- 4. Set new twin's next to former edge e next next(v, u) = next(w, u) now in next(w, v) next(v, w) = next(u, w) now in next(u, v)



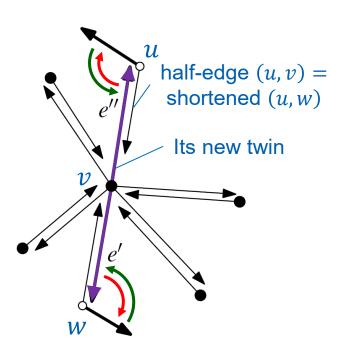
$$e' = (w, v) \qquad e'' = (v, u)$$

- 2. Shorten half-edge (u, w) to (u, v)Shorten half-edge (w, u) to (w, v)
- 3. Create their twin (v, w) for (w, v)Create their twin (v, u) for (u, v)
- 4. Set new twin's next to former edge e next next(v, u) = next(w, u) now in next(w, v) next(v, w) = next(u, w) now in next(u, v)



$$e' = (w, v) \qquad e'' = (v, u)$$

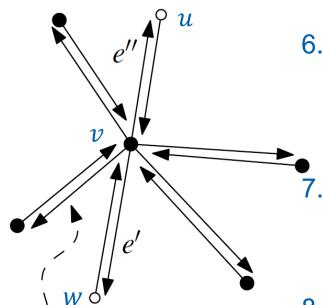
- 2. Shorten half-edge (u, w) to (u, v)Shorten half-edge (w, u) to (w, v)
- 3. Create their twin (v, w) for (w, v)Create their twin (v, u) for (u, v)
- 4. Set new twin's next to former edge e next next(v, u) = next(w, u) now in next(w, v) next(v, w) = next(u, w) now in next(u, v)



$$e' = (w, v) \qquad e'' = (v, u)$$

- 2. Shorten half-edge (u, w) to (u, v)Shorten half-edge (w, u) to (w, v)
- 3. Create their twin (v, w) for (w, v).

 Create their twin (v, u) for (u, v)
- 4. Set new twin's next to former edge e next next(v, u) = next(w, u) now in next(w, v) next(v, w) = next(u, w) now in next(u, v)

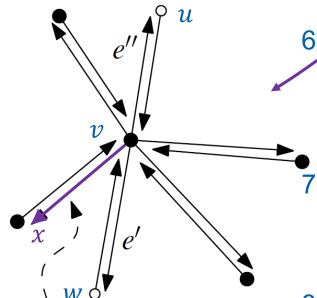


- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin

$$next(w, v) = x$$

 $prev(x) = (w, v)$

- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination next, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)

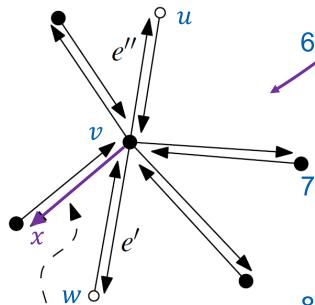


first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin

$$next(w, v) = x$$
$$prev(x) = (w, v)$$

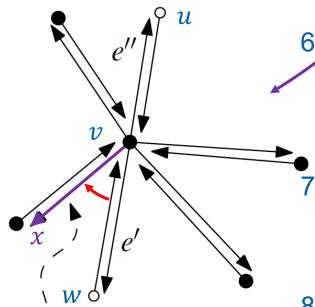
- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination next, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)



first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin

- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination next, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)



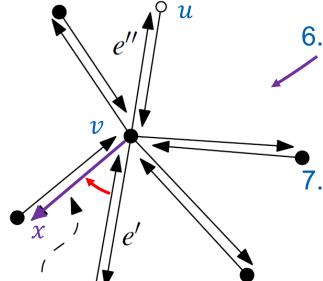
first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin

$$next(w, v) = x$$

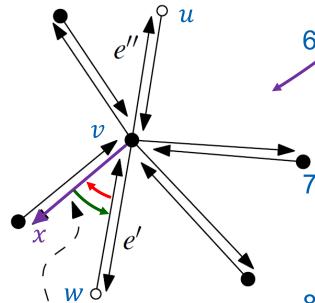
$$prev(x) = (w, v)$$

- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination next, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)



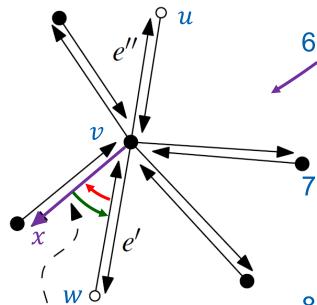
first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin
 - \sim next(w, v) = x
 - \longrightarrow prev(x) = (w, v)
- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination next, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)
 - = first CCW half-edge from e' with v as destination



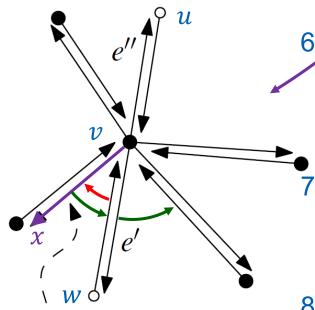
first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin
 - \sim next(w, v) = x
 - \longrightarrow prev(x) = (w, v)
- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination next, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)



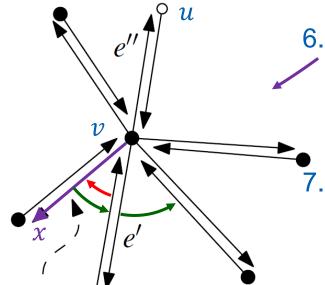
first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin
 - \sim next(w, v) = x
 - \longrightarrow prev(x) = (w, v)
- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination
 - next, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)



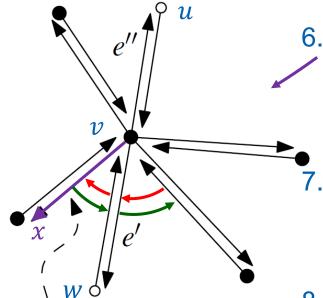
first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin
 - \sim next(w, v) = x
 - \longrightarrow prev(x) = (w, v)
- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination
 - next, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)



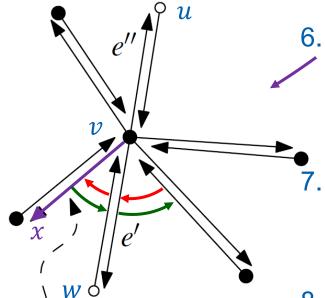
first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin
 - \sim next(w, v) = x
 - ightharpoonup prev(x) = (w, v)
- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination
 - mext, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)



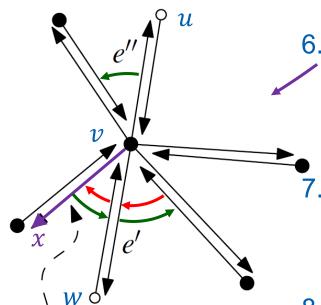
first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin
 - \sim next(w, v) = x
 - \longrightarrow prev(x) = (w, v)
- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination
 - next, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)



first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin
 - \sim next(w, v) = x
 - ightharpoonup prev(x) = (w, v)
- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination
 - next, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin
 - next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)



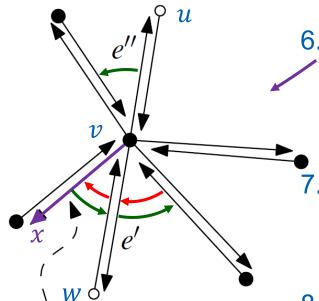
first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin

$$\sim$$
 next(w , v) = x

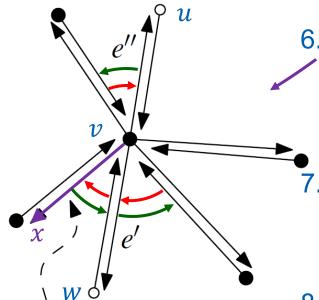
$$\longrightarrow$$
 prev $(x) = (w, v)$

- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination
 - next, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin
 - next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)



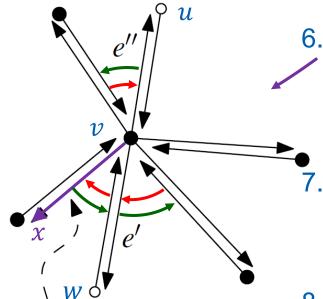
first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin
 - \sim next(w, v) = x
 - \longrightarrow prev(x) = (w, v)
- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination
 - mext, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin
 - next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)



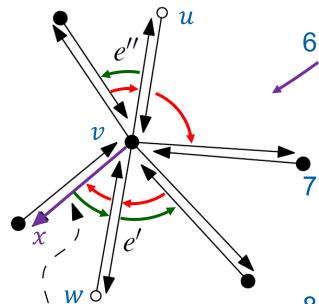
first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin
 - \sim next(w, v) = x
 - \longrightarrow prev(x) = (w, v)
- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination
 - mext, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin
 - next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)



first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin
 - \sim next(w, v) = x
 - \longrightarrow prev(x) = (w, v)
- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination
 - next, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin
 - next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)
 - = first CCW half-edge from e' with v as destination



first CW half-edge from e'

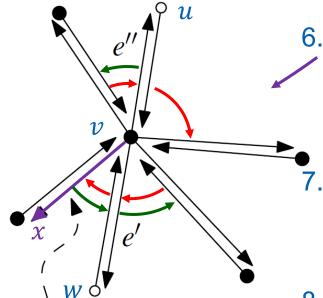
- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin

$$\sim$$
 next(w, v) = x

$$\longrightarrow$$
 prev $(x) = (w, v)$

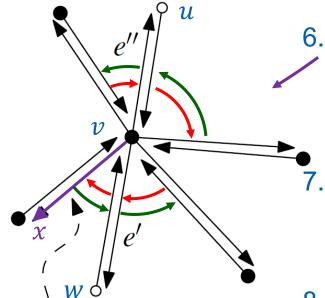
- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination
 - mext, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin
 - next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)
 - = first CCW half-edge from e' with v as destination

+ next, prev similarly+



first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin
 - \sim next(w, v) = x
 - \longrightarrow prev(x) = (w, v)
- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination
 - next, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin
 - next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)
 - = first CCW half-edge from e' with v as destination



first CW half-edge from e'

- 6. Find the next edge x for e' from half-edge (w, v)
 - = first CW half-edge from e' with v as origin

$$\sim$$
 next(w, v) = x

$$\longrightarrow$$
 prev $(x) = (w, v)$

- 7. Find the prev edge for e' from half-edge (v, w)
 - = first CCW half-edge from e' with v as destination
 - next, prev similarly
- 8. Find the next edge for e'' from half-edge (u, v)
 - = first CW half-edge from e'' with v as origin
 - next, prev similarly
- 9. Find the prev edge for e'' from half-edge (v, u)
 - = first CCW half-edge from e' with v as destination

Time cost for updating half-edge records

- All operations with splitting of edges in intersections and reconnecting of prev, next pointers take O(1) time
- Locating of edge x position in cyclic order
 - around single vertex v takes $O(\deg(v))$
 - which sums to O(m) = number of edges processed by the edge intersection algorithm = $O(n) \Rightarrow O(1)$ per step
 - The overall complexity is not increased

$$O(n\log n + k\log n)$$

 $k = \text{complexity of the overlay} (\approx \text{intersections})$

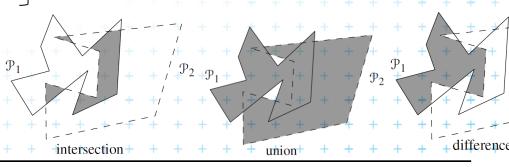
 $n = |S_1| + |S_2| + Complexity of the input subdivisions$

Face records for the overlay subdivision

- Create face records for each face f in $\mathcal{O}(S_1, S_2)$
 - Each face f has it unique outer boundary (CCW)
 (except the background that has none)
 - Each face has one OuterComponent(f) edge
 - All faces together = #outer boundaries + 1 background
- InnerComponents(f) list of edges of holes (cw)
- Label of f in S_1
- Label of f in S_2

Used for Boolean operations such as $S_1 \cap S_2$, $S_1 \cup S_2$, $S_1 \setminus S_2$

Polygon examples:

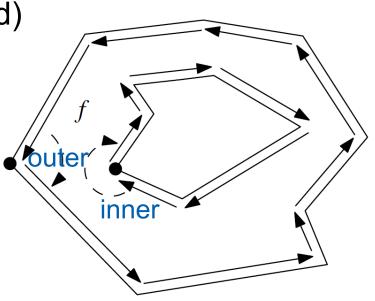


DCGI

Extraction of faces

- Traverse cycles in DCEL (Tarjan alg. DFS) ...O(n)
- Decide, if the cycle is outer or inner boundary
 - Find the leftmost vertex of the cycle (bottom leftmost)
 - Incident face lies to the left of edges
 - Angle $< 180^{\circ}$ ⇒ outer (around)
 - Angle > 180° ⇒ inner (hole)

Leftmost vertex



Which boundary cycles bound same face?

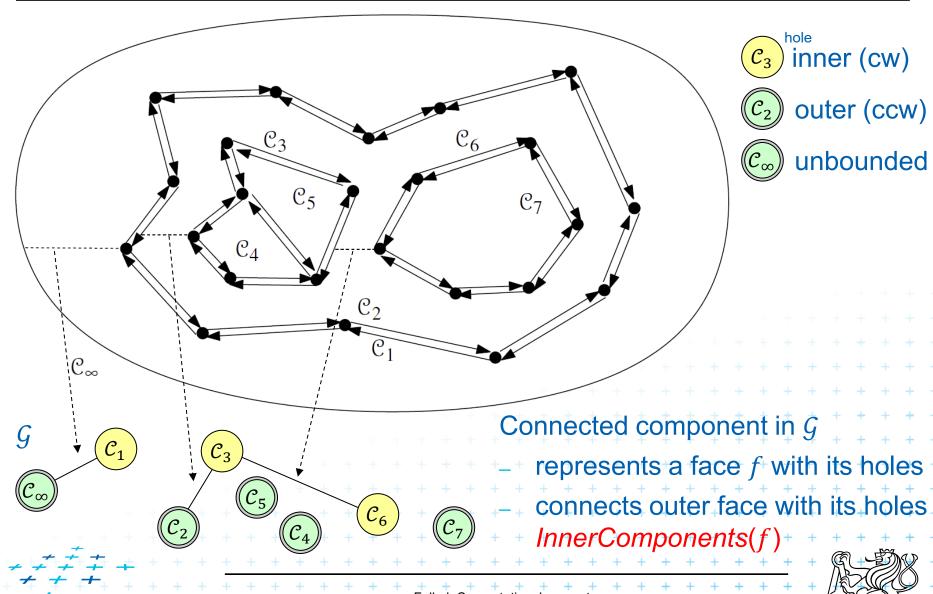
Single outer boundary shares the face with its

holes - inner boundaries

Graph

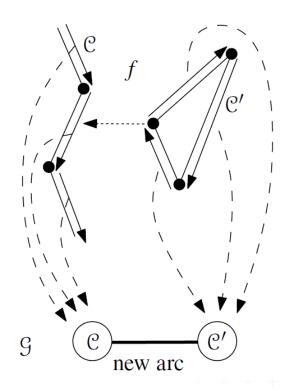
- Node for each cycle
 - **€**₃ inner
 - © outer © unbounded
- Arc if inner cycle has half-edge immediately to the left of the leftmost vertex
- Each connected component set of cycles of one face

Graph G of faces and their relations



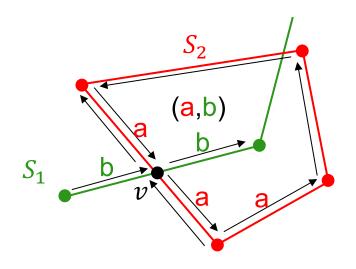
Graph g construction

Idea – during sweep line, we know the nearest left edge for every vertex v (and half-edge with origin v)



- Make node for every cycle (graph traversal)
- 2. During plane sweep,
 - store pointer to graph node for each edge
 - remember the leftmost vertex and its nearest left edge
 - Create arc between cycles of the leftmost vertex an its nearest left

Face label determination



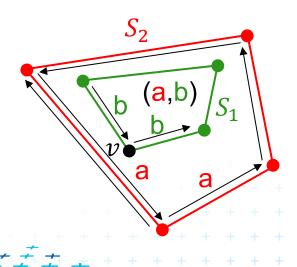
For intersection v of two edges:

During the sweep-line

In both new pieces, remember the face of half-edge being split into two

After

Label the face by both labels

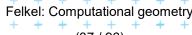


For face in other face (hole):

Known half-edge label only from S_1

Use graph \mathcal{G} to locate outer boundary label for face from S_2

(or store containing face *f* of other subdivision for each vertex)* * * *



MapOverlay(S_1, S_2)

Two planar subdivisions S_1 and S_2 stored in DCEL

Output: The overlay of S_1 and S_2 stored in DCEL \mathcal{D}

- Copy both DCELs for of S_1 and S_2 into DCEL \mathcal{D}
- Use plane sweep to compute intersections of edges from S_1 and S_2
 - Update vertex and edge records in \mathcal{D} when the event involves edges of both S_1 , S_2
 - Store the half-edge to the left of the event point at the vertex in \mathcal{D}
- Traverse \mathcal{D} (depth-first search) to determine the boundary cycles
- Construct the graph \mathcal{G} (boundary and hole cycles, immediately to the left of hole), 4.
- **for** each connected component in *G* **do** 5.
- $C \leftarrow$ the unique outer boundary cycle 6.
- $f \leftarrow$ the face bounded by the cycle C. 7.
- Create a face record for *f* 8.
- $OuterComponent(f) \leftarrow \text{ some half-edge of } C, (C_i)$ 9.
- InnerComponents $(f) \leftarrow$ list of pointers to one half-edge e in each hole c_1 10.
- $IncidentFace(e) \leftarrow f$ for all half-edges bounding cycle C and the holes 11.
- Label each face of $O(S_1, S_2)$ with the names of the faces of S_1 and S_2 containing it 12. Felkel: Computational geometry

MapOverlay(S_1, S_2)

Two planar subdivisions S_1 and S_2 stored in DCEL // memory complexity n

Output: The overlay of S_1 and S_2 stored in DCEL \mathcal{D}

- Copy both DCELs for of S_1 and S_2 into DCEL \mathcal{D}
- Use plane sweep to compute intersections of edges from S_1 and S_2
 - Update vertex and edge records in \mathcal{D} when the event involves edges of both S_1 , S_2
 - Store the half-edge to the left of the event point at the vertex in \mathcal{D}
- Traverse \mathcal{D} (depth-first search) to determine the boundary cycles
- Construct the graph \mathcal{G} (boundary and hole cycles, immediately to the left of hole), 4.
- **for** each connected component in *G* **do** 5.
- $C \leftarrow$ the unique outer boundary cycle 6.
- $f \leftarrow$ the face bounded by the cycle C. 7.
- Create a face record for *f* 8.
- $OuterComponent(f) \leftarrow \text{ some half-edge of } C, (C_i)$ 9.
- InnerComponents $(f) \leftarrow$ list of pointers to one half-edge e in each hole c_1 10.
- $IncidentFace(e) \leftarrow f$ for all half-edges bounding cycle C and the holes 11.
- Label each face of $O(S_1, S_2)$ with the names of the faces of S_1 and S_2 containing it 12. Felkel: Computational geometry

MapOverlay(S_1, S_2)

Two planar subdivisions S_1 and S_2 stored in DCEL // memory complexity n*Output:* The overlay of S_1 and S_2 stored in DCEL \mathcal{D}

- Copy both DCELs for of S_1 and S_2 into DCEL \mathcal{D} // O(n)
- Use plane sweep to compute intersections of edges from S_1 and S_2
 - Update vertex and edge records in \mathcal{D} when the event involves edges of both S_1 , S_2
 - Store the half-edge to the left of the event point at the vertex in \mathcal{D}
- Traverse \mathcal{D} (depth-first search) to determine the boundary cycles
- Construct the graph \mathcal{G} (boundary and hole cycles, immediately to the left of hole), 4.
- **for** each connected component in *G* **do** 5.
- $C \leftarrow$ the unique outer boundary cycle 6.
- $f \leftarrow$ the face bounded by the cycle C. 7.
- Create a face record for *f* 8.
- $OuterComponent(f) \leftarrow \text{ some half-edge of } C, (C_i)$ 9.
- InnerComponents $(f) \leftarrow$ list of pointers to one half-edge e in each hole (c_1) 10.
- $IncidentFace(e) \leftarrow f$ for all half-edges bounding cycle C and the holes 11.
- Label each face of $O(S_1, S_2)$ with the names of the faces of S_1 and S_2 containing it 12. Felkel: Computational geometry

MapOverlay(S_1, S_2)

Two planar subdivisions S_1 and S_2 stored in DCEL // memory complexity n*Output:* The overlay of S_1 and S_2 stored in DCEL \mathcal{D}

- Copy both DCELs for of S_1 and S_2 into DCEL \mathcal{D} // O(n) $// O(n \log n + k \log n)$
- Use plane sweep to compute intersections of edges from S_1 and S_2
 - Update vertex and edge records in \mathcal{D} when the event involves edges of both S_1 , S_2
 - Store the half-edge to the left of the event point at the vertex in \mathcal{D}
- Traverse \mathcal{D} (depth-first search) to determine the boundary cycles
- Construct the graph \mathcal{G} (boundary and hole cycles, immediately to the left of hole), 4.
- **for** each connected component in *G* **do** 5.
- $C \leftarrow$ the unique outer boundary cycle 6.
- $f \leftarrow$ the face bounded by the cycle C. 7.
- Create a face record for *f* 8.
- $OuterComponent(f) \leftarrow \text{ some half-edge of } C, (C_i)$ 9.
- InnerComponents $(f) \leftarrow$ list of pointers to one half-edge e in each hole c_1 10.
- IncidentFace $(e) \leftarrow f$ for all half-edges bounding cycle C and the holes 11.
- Label each face of $O(S_1, S_2)$ with the names of the faces of S_1 and S_2 containing it 12. Felkel: Computational geometry

MapOverlay(S_1, S_2)

Two planar subdivisions S_1 and S_2 stored in DCEL // memory complexity nOutput: The overlay of S_1 and S_2 stored in DCEL \mathcal{D}

- Copy both DCELs for of S_1 and S_2 into DCEL \mathcal{D} // O(n) $// O(n \log n + k \log n)$
- Use plane sweep to compute intersections of edges from S_1 and S_2
 - Update vertex and edge records in \mathcal{D} when the event involves edges of both S_1 , S_2
 - Store the half-edge to the left of the event point at the vertex in \mathcal{D}
- Traverse \mathcal{D} (depth-first search) to determine the boundary cycles // O(n)
- Construct the graph \mathcal{G} (boundary and hole cycles, immediately to the left of hole), 4.
- **for** each connected component in *G* **do** 5.
- $C \leftarrow$ the unique outer boundary cycle 6.
- $f \leftarrow$ the face bounded by the cycle C. 7.
- Create a face record for *f* 8.
- $OuterComponent(f) \leftarrow \text{ some half-edge of } C, (C_i)$ 9.
- InnerComponents $(f) \leftarrow$ list of pointers to one half-edge e in each hole c_1 10.
- $IncidentFace(e) \leftarrow f$ for all half-edges bounding cycle C and the holes 11.
- Label each face of $O(S_1, S_2)$ with the names of the faces of S_1 and S_2 containing it 12. Felkel: Computational geometry

MapOverlay(S_1, S_2)

Two planar subdivisions S_1 and S_2 stored in DCEL // memory complexity nOutput: The overlay of S_1 and S_2 stored in DCEL \mathcal{D}

- Copy both DCELs for of S_1 and S_2 into DCEL \mathcal{D} // O(n) $// O(n \log n + k \log n)$ Use plane sweep to compute intersections of edges from S_1 and S_2
- Update vertex and edge records in \mathcal{D} when the event involves edges of both S_1 , S_2
 - Store the half-edge to the left of the event point at the vertex in \mathcal{D}
- Traverse \mathcal{D} (depth-first search) to determine the boundary cycles // O(n)
- Construct the graph \mathcal{G} (boundary and hole cycles, immediately to the left of hole), 4.
- **for** each connected component in *G* **do** 5.
- $C \leftarrow$ the unique outer boundary cycle 6.
- $f \leftarrow$ the face bounded by the cycle C. 7.
- Create a face record for *f* 8.
- $OuterComponent(f) \leftarrow \text{ some half-edge of } C, (C_i)$ 9.
- InnerComponents $(f) \leftarrow$ list of pointers to one half-edge e in each hole c_1 10.
- IncidentFace $(e) \leftarrow f$ for all half-edges bounding cycle C and the holes 11.
- Label each face of $O(S_1, S_2)$ with the names of the faces of S_1 and S_2 containing it 12. Felkel: Computational geometry

//O(k)

MapOverlay(S_1, S_2)

```
Input: Two planar subdivisions S_1 and S_2 stored in DCEL // memory complexity n Output: The overlay of S_1 and S_2 stored in DCEL \mathcal{D}

1. Copy both DCELs for of S_1 and S_2 into DCEL \mathcal{D} // O(n) // O(n\log n + k\log n)
```

- Use plane sweep to compute intersections of edges from S_1 and S_2 (intersection
 - Update vertex and edge records in \mathcal{D} when the event involves edges of both S_1 , S_2
 - Store the half-edge to the left of the event point at the vertex in \mathcal{D}
- Traverse \mathcal{D} (depth-first search) to determine the boundary cycles // O(n)
- 4. Construct the graph g (boundary and hole cycles, immediately to the left of hole),
- for each connected component in \mathcal{G} do
- 6. $C \leftarrow$ the unique outer boundary cycle
- $f \leftarrow \text{the face bounded by the cycle } C.$
- 8. Create a face record for f
- 9. OuterComponent(f) \leftarrow some half-edge of C, (C_i)
- InnerComponents $(f) \leftarrow$ list of pointers to one half-edge e in each hole c_1
- IncidentFace(e) \leftarrow f for all half-edges bounding cycle C and the holes
- Label each face of $O(S_1, S_2)$ with the names of the faces of S_1 and S_2 containing it



//O(k)

Running time

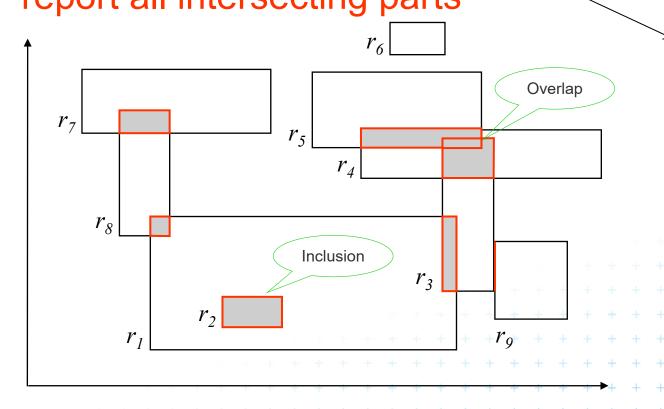
The overlay of two planar subdivisions with total complexity n can be constructed in $O(n \log n + k \log n)$

where $k = \text{complexity of the overlay } (\approx \text{intersections})$

Axis parallel rectangles intersection

Intersection of axis parallel rectangles

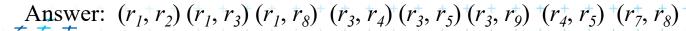
Given the collection of *n* isothetic rectangles, report all intersecting parts



Alternate sides belong to two pencils of lines (trsy přímek)

(often used with points in infinity = axis parallel)

2D => 2 pencils



Brute force intersection

Brute force algorithm

Input: set *S* of axis parallel rectangles *Output:* pairs of intersected rectangles

- 1. For every pair (r_i, r_i) of rectangles $\in S$, $i \neq j$
- 2. if $(r_i \cap r_i \neq \emptyset)$ then
- 3. report (r_i, r_j)

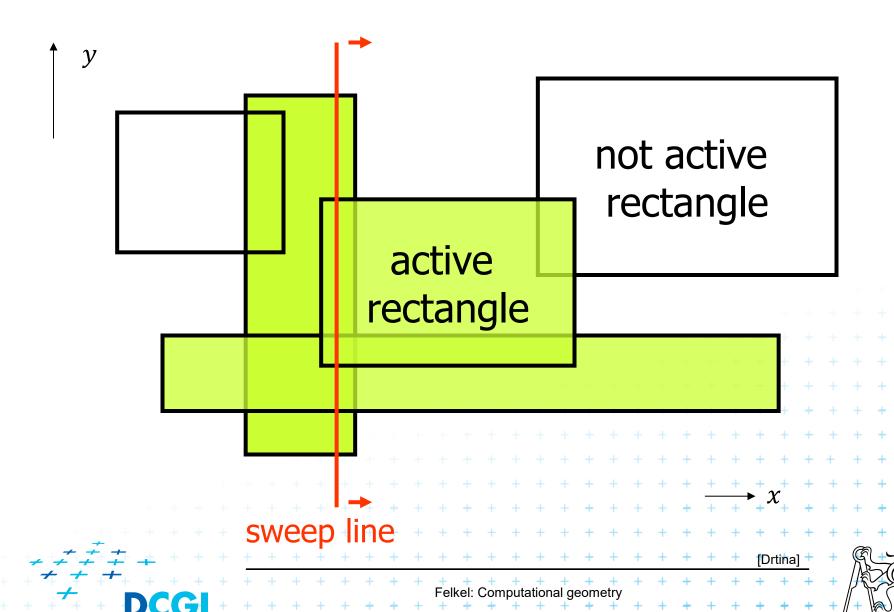
Analysis

Preprocessing: None.

Query:
$$O(N^2)$$
 $\binom{N}{2} = \frac{N(N-1)}{2} \in O(N^2)$.

Storage: O(N)

Plane sweep intersection algorithm

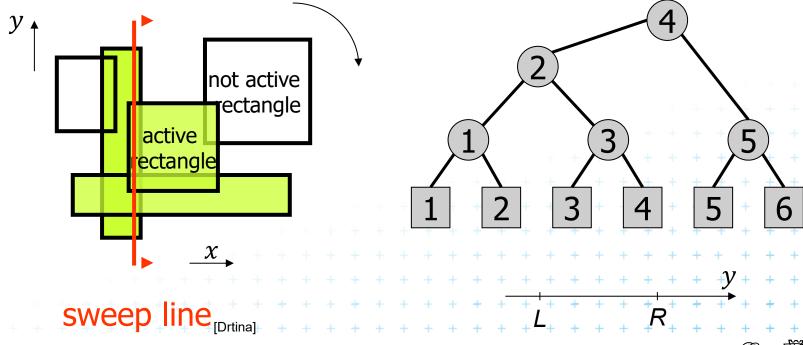


Plane sweep intersection algorithm

- Vertical sweep line moves from left to right
- Stops at every x-coordinate of a rectangle (either at its left side or at its right side).
- active rectangles a set
 - = rectangles currently intersecting the sweep line
 - left side event of a rectangle □ start
 - => the rectangle is added to the active set.
 - right side □ end
 - => the rectangle is deleted from the active set.
- The active set used to detect rectangle intersection

Interval tree as sweep line status structure

- Vertical sweep-line => only y-coordinates along it
- The status tree is drawn horizontal turn 90° right as if the sweep line (y-axis) is horizontal

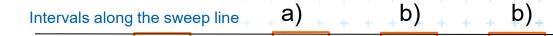


• Given two intervals $I = [y_1, y_2]$ and $I' = [y_1', y_2']$ the condition $I \cap I'$ is equivalent to one of these mutually exclusive conditions:

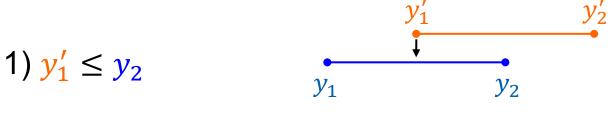
a)
$$y_1 \le y_1' \le y_2$$

OR

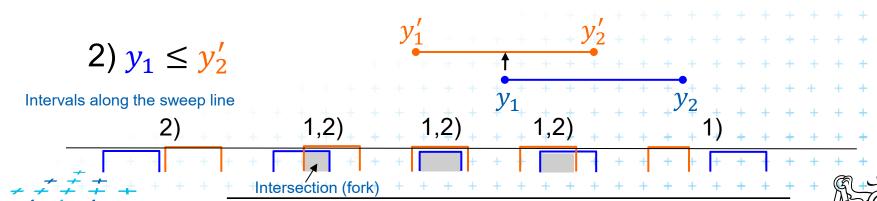
b)
$$y_1' \le y_1 \le y_2'$$



• Given two intervals $I = [y_1, y_2]$ and $I' = [y'_1, y'_2]$ the condition $I \cap I'$ is equivalent to both of these conditions simultaneously:

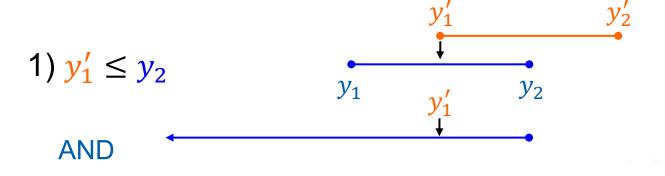


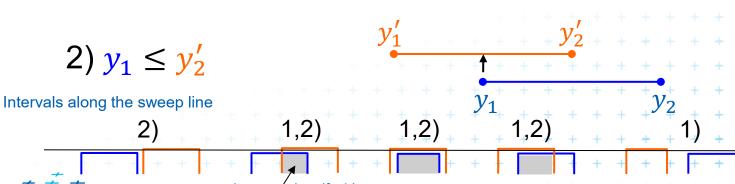
AND



Felkel: Computational geometr

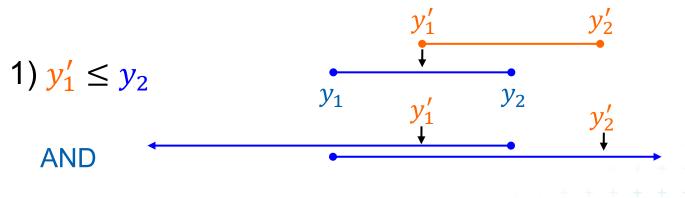
• Given two intervals $I = [y_1, y_2]$ and $I' = [y'_1, y'_2]$ the condition $I \cap I'$ is equivalent to both of these conditions simultaneously:

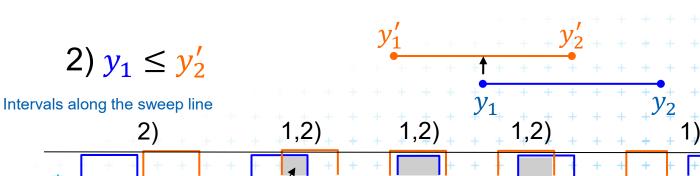




Felkel: Computational geor

• Given two intervals $I = [y_1, y_2]$ and $I' = [y_1', y_2']$ the condition $I \cap I'$ is equivalent to both of these conditions simultaneously:



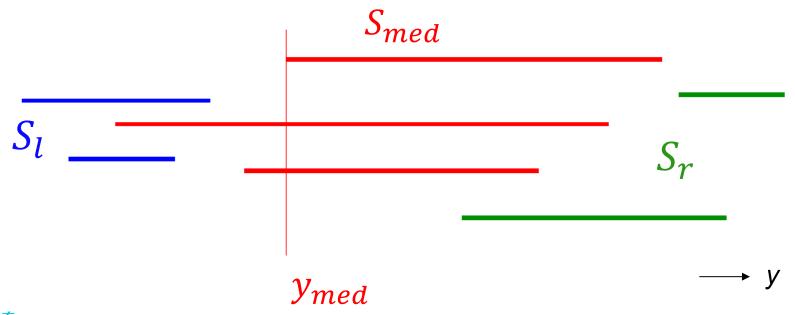


DCGI

Felkel: Computational geometr

Static interval tree – stores all end point y_s

- Let $v = y_{med}$ be the median of end-points of segments
- S_l : segments of S that are completely to the left of y_{med}
- S_{med} : segments of S that contain y_{med}
- S_r : segments of S that are completely to the right of y_{med}

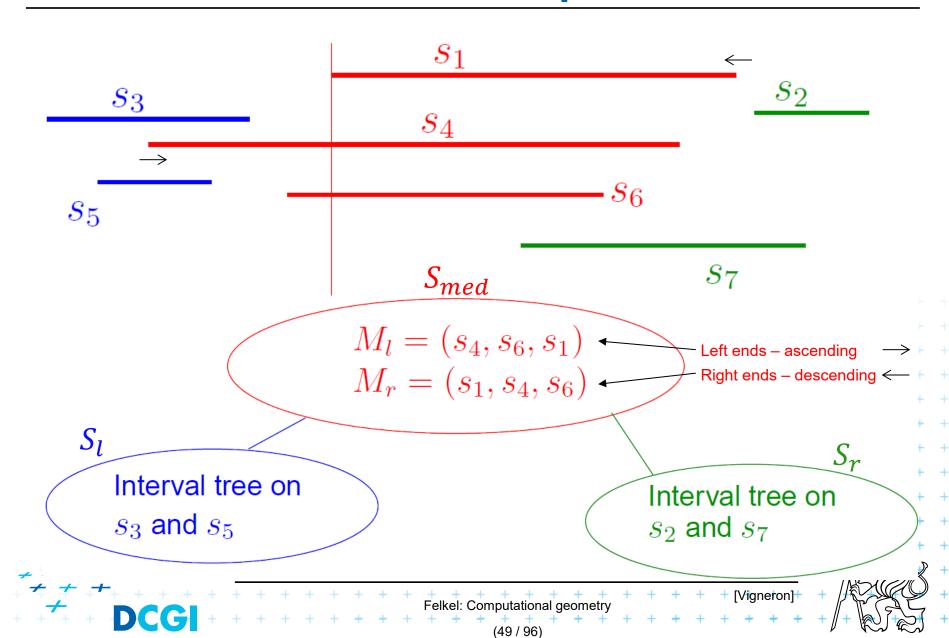


Static interval tree – stores all end point y_s

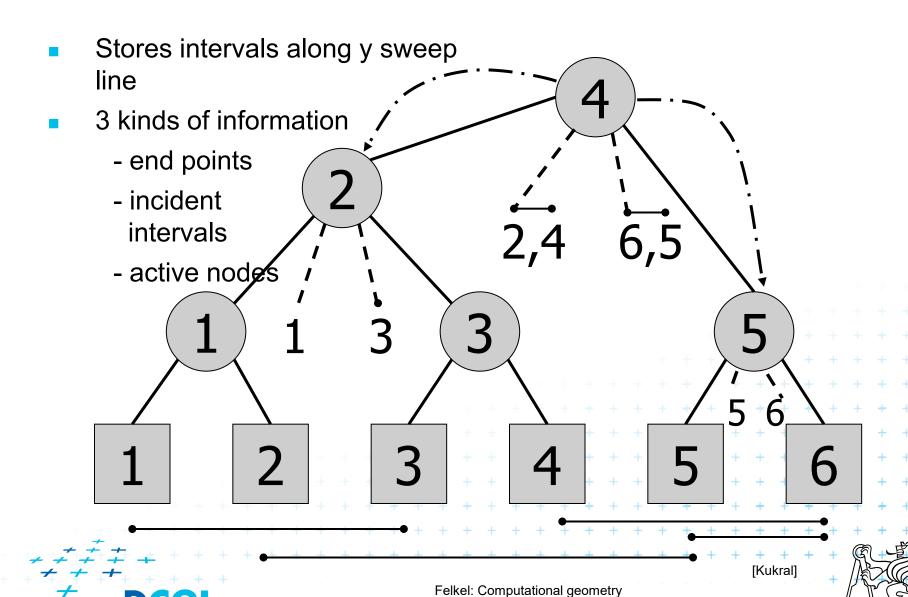
- Let $v = y_{med}$ be the median of end-points of segments
- S_l : segments of S that are completely to the left of y_{med}
- S_{med} : segments of S that contain y_{med}
- S_r : segments of S that are completely to the right of y_{med}



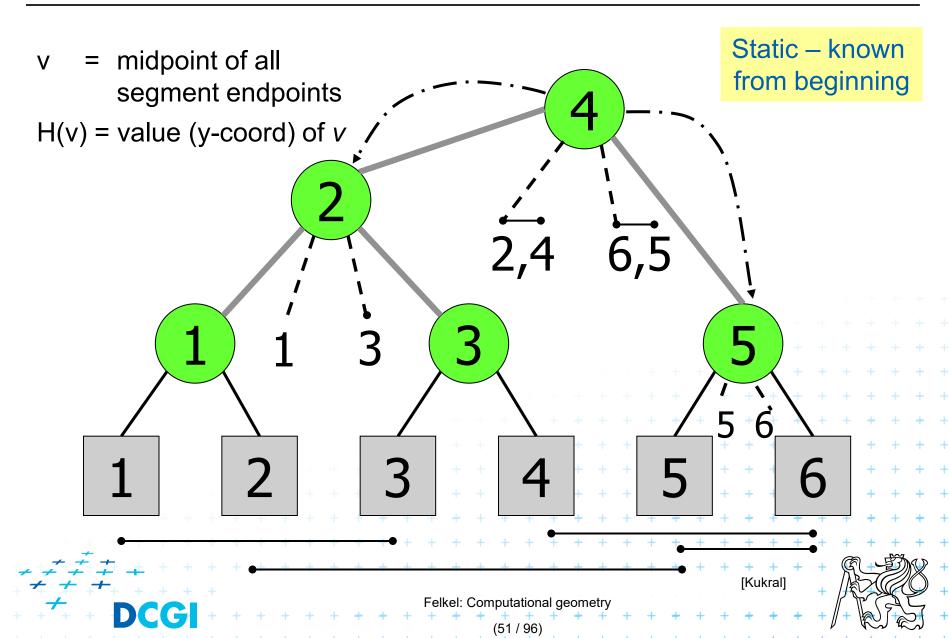
Static interval tree – Example



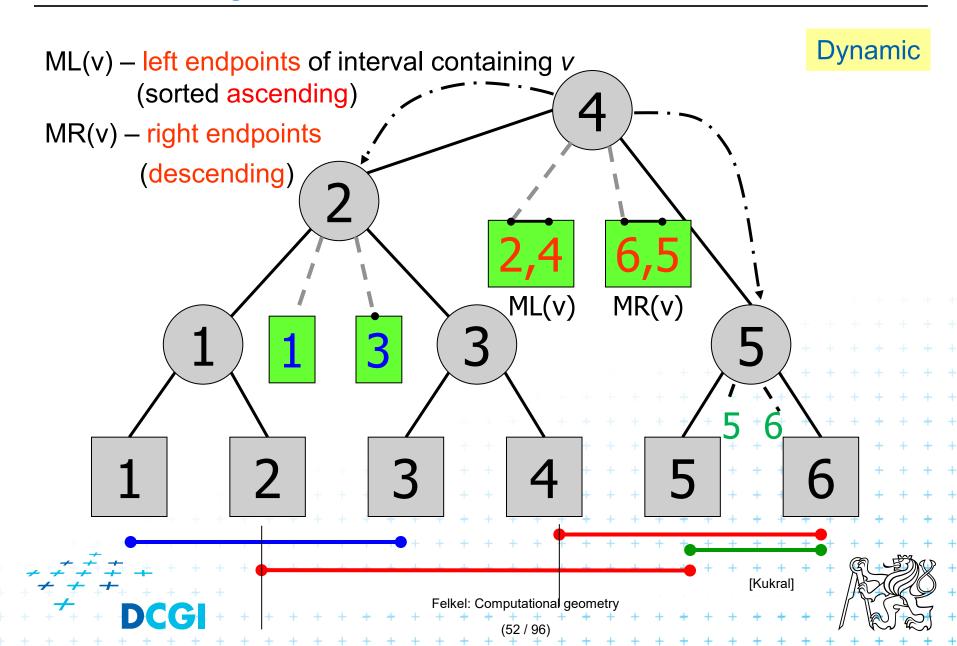
Static interval tree [Edelsbrunner80]



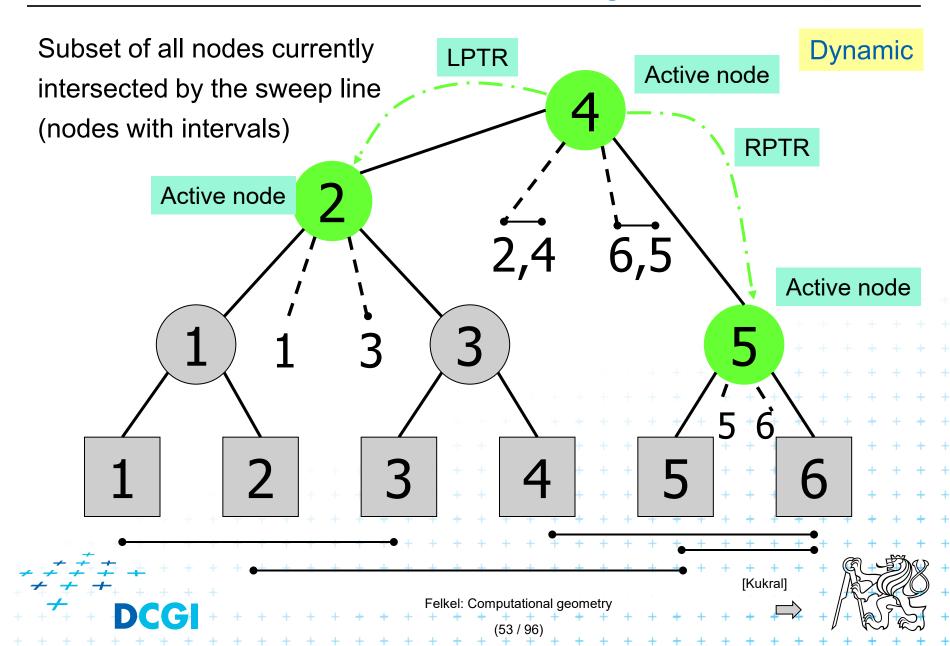
Primary structure – static tree for endpoints



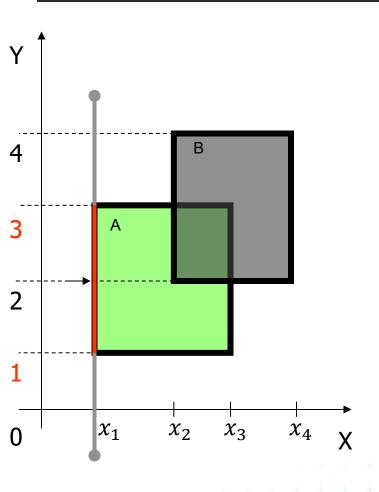
Secondary lists of incident interval end-pts.



Active nodes – intersected by the sweep line



Entries in the event queue



$$(x_{i}, y_{iL}, y_{iR}, t)$$
 $(x_{1}, 1, 3, left)$
 $(x_{2}, 2, 4, left)$
 $(x_{3}, 1, 3, right)$
 $(x_{4}, 2, 4, right)$

Static nodes in the SL status tree

1,2,3,4

Query = sweep and report intersections

RectangleIntersections(S)

Input: Set *S* of rectangles

Output: Intersected rectangle pairs

Preprocessing

Preprocess(S)

Input: Set *S* of rectangles

Output: Primary structure of the interval tree T and the event queue Q

```
1. T = PrimaryTree(S) // Construct the static primary structure// of the interval tree -> sweep line STATUS T
```

- 2. // Init event queue Q with vertical rectangle edges in ascending order $\sim x$ // Put the left edges with the same x ahead of right ones (lexicographic)
- 3. for i = 1 to n
- 4. insert $(x_{iL}, y_{iL}, y_{iR}, left), Q)$ // left edges of *i-th* rectangle
- 5. insert $((x_{iR}, y_{iL}, y_{iR}, right), Q)$ // right edges

Interval tree – primary structure construction

PrimaryTree(S) // only the y-tree structure, without intervals

Input: Set S of rectangles

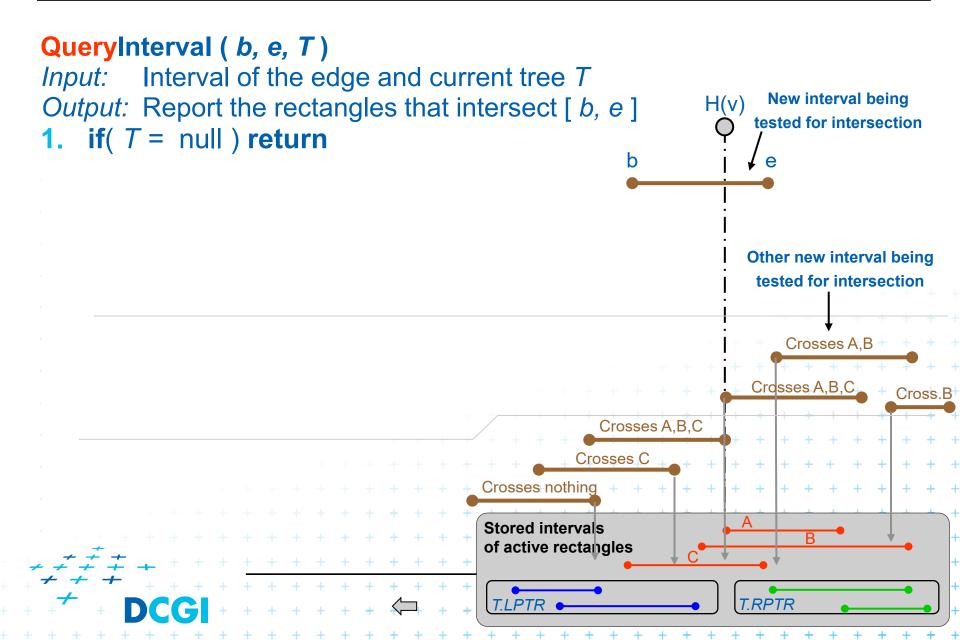
Output: Primary structure of an interval tree T

- 1. S_v = Sort endpoints of all segments in S according to y-coordinate
- $T = BST(S_v)$
- 3. return T

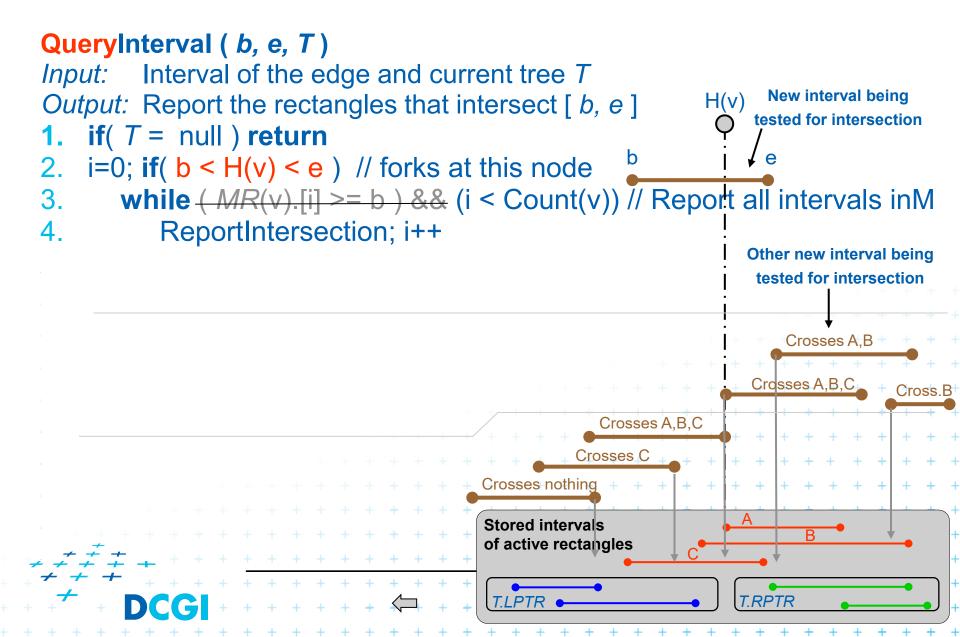
$BST(S_v)$

- **1. if**($|S_v| = 0$) **return** null
- $yMed = median of S_v$ // the smaller item for even S_y size
- 3. $L = \text{endpoints } p_v \leq y \text{Med}$

QueryInterval (b, e, T) Interval of the edge and current tree T **New interval being** Output: Report the rectangles that intersect [b, e] H(v)tested for intersection Other new interval being tested for intersection Crosses A,B Crosses A,B,C Crosses A.B.C Crosses C Stored intervals of active rectangles



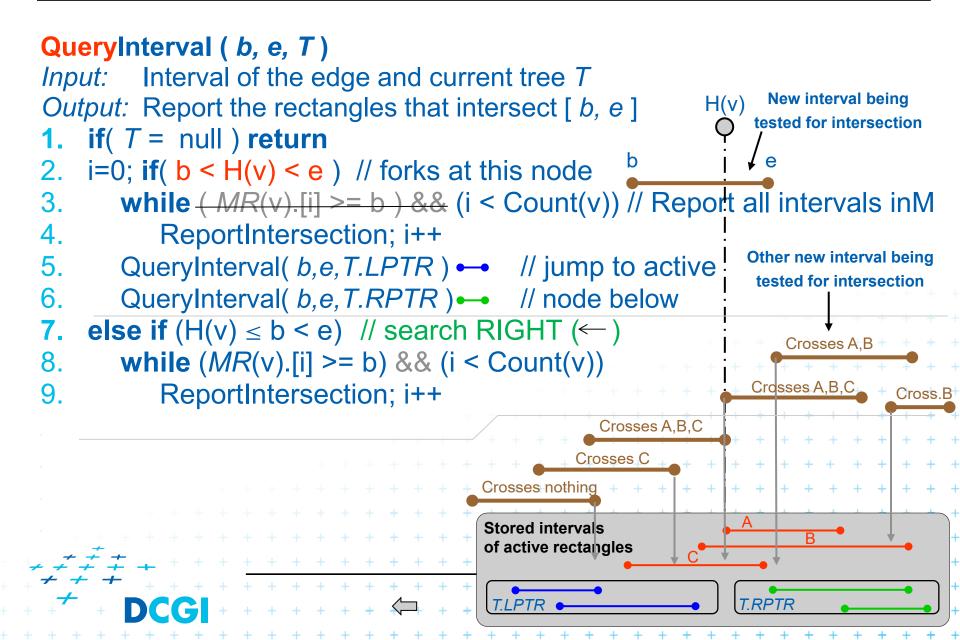
```
QueryInterval (b, e, T)
Input: Interval of the edge and current tree T
                                                                           New interval being
                                                                     H(v)
Output: Report the rectangles that intersect [b, e]
                                                                          tested for intersection
   if(T = \text{null}) return
2. i=0; if(b < H(v) < e) // forks at this node
                                                                         Other new interval being
                                                                          tested for intersection
                                                                             Crosses A.B
                                                                          Crosses A,B,C
                                                          Crosses A.B.C
                                                        Crosses C
                                              Stored intervals
                                              of active rectangles
```



```
QueryInterval (b, e, T)
Input: Interval of the edge and current tree T
                                                                      New interval being
Output: Report the rectangles that intersect [b, e]
                                                                     tested for intersection
    if( T = null ) return
    i=0; if(b < H(v) < e) // forks at this node
       while (MR(v).[i] \ge b) && (i < Count(v)) // Report all intervals inM
3.
           ReportIntersection; i++
                                                                    Other new interval being
       QueryInterval( b,e,T.LPTR ) ← // jump to active
5.
                                                                     tested for intersection
                                                                        Crosses A.B
                                                                     Crosses A,B,C
                                                      Crosses A.B.C
                                                    Crosses C
                                           Stored intervals
                                           of active rectangles
```

```
QueryInterval (b, e, T)
         Interval of the edge and current tree T
                                                                      New interval being
Output: Report the rectangles that intersect [b, e]
                                                                     tested for intersection
    if(T = \text{null}) return
    i=0; if(b < H(v) < e) // forks at this node
       while (MR(v).[i] \ge b) \&\& (i < Count(v)) // Report all intervals inM
3.
           ReportIntersection; i++
                                                                    Other new interval being
5.
       QueryInterval( b,e,T.LPTR ) ← // jump to active
                                                                     tested for intersection
       QueryInterval( b,e,T.RPTR ) →
                                             // node below
6.
                                                                        Crosses A.B
                                                                     Crosses A,B,C
                                                      Crosses A.B.C
                                                    Crosses C
                                           Stored intervals
                                           of active rectangles
```

```
QueryInterval (b, e, T)
Input: Interval of the edge and current tree T
                                                                      New interval being
Output: Report the rectangles that intersect [b, e]
                                                                     tested for intersection
    if(T = \text{null}) return
    i=0; if(b < H(v) < e) // forks at this node
       while (MR(v).[i] \ge b) \&\& (i < Count(v)) // Report all intervals inM
3.
           ReportIntersection; i++
                                                                    Other new interval being
       QueryInterval( b,e,T.LPTR ) ← // jump to active
5.
                                                                     tested for intersection
       QueryInterval( b,e,T.RPTR ) → // node below
    else if (H(v) \le b \le e) // search RIGHT (\leftarrow)
                                                                        Crosses A.B
                                                                     Crosses A,B,C
                                                      Crosses A.B.C
                                                    Crosses C
                                           Stored intervals
                                           of active rectangles
```



```
QueryInterval (b, e, T)
         Interval of the edge and current tree T
                                                                      New interval being
Output: Report the rectangles that intersect [b, e]
                                                                    tested for intersection
    if(T = \text{null}) return
    i=0; if(b < H(v) < e) // forks at this node
       while (MR(v).[i] \ge b) \&\& (i < Count(v)) // Report all intervals inM
3.
           ReportIntersection; i++
                                                                    Other new interval being
       QueryInterval( b,e,T.LPTR ) ← // jump to active
5.
                                                                    tested for intersection
       QueryInterval( b,e,T.RPTR ) → // node below
6.
    else if (H(v) \le b \le e) // search RIGHT (\leftarrow)
7.
                                                                       Crosses A.B
       while (MR(v).[i] \ge b) \&\& (i < Count(v))
8.
                                                                    Crosses A,B,C
           ReportIntersection; i++
       QueryInterval( b,e,T.RPTR ) •
10.
                                                     Crosses A.B.C
                                                   Crosses C
                                          Stored intervals
                                          of active rectangles
```

```
QueryInterval (b, e, T)
Input: Interval of the edge and current tree T
                                                                      New interval being
Output: Report the rectangles that intersect [b, e]
                                                                     tested for intersection
    if(T = \text{null}) return
    i=0; if(b < H(v) < e) // forks at this node
       while (MR(v).[i] \ge b) \&\& (i < Count(v)) // Report all intervals inM
3.
           ReportIntersection; i++
                                                                    Other new interval being
       QueryInterval( b,e,T.LPTR ) ← // jump to active
5.
                                                                     tested for intersection
       QueryInterval( b,e,T.RPTR ) → // node below
    else if (H(v) \le b \le e) // search RIGHT (\leftarrow)
                                                                        Crosses A.B
       while (MR(v).[i] \ge b) \&\& (i < Count(v))
8.
                                                                    Crosses A,B,C
           ReportIntersection; i++
       QueryInterval( b,e,T.RPTR ) →
                                                     Crosses A,B,C
11. else // b < e \leq H(v) //search LEFT(\Rightarrow) Crosses C
                                          Crosses nothing
                                          Stored intervals
                                          of active rectangles
```

```
QueryInterval (b, e, T)
Input: Interval of the edge and current tree T
                                                                     New interval being
Output: Report the rectangles that intersect [b, e]
                                                                    tested for intersection
1. if( T = \text{null} ) return
    i=0; if(b < H(v) < e) // forks at this node
       while (MR(v).[i] \ge b) \&\& (i < Count(v)) // Report all intervals inM
3.
           ReportIntersection; i++
                                                                   Other new interval being
       QueryInterval( b,e,T.LPTR ) ← // jump to active
5.
                                                                    tested for intersection
       QueryInterval( b,e,T.RPTR ) → // node below
    else if (H(v) \le b \le e) // search RIGHT (\leftarrow)
                                                                       Crosses A,B
       while (MR(v).[i] \ge b) \&\& (i < Count(v))
8.
                                                                    Crosses A,B,C
           ReportIntersection; i++
       QueryInterval( b,e,T.RPTR ) →
                                                     Crosses A,B,C
11. else // b < e \leq H(v) //search LEFT(\Rightarrow) Crosses C
12.
       while (ML(v).[i] \le e)
                                        + Crosses nothing +
13.
            ReportIntersection; i++
                                          Stored intervals
                                          of active rectangles
```

```
QueryInterval (b, e, T)
         Interval of the edge and current tree T
                                                                    New interval being
Output: Report the rectangles that intersect [b, e]
                                                                   tested for intersection
    if(T = \text{null}) return
    i=0; if(b < H(v) < e) // forks at this node
       while (MR(v).[i] \ge b) \&\& (i < Count(v)) // Report all intervals inM
3.
           ReportIntersection; i++
                                                                  Other new interval being
       QueryInterval( b,e,T.LPTR ) ← // jump to active
5.
                                                                   tested for intersection
       QueryInterval( b,e,T.RPTR ) → // node below
    else if (H(v) ≤ b < e) // search RIGHT (←)
                                                                      Crosses A.B
       while (MR(v).[i] \ge b) \&\& (i < Count(v))
8.
                                                                   Crosses A,B,C
           ReportIntersection; i++
       QueryInterval( b,e,T.RPTR ) →
                                                    Crosses A,B,C
11. else // b < e \leq H(v) //search LEFT(\Rightarrow) Crosses C
12.
       while (ML(v).[i] \le e)
                                         Crosses nothing +
13.
           ReportIntersection; i++
                                         Stored intervals
                                         of active rectangles
 4. # -QueryInterval( b,e,T.LPTR )
```

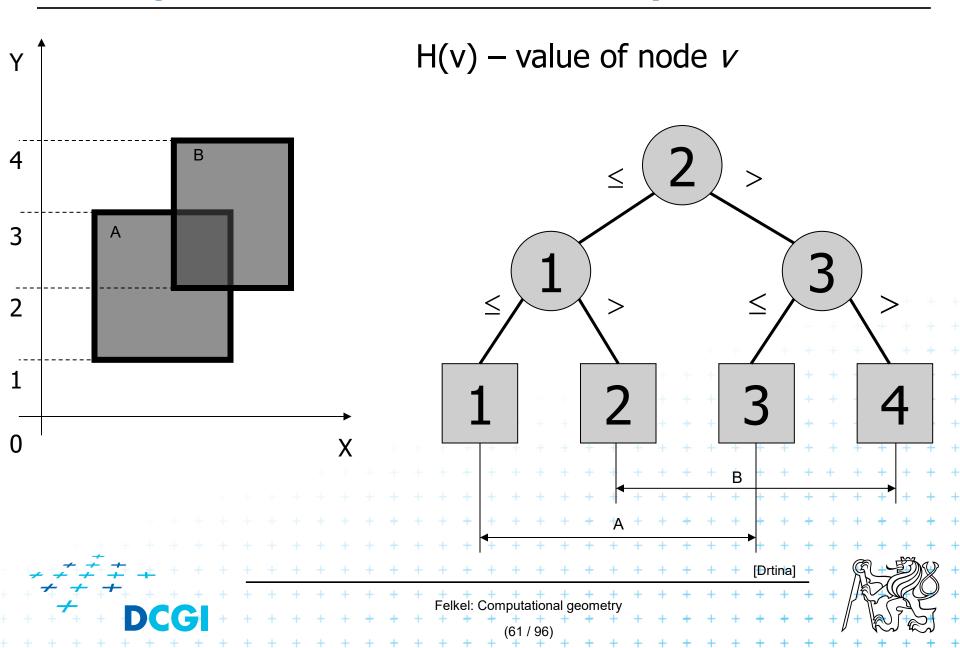
Interval tree - interval insertion

14. return *T*

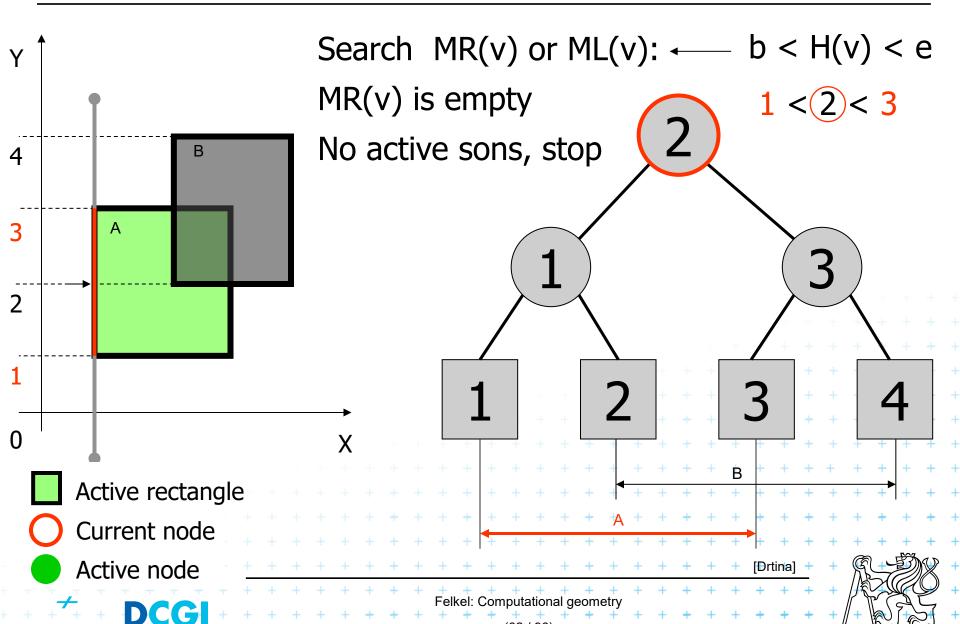
```
InsertInterval ( b, e, T )
Input:
        Interval [b,e] and interval tree T
Output: T after insertion of the interval
                                                                    New interval
                                                                    being inserted
   v = root(T)
                                                           H(v)
    while( v != null ) // find the fork node
       if (H(v) < b < e)
3.
4.
           v = v.right // continue right
       else if (b < e < H(v))
5.
6.
           v = v.left // continue left
7.
       else // b \le H(v) \le e // insert interval
8.
           set v node to active
           connect LPTR resp. RPTR to its parent (active node above)
10.
           insert [b,e] into list ML(v) – sorted in ascending order of b's
11.
           insert [b,e] into list MR(v) – sorted in descending order of e's
12.
           break
13. endwhile
```

Example 1

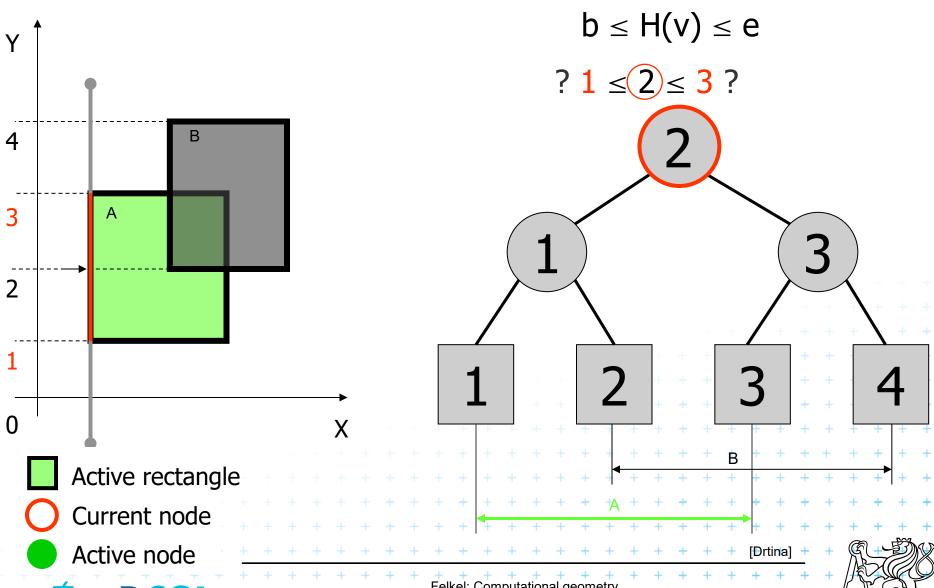
Example 1 – static tree on endpoints



Interval insertion [1,3] a) Query Interval

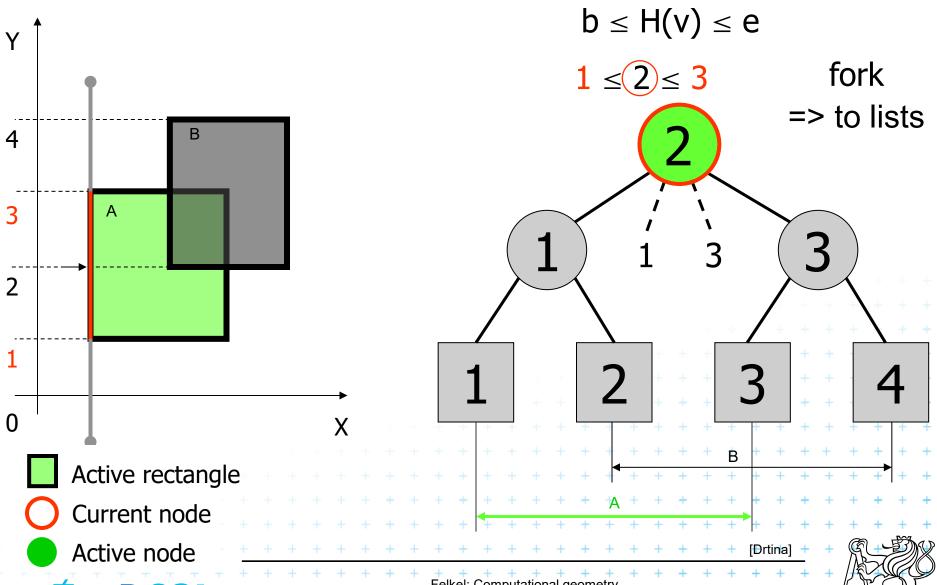


Interval insertion [1,3] b) Insert Interval



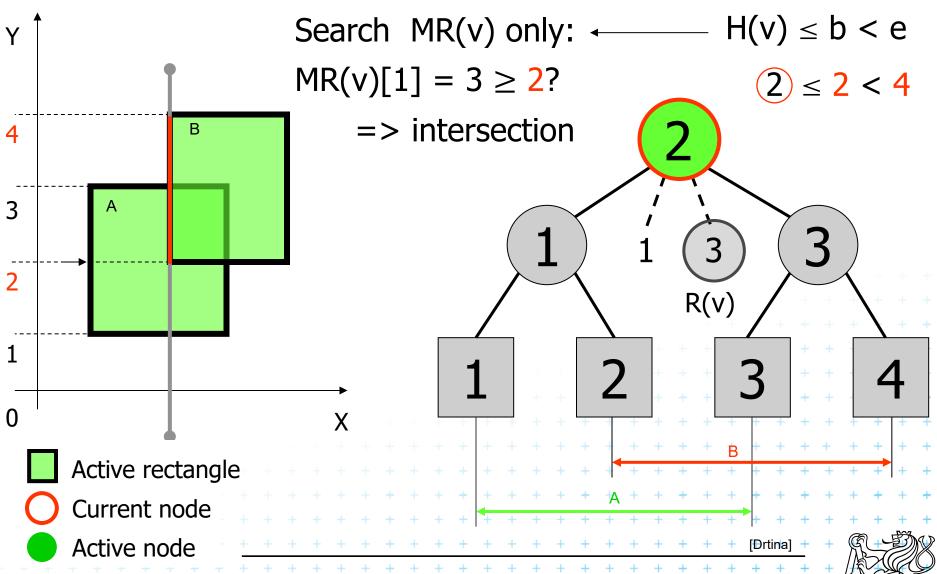
Felkel: Computational geometry

Interval insertion [1,3] b) Insert Interval



Felkel: Computational geometry

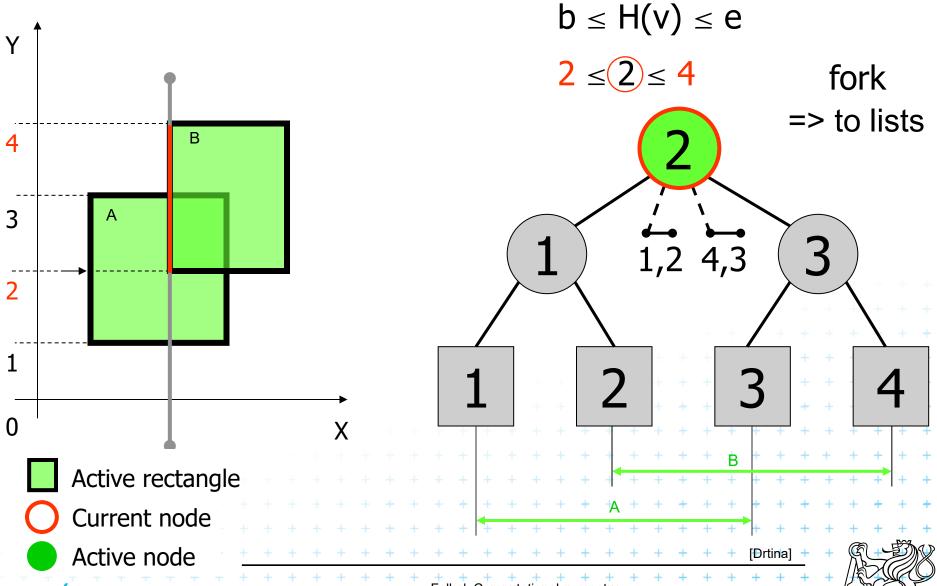
Interval insertion [2,4] a) Query Interval



Felkel: Computational geometry

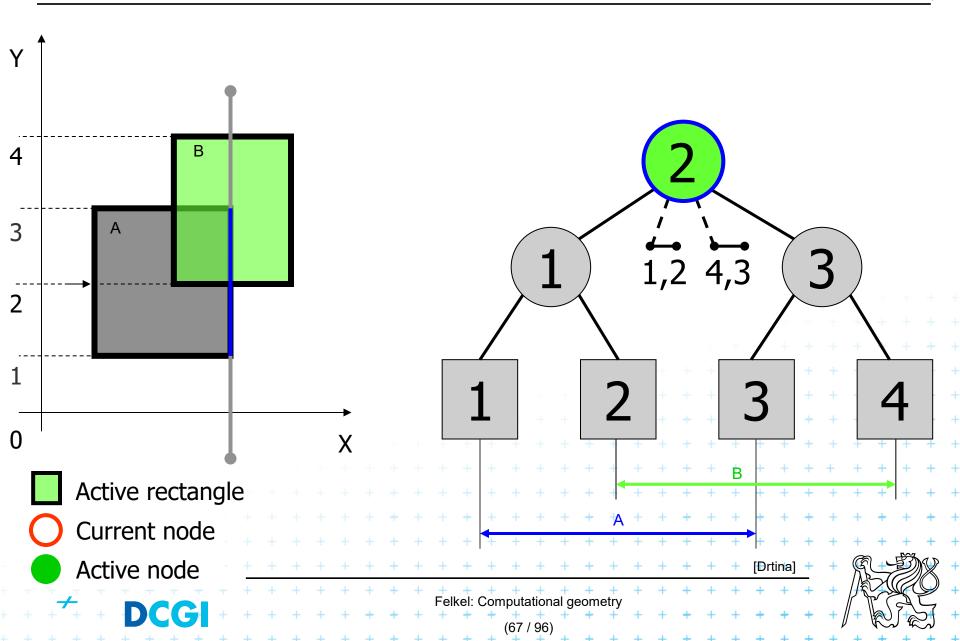
(65 / 96)

Interval insertion [2,4] b) Insert Interval

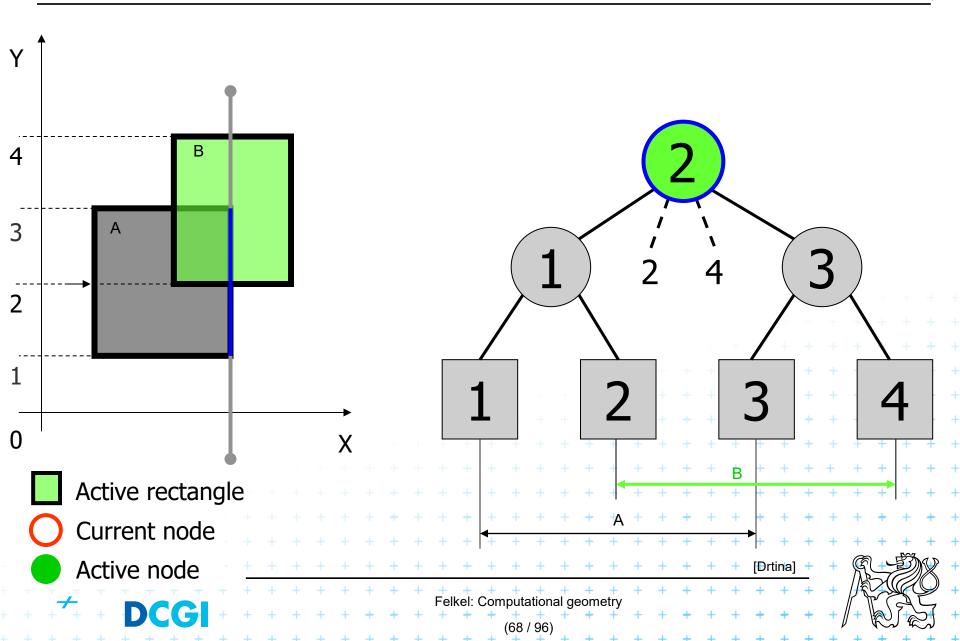


Felkel: Computational geometry

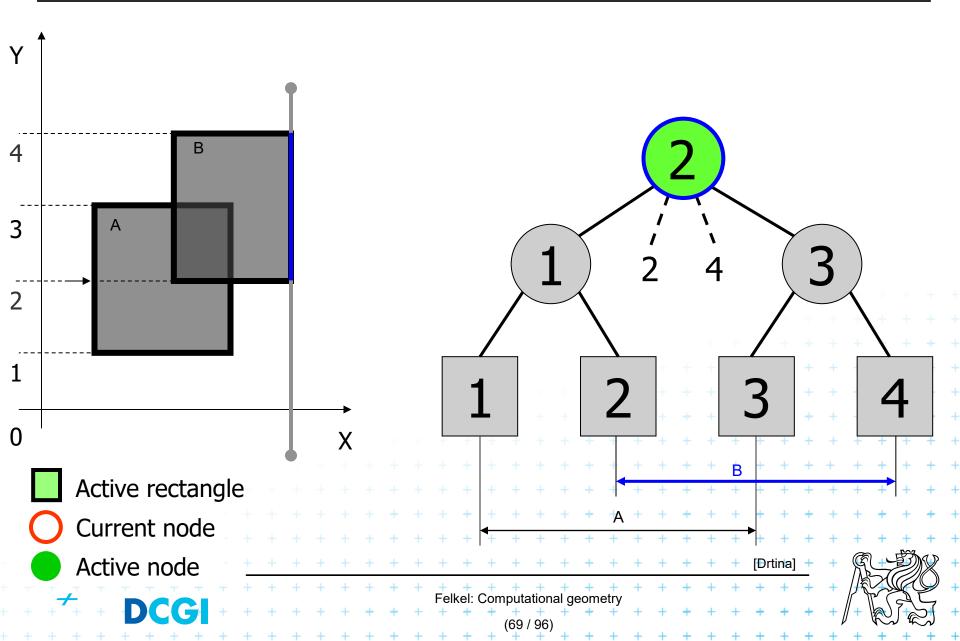
Interval delete [1,3]



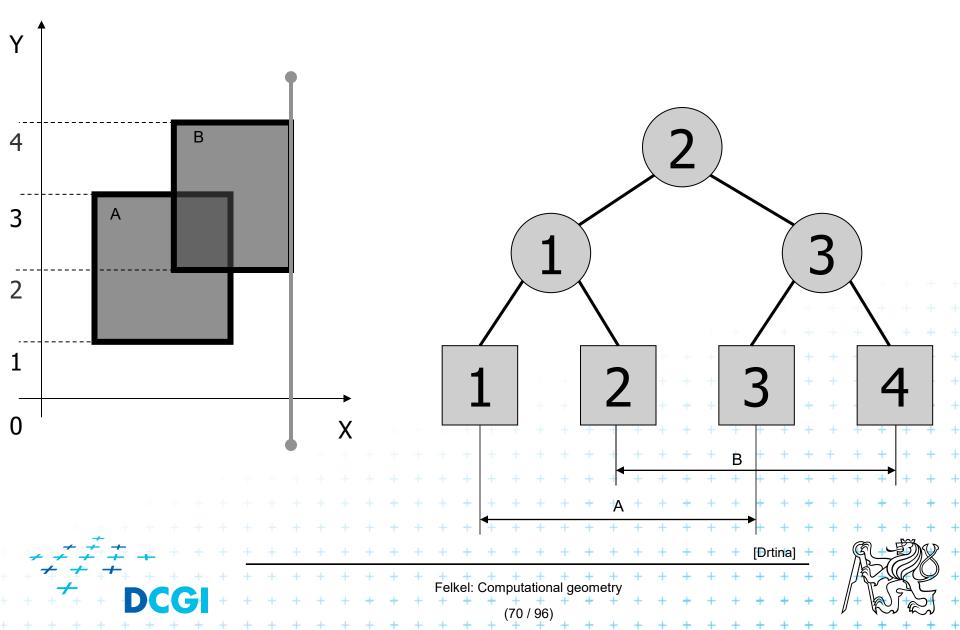
Interval delete [1,3]



Interval delete [2,4]



Interval delete [2,4]



Example 2

Query = sweep and report intersections

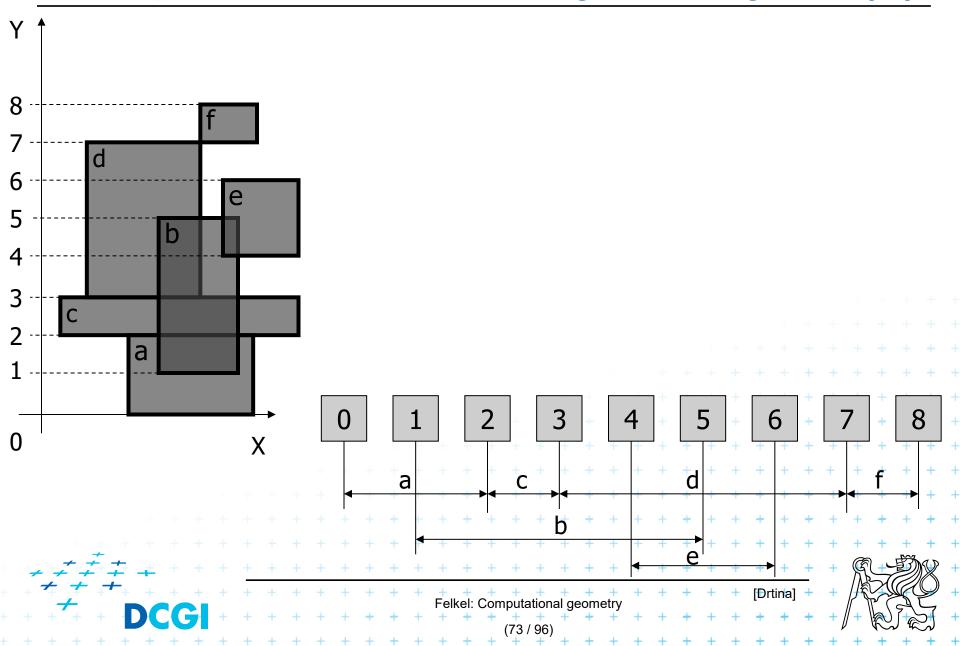
RectangleIntersections(*S* **)**

Input: Set *S* of rectangles

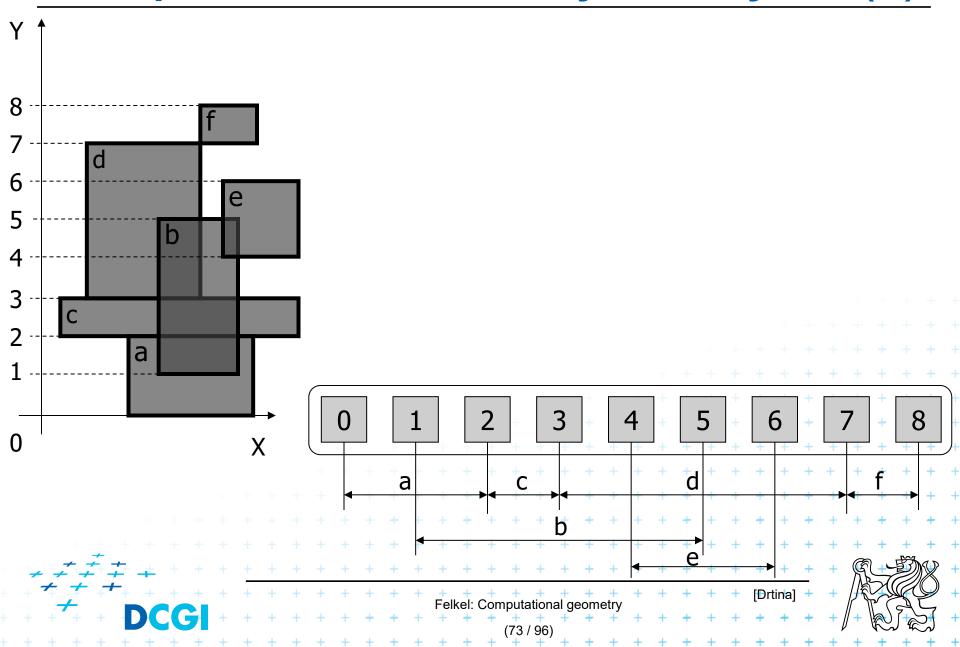
Output: Intersected rectangle pairs

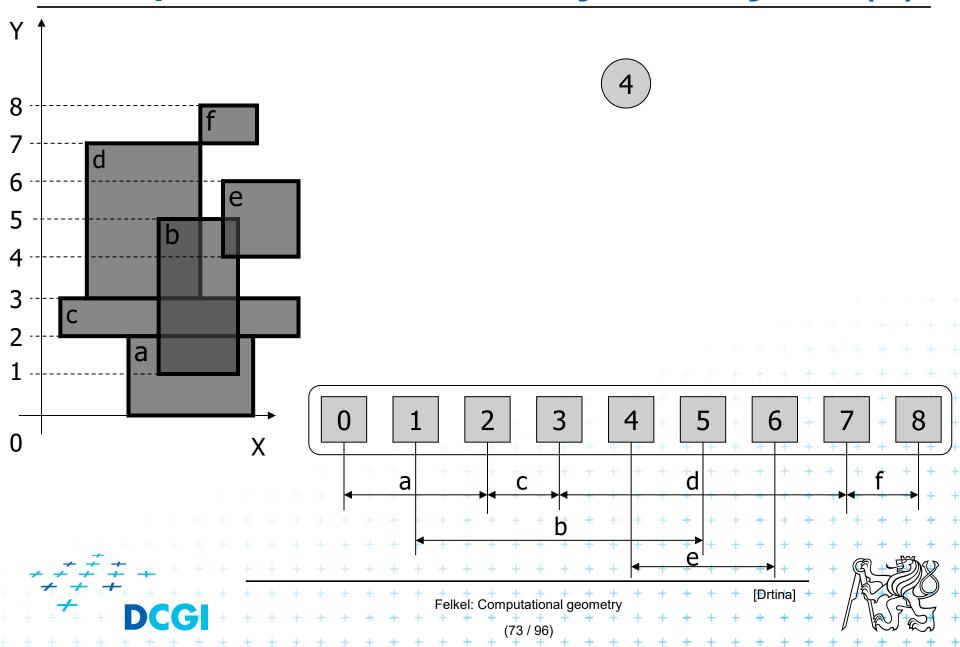
```
// this is a copy of the slide before // just to remember the algorithm
```

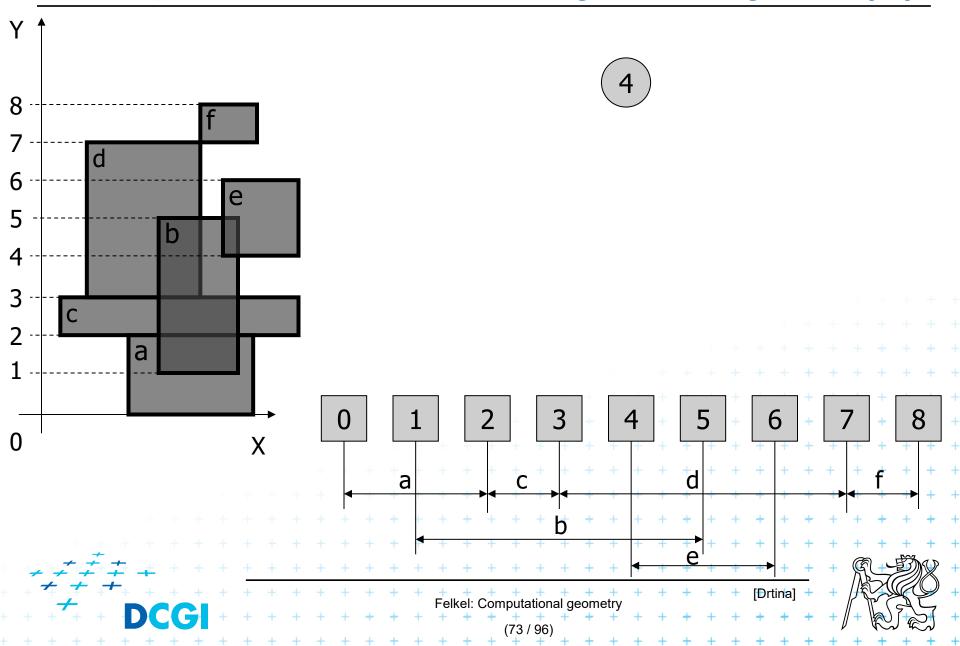

Example 2 – tree created by PrimaryTree(S)

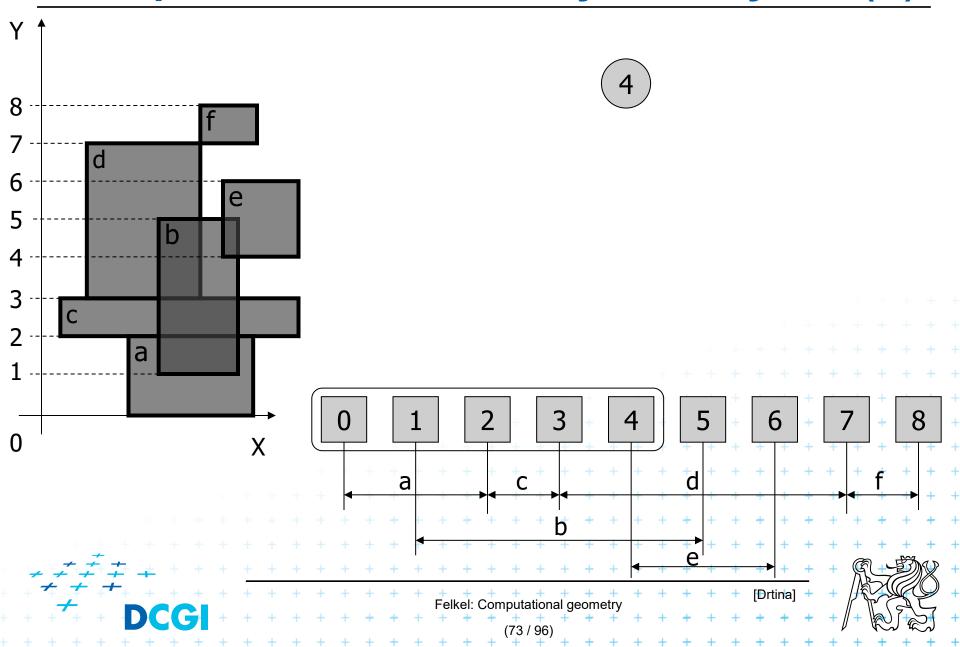


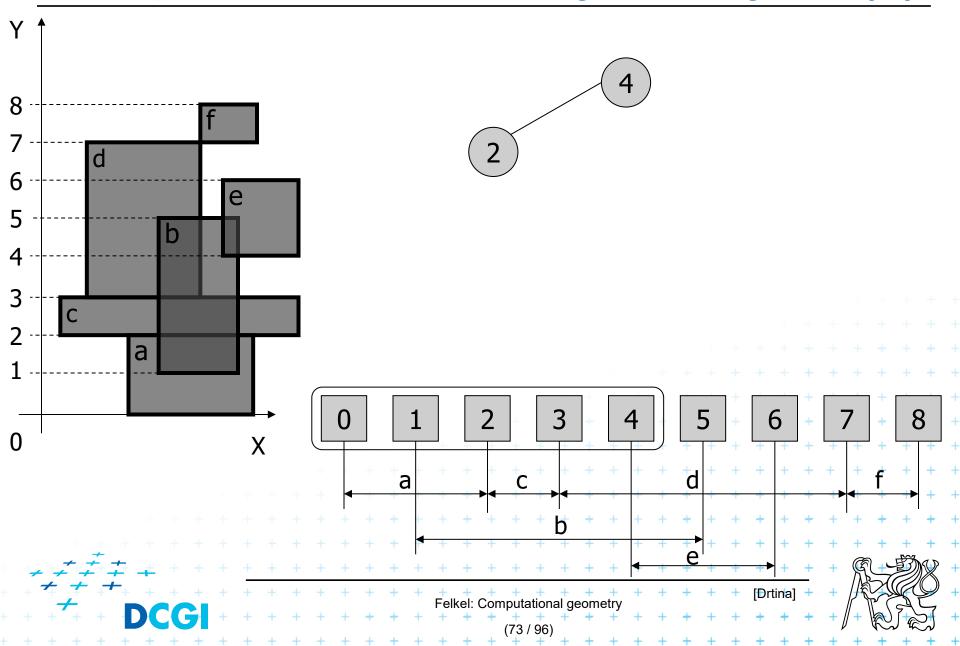
Example 2 – tree created by PrimaryTree(S)

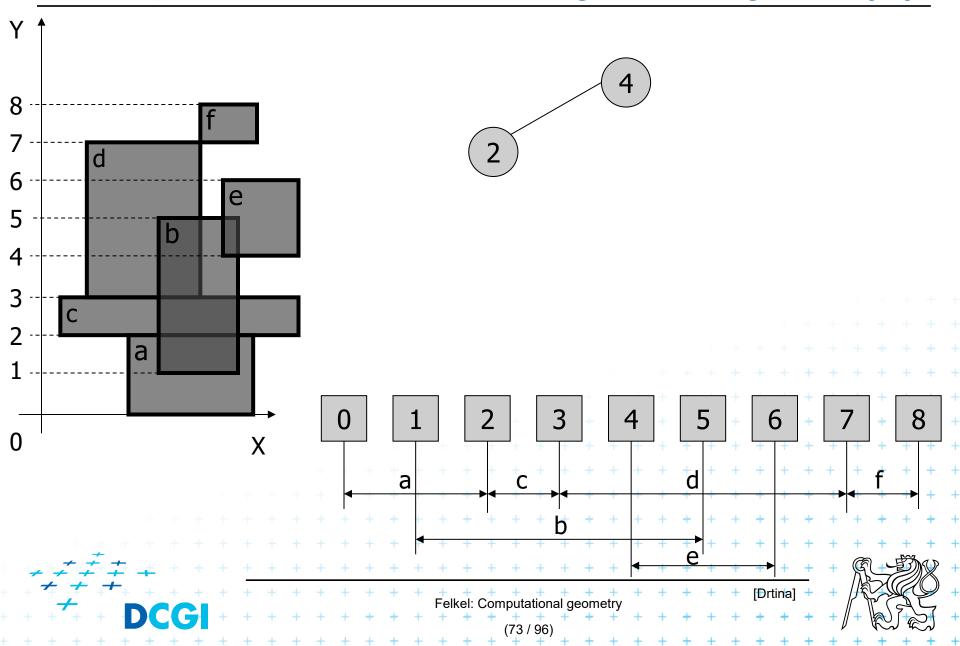


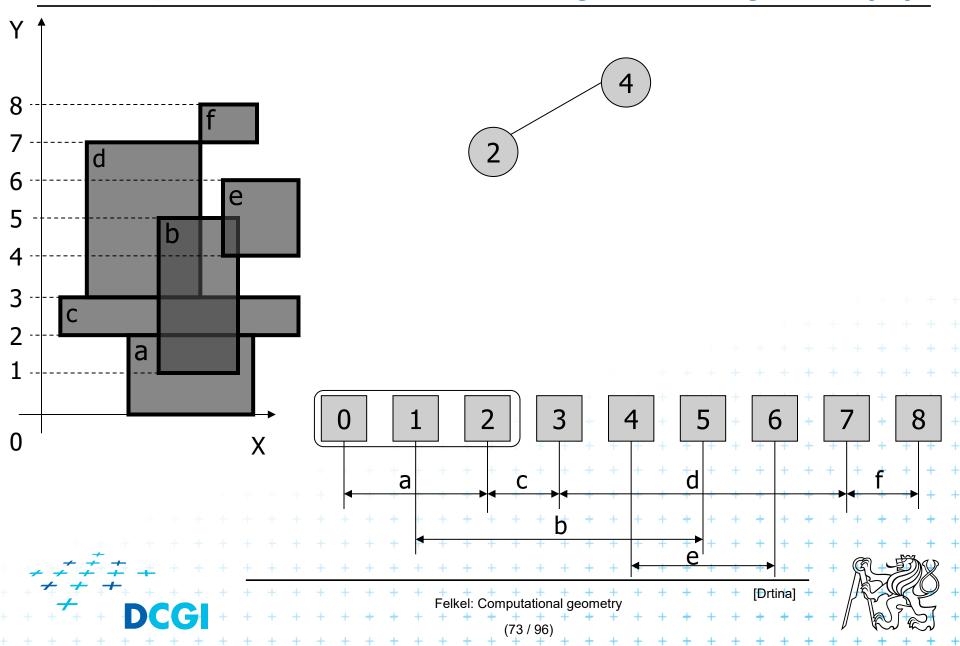


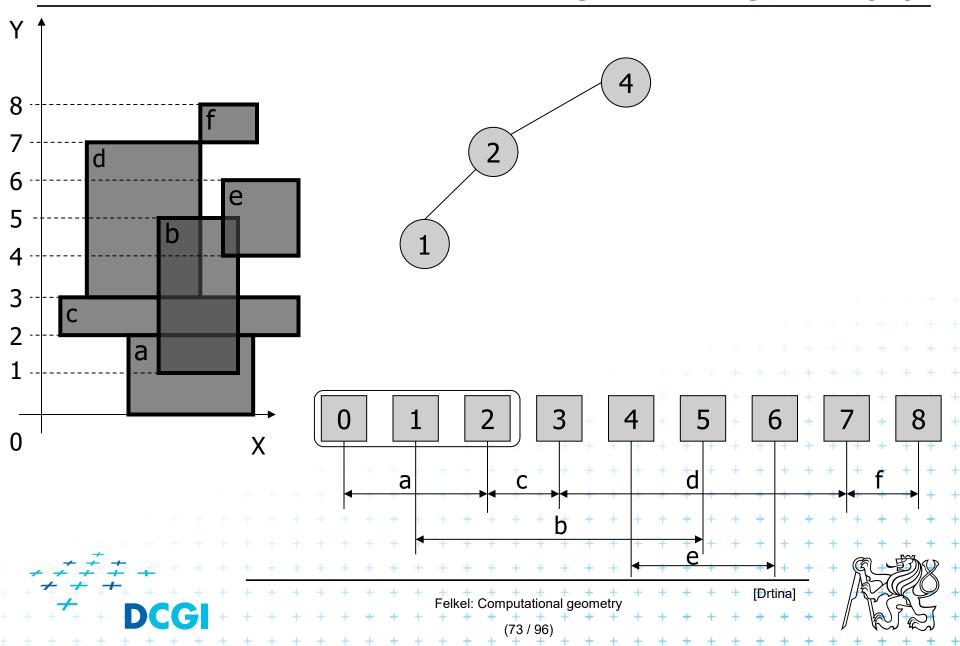


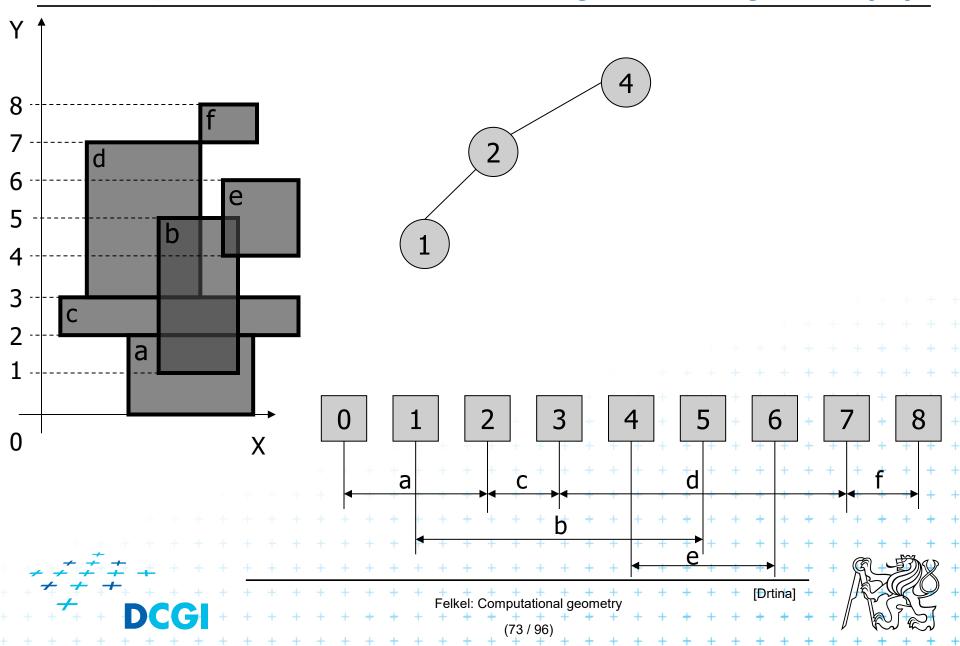


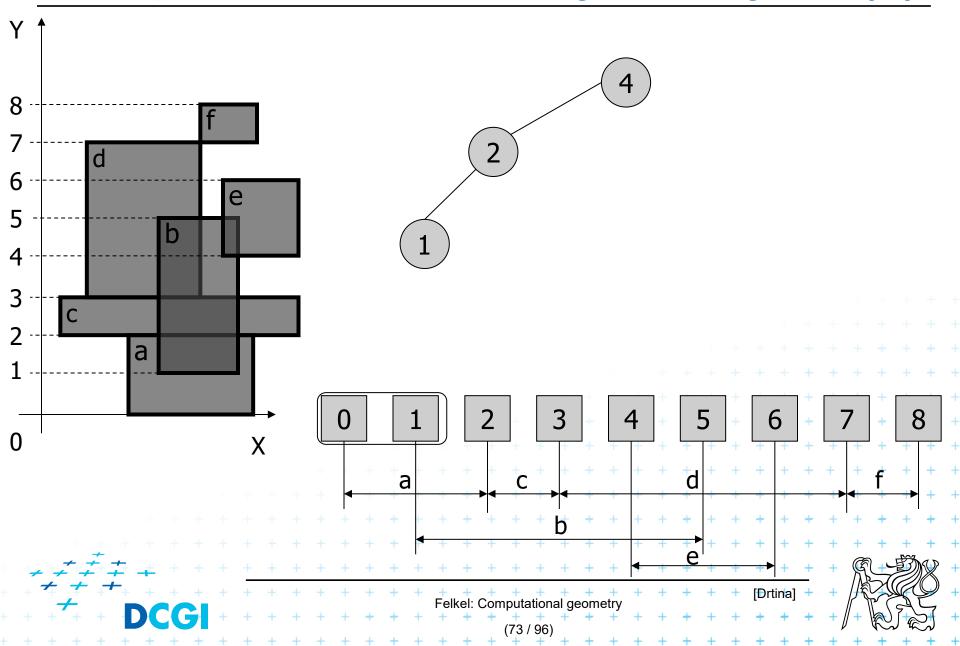


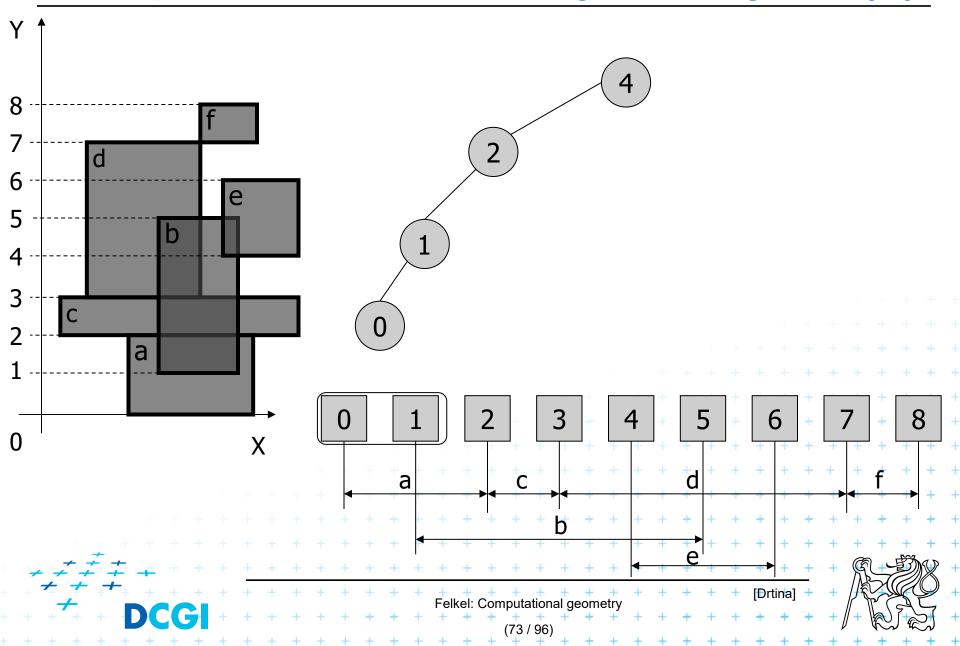


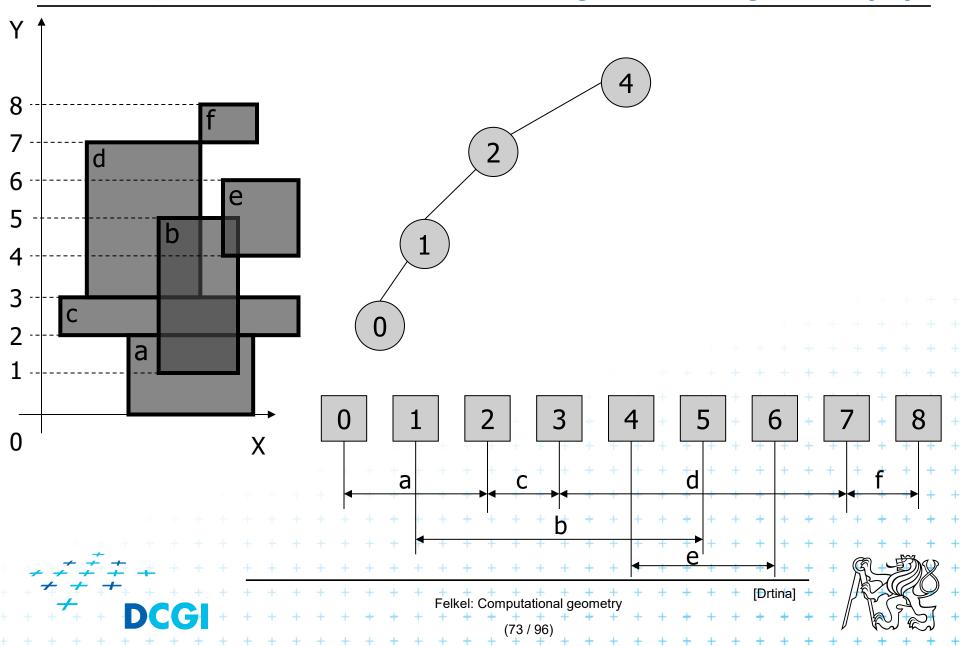


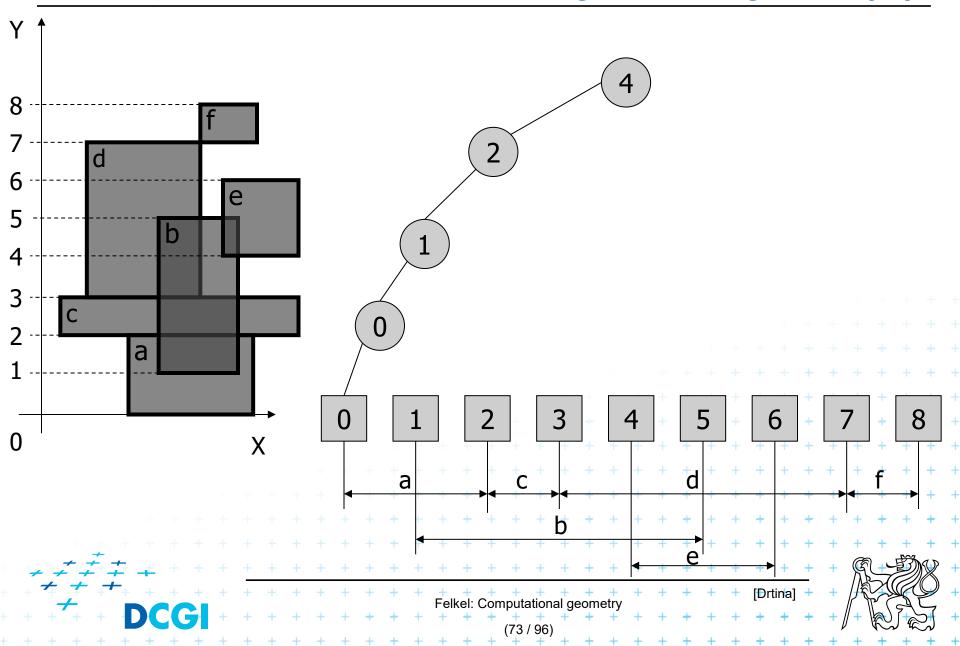


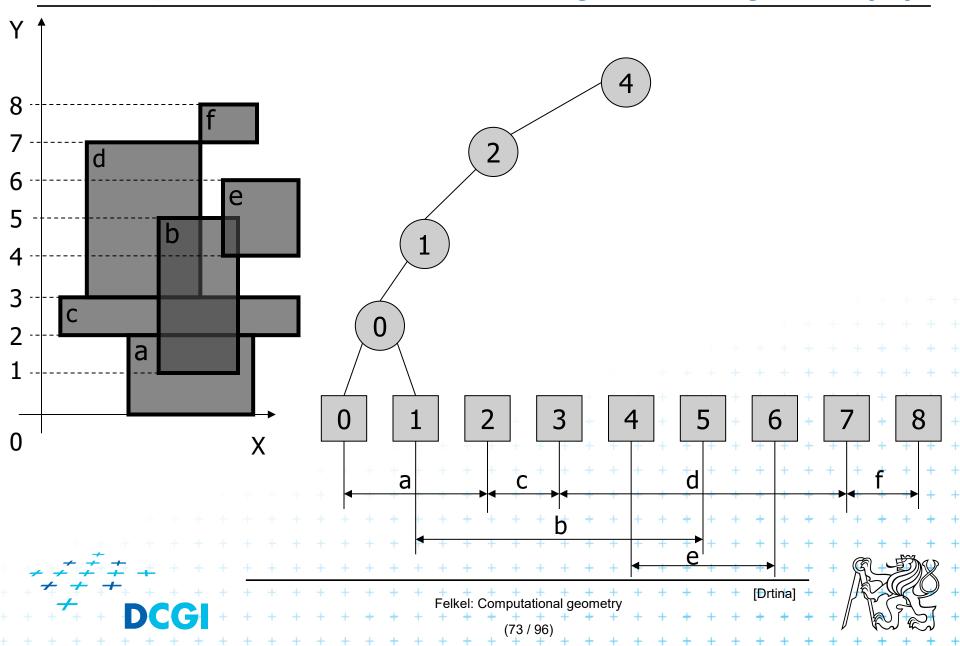


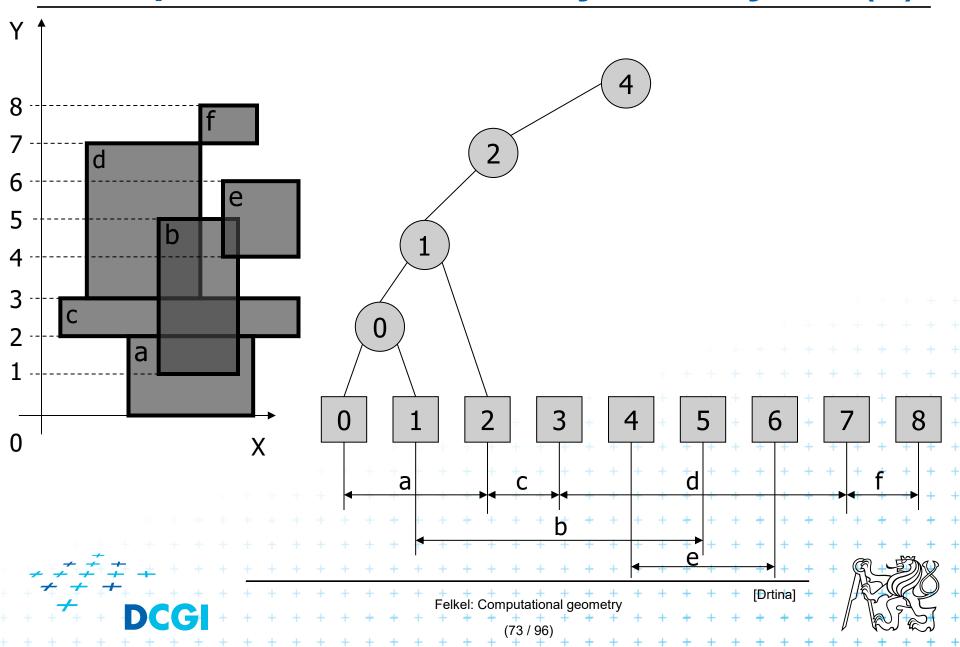


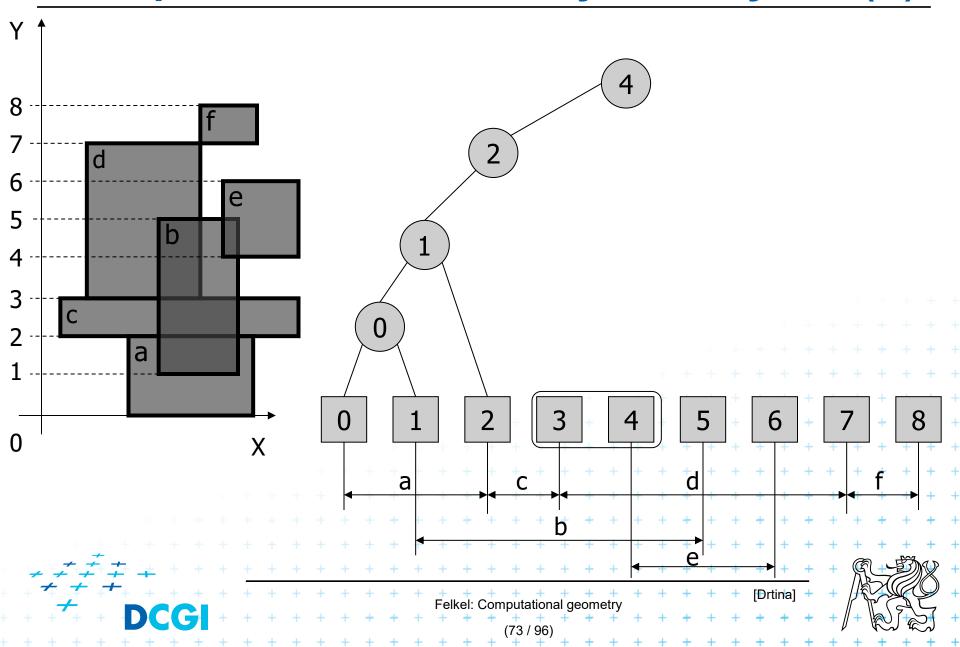


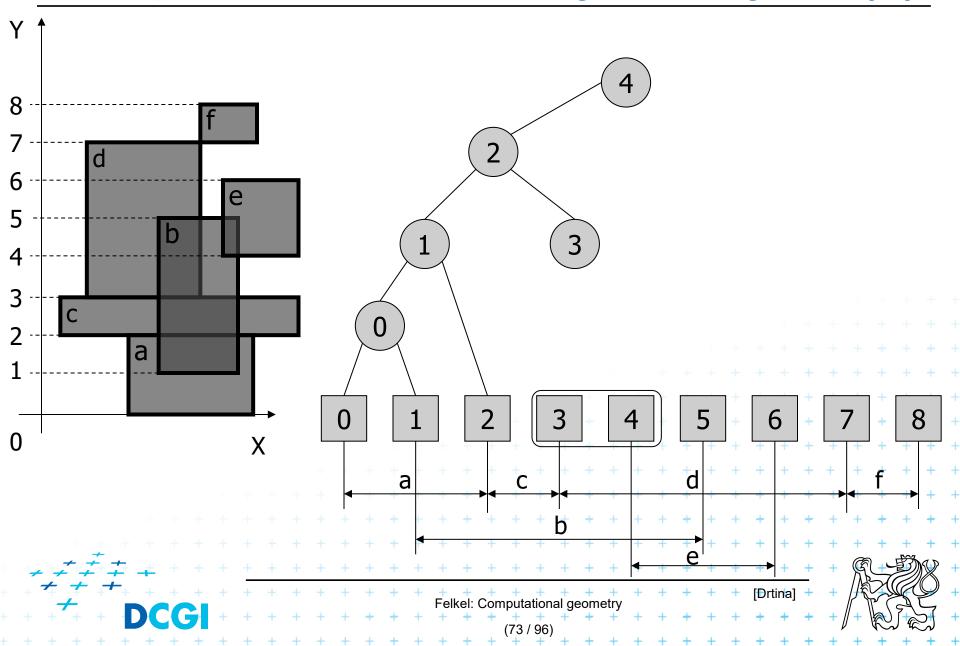


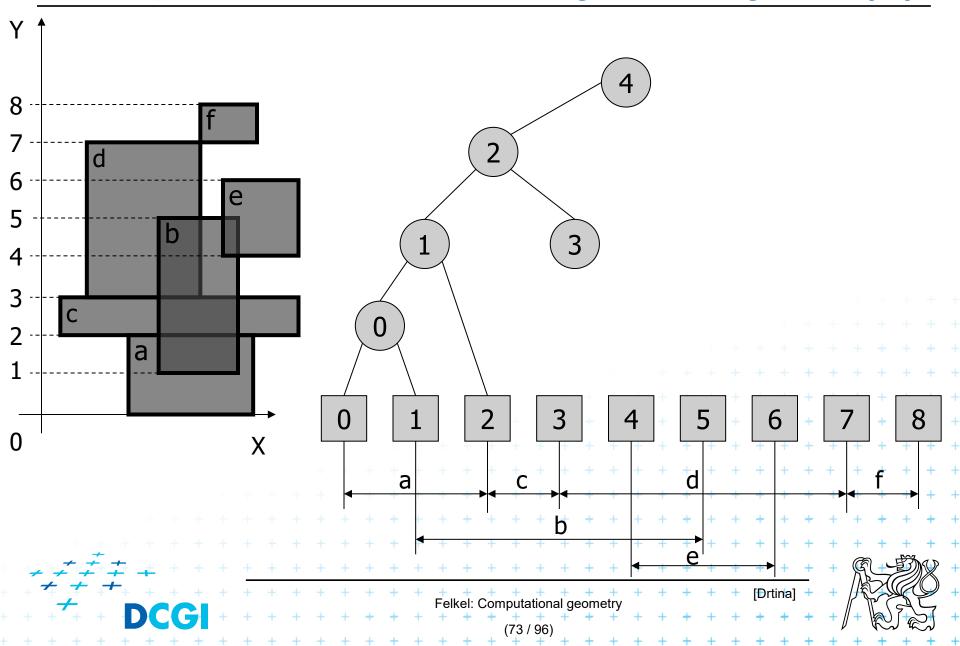


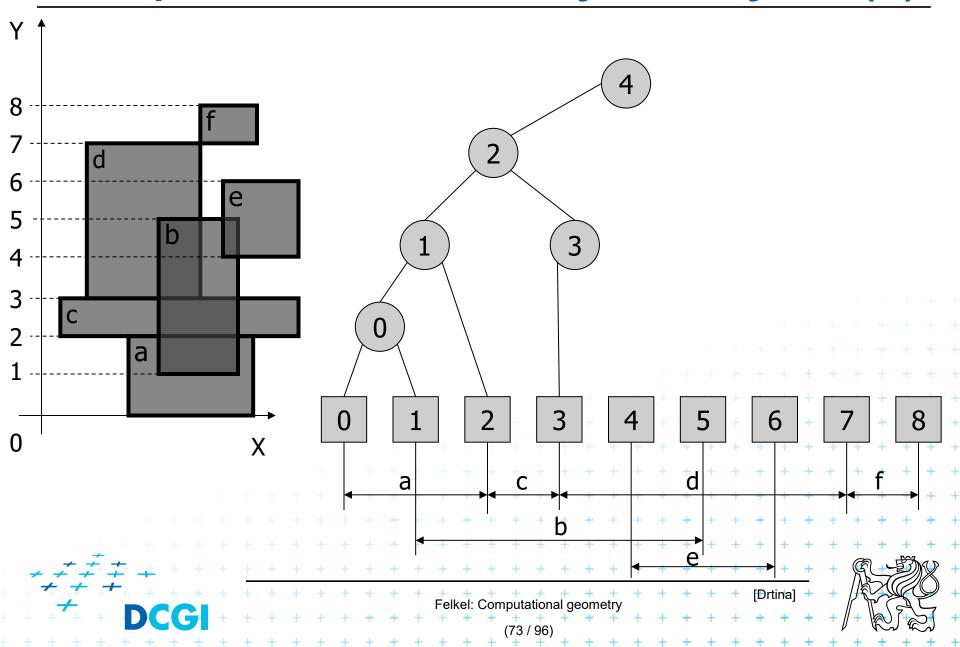


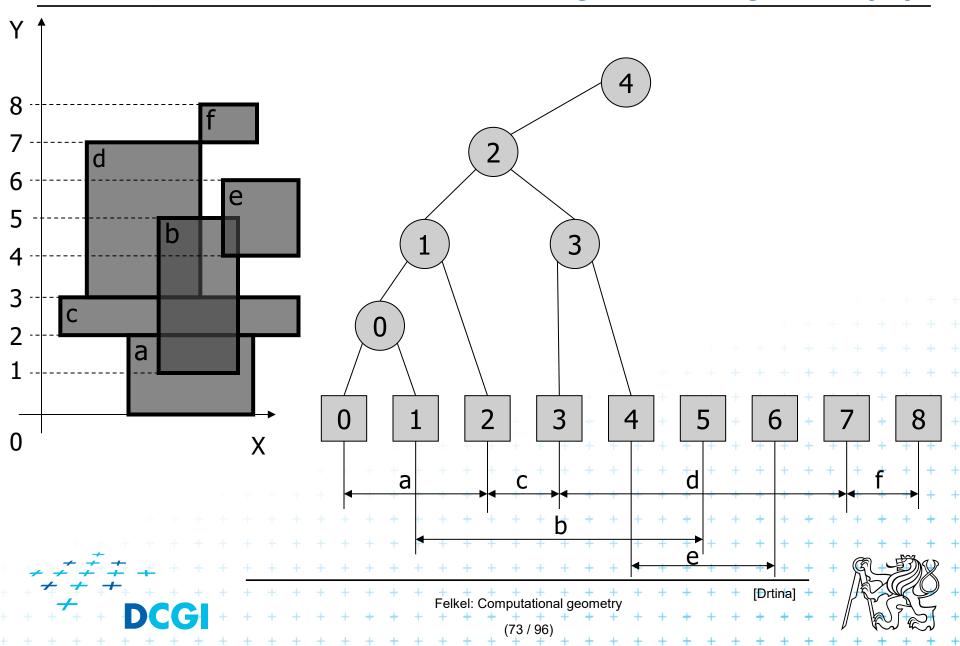


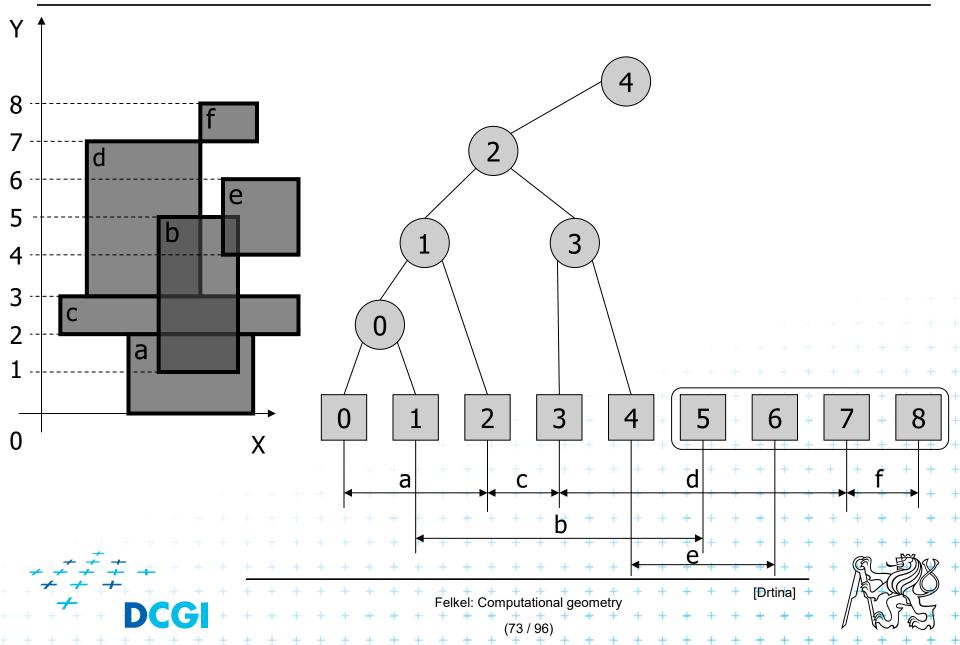


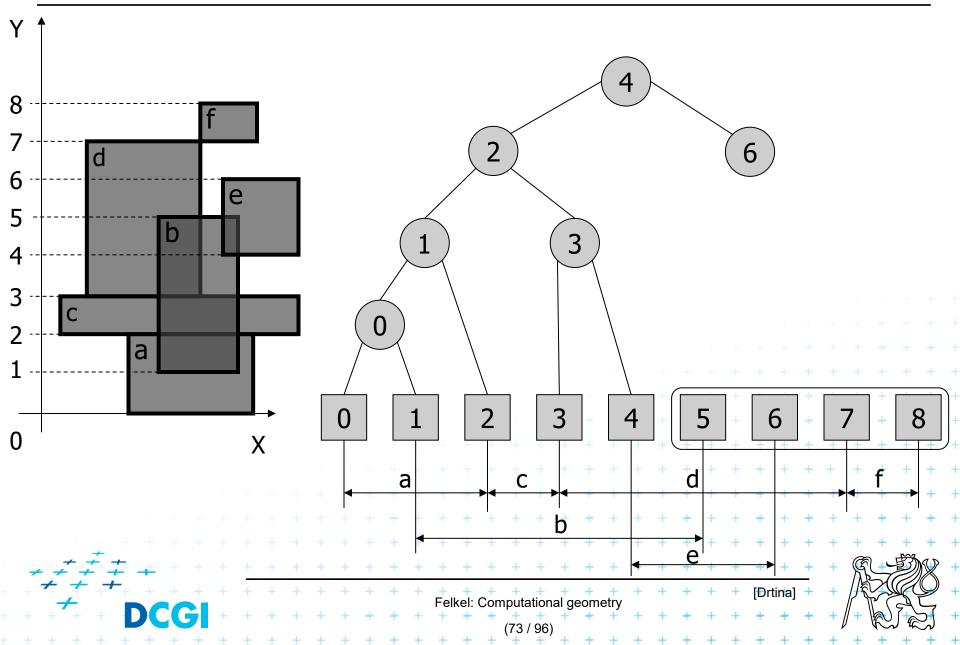


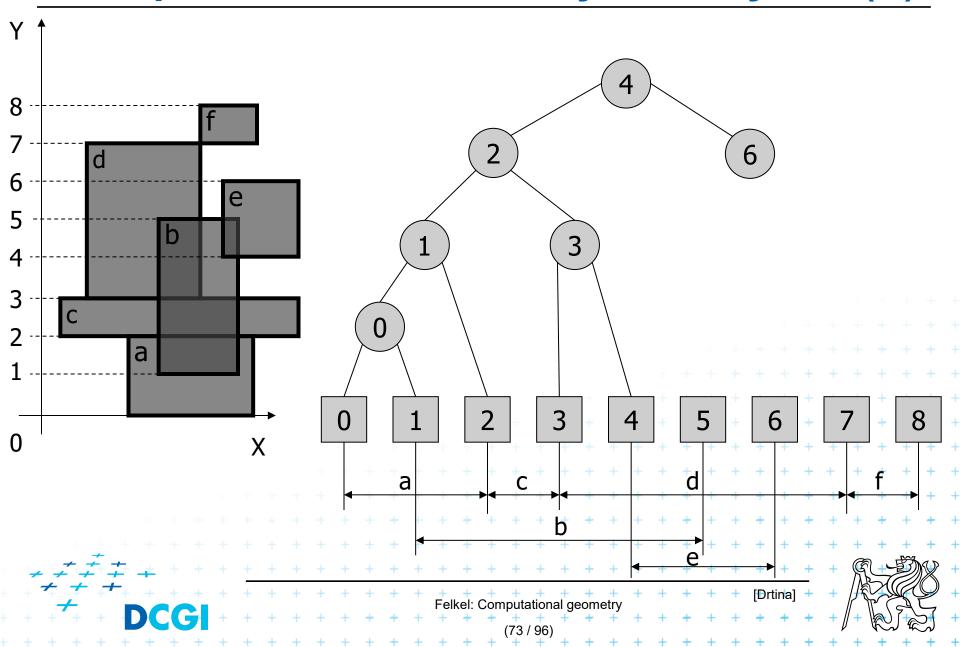


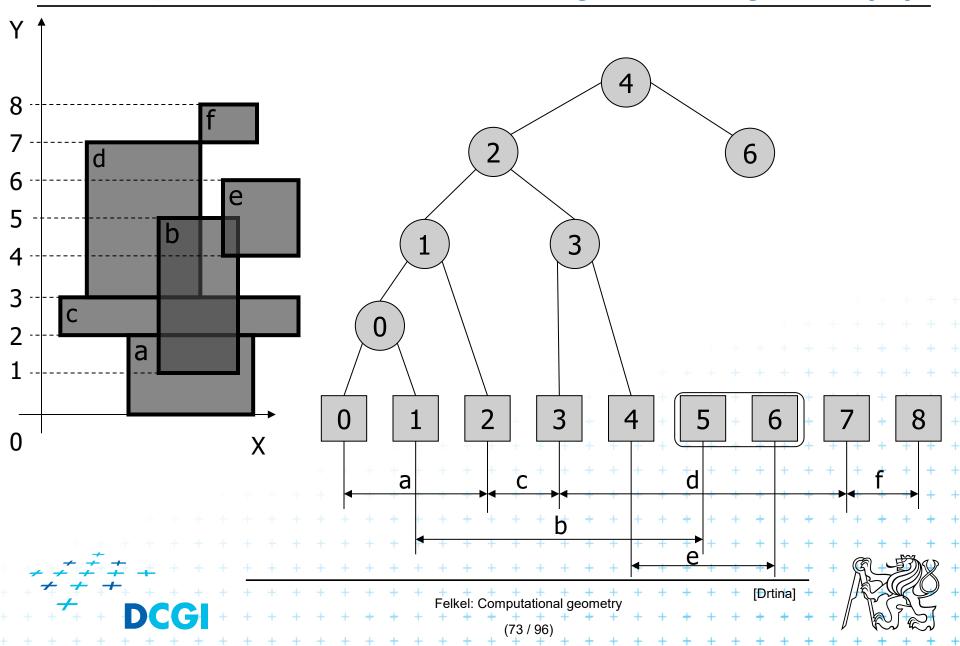


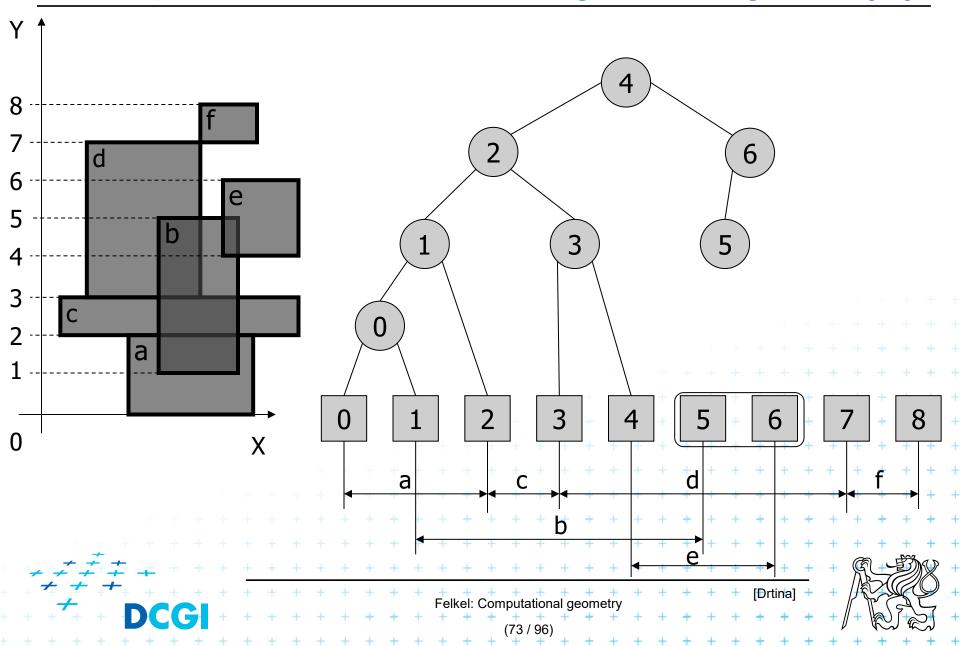


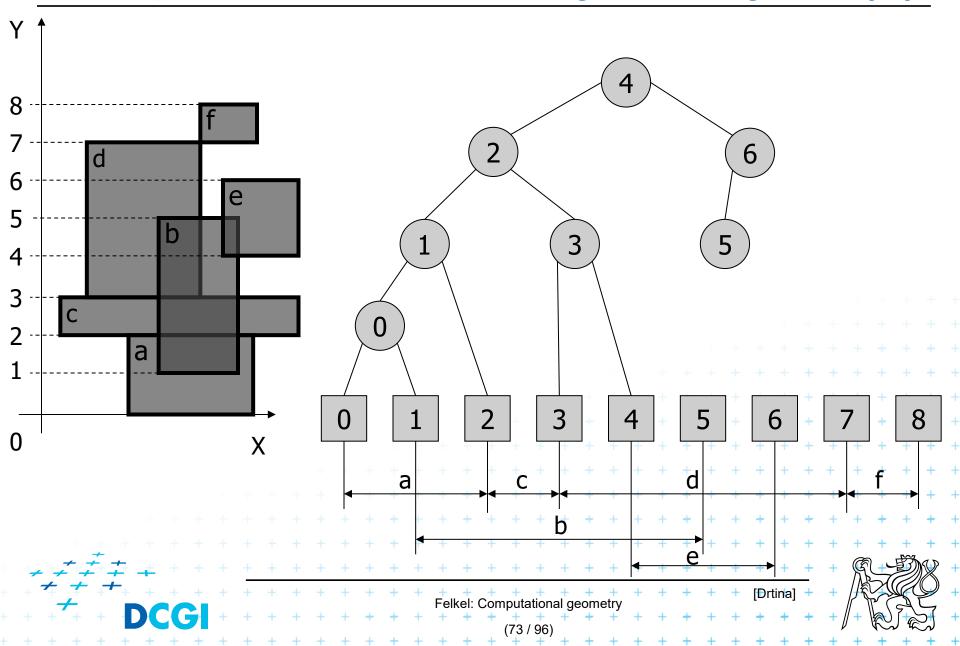


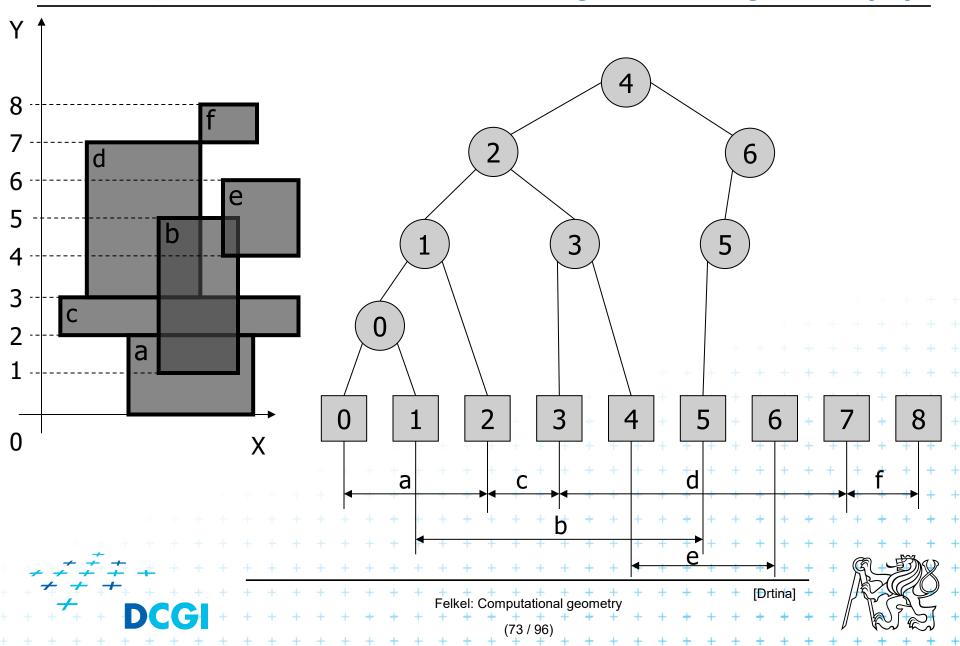


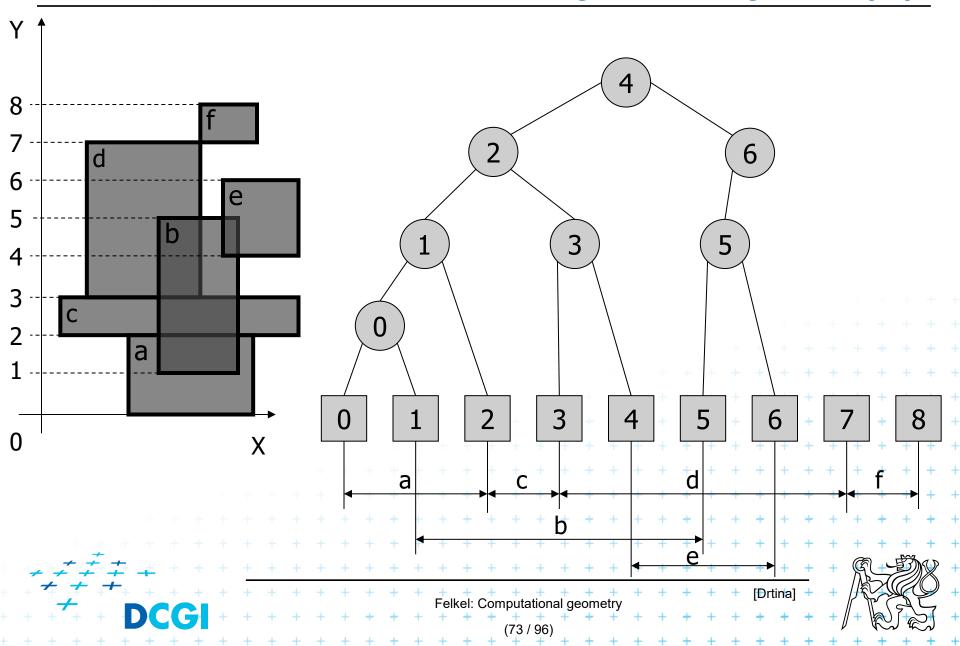


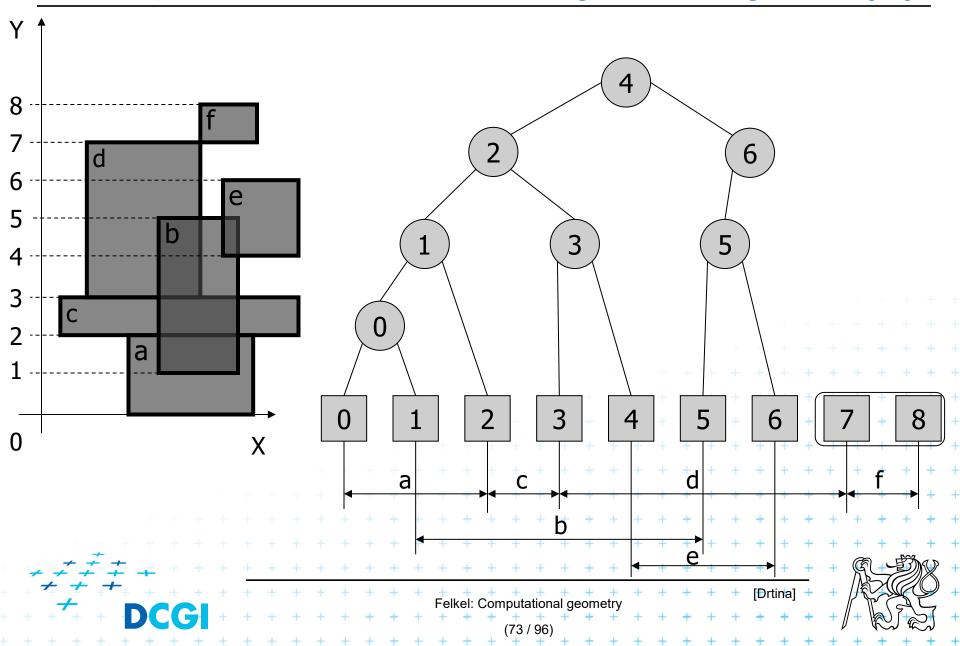


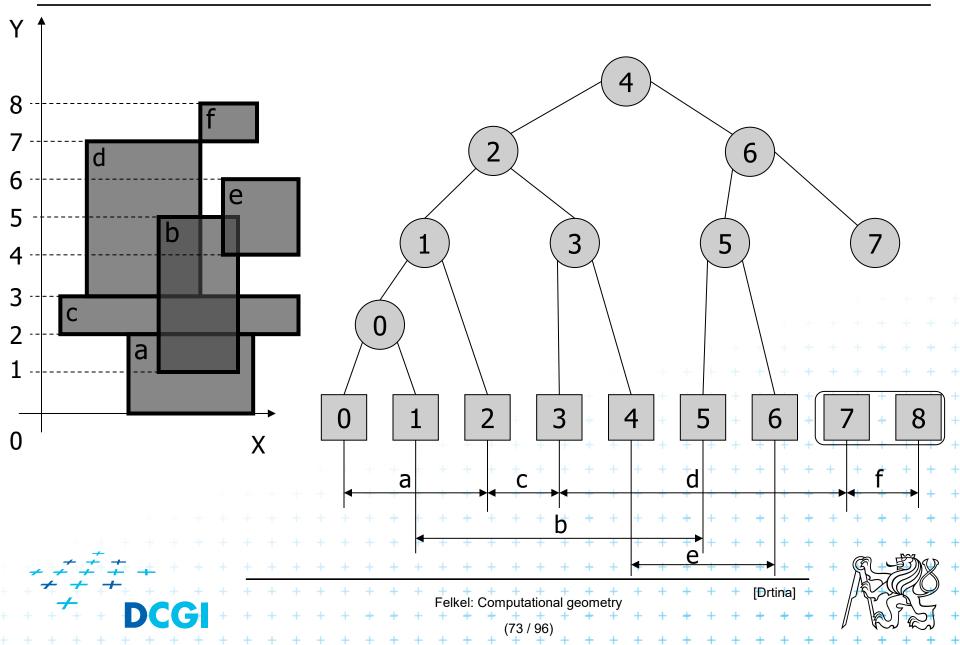


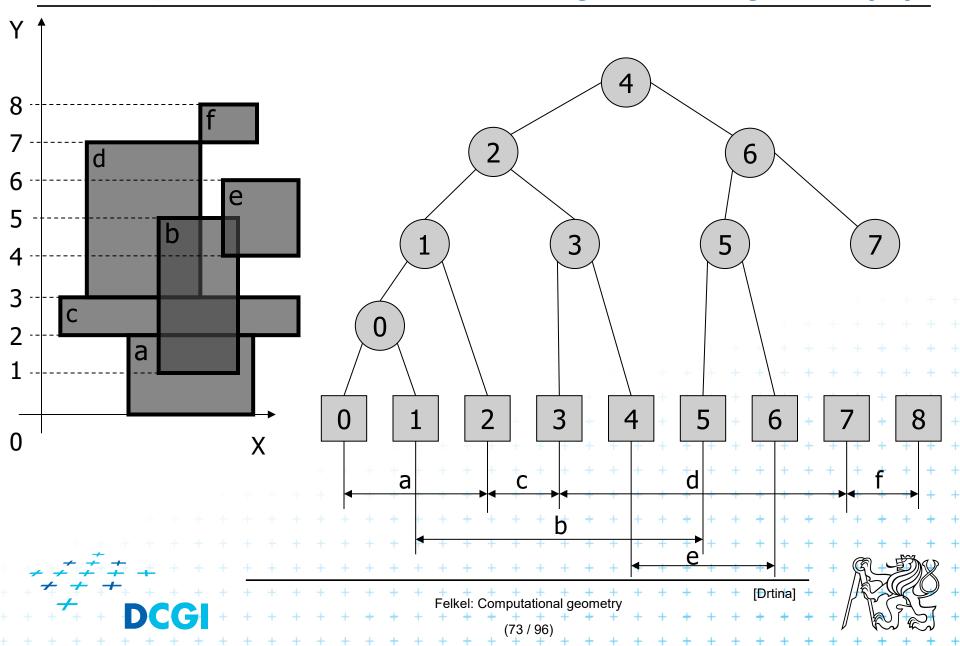


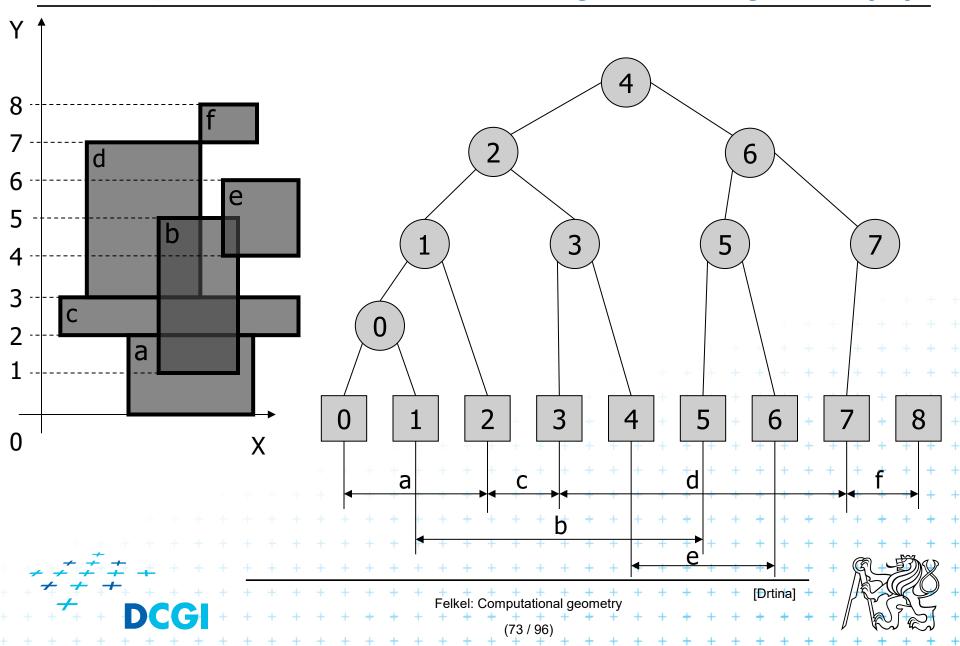


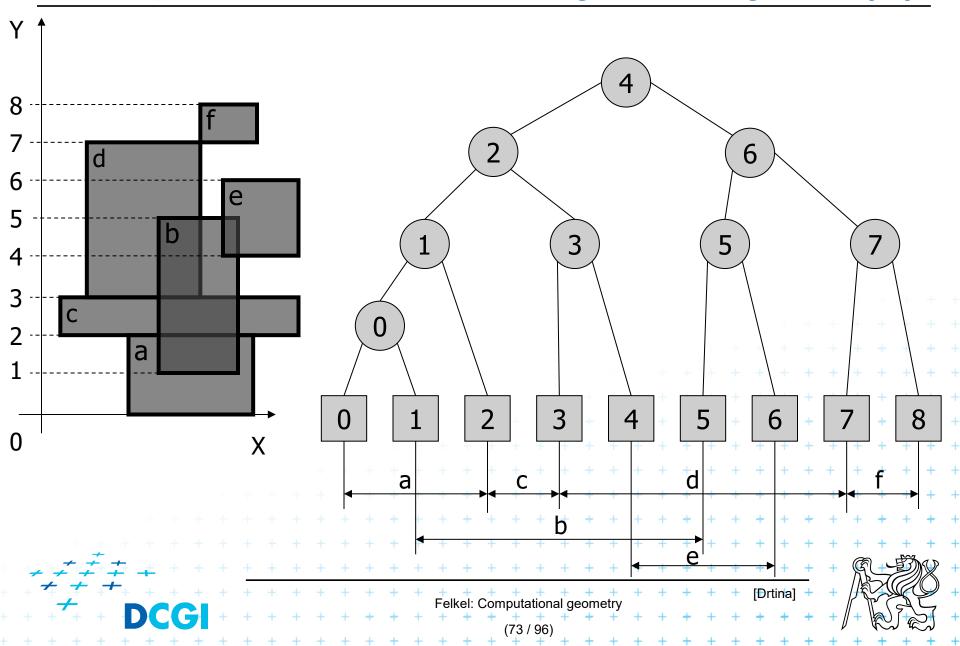




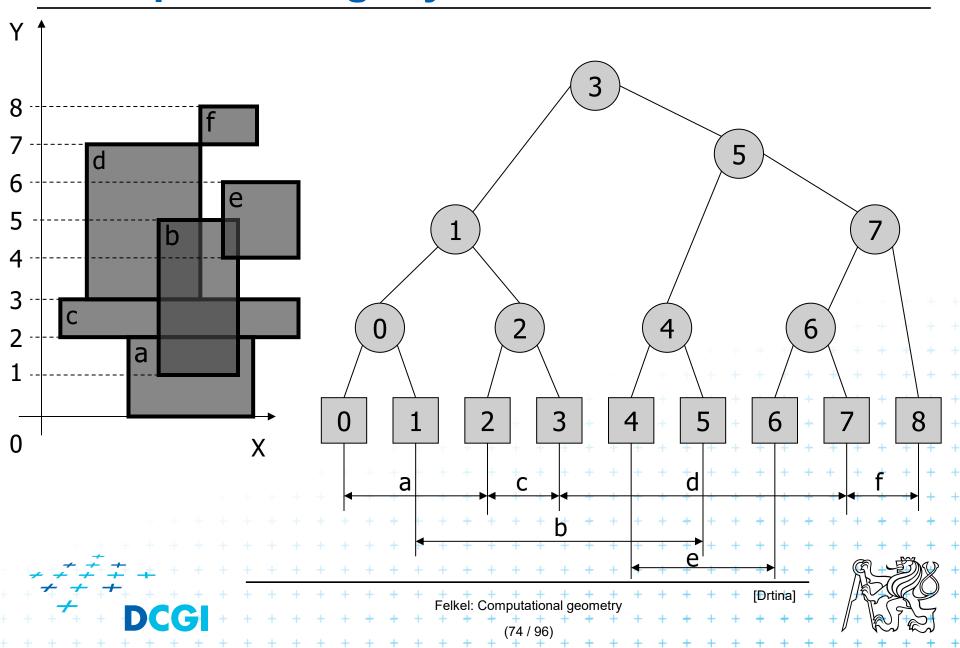






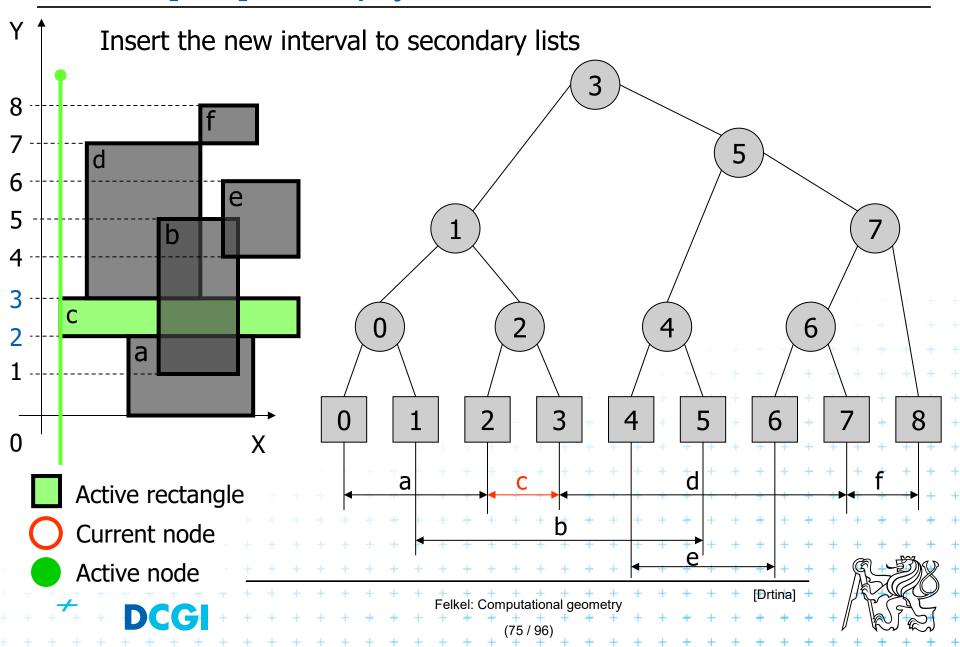


Example 2 – slightly unbalanced tree



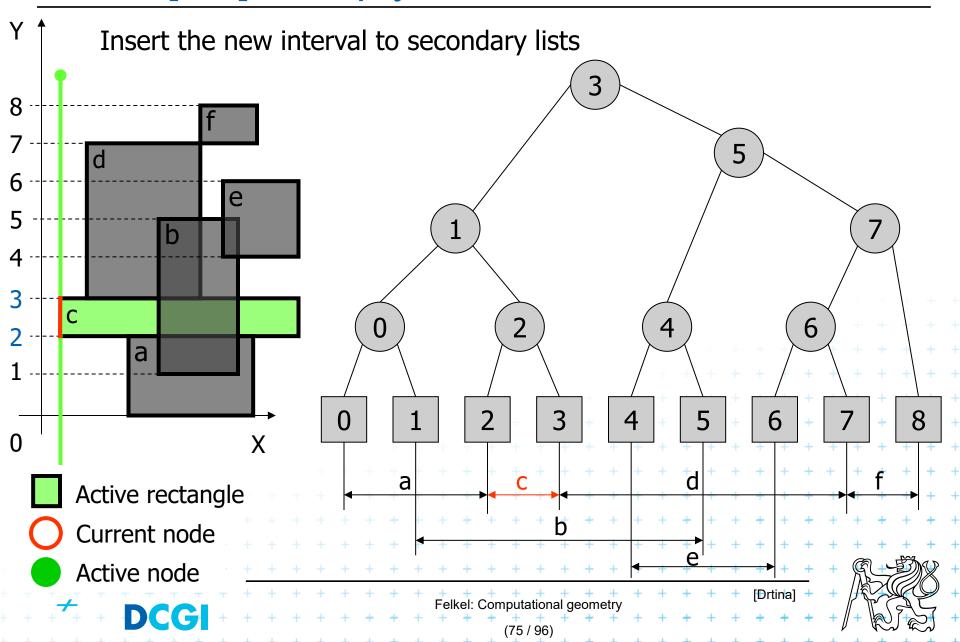
Insert [2,3] — empty => b) Insert Interval

 $b \leq H(v) \leq e$



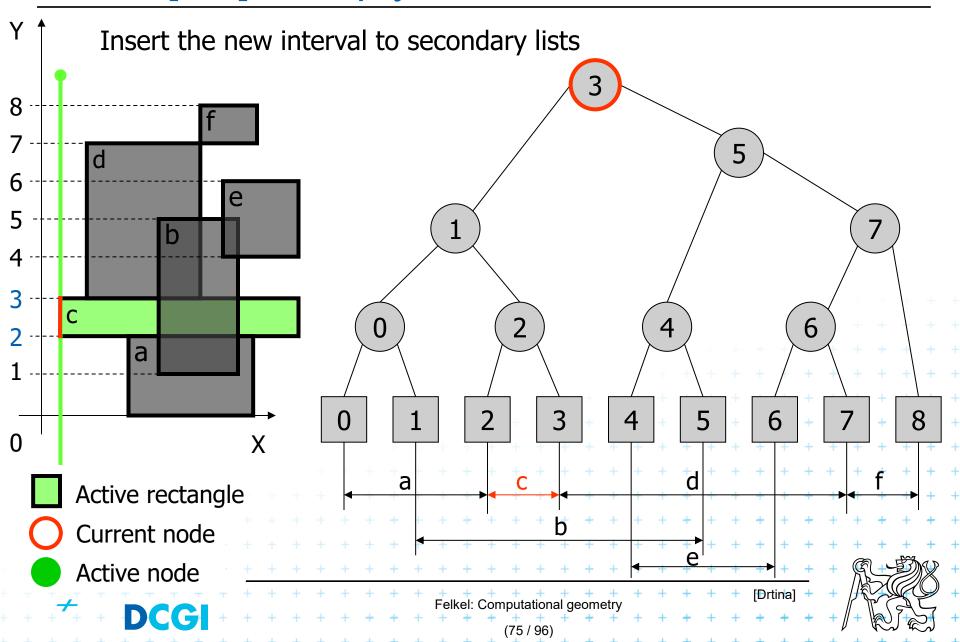
Insert [2,3] — empty => b) Insert Interval

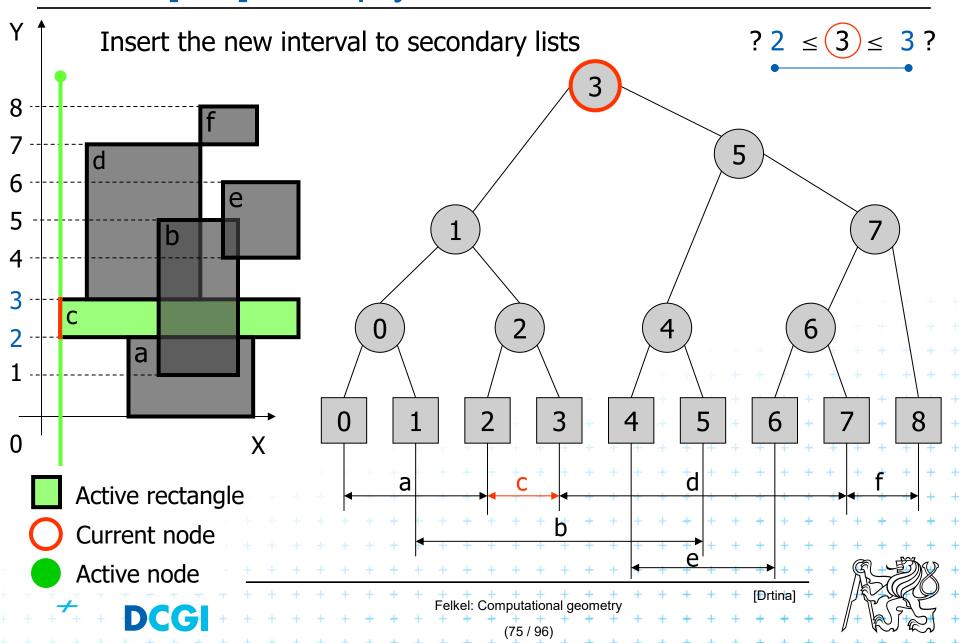
 $b \leq H(v) \leq e$

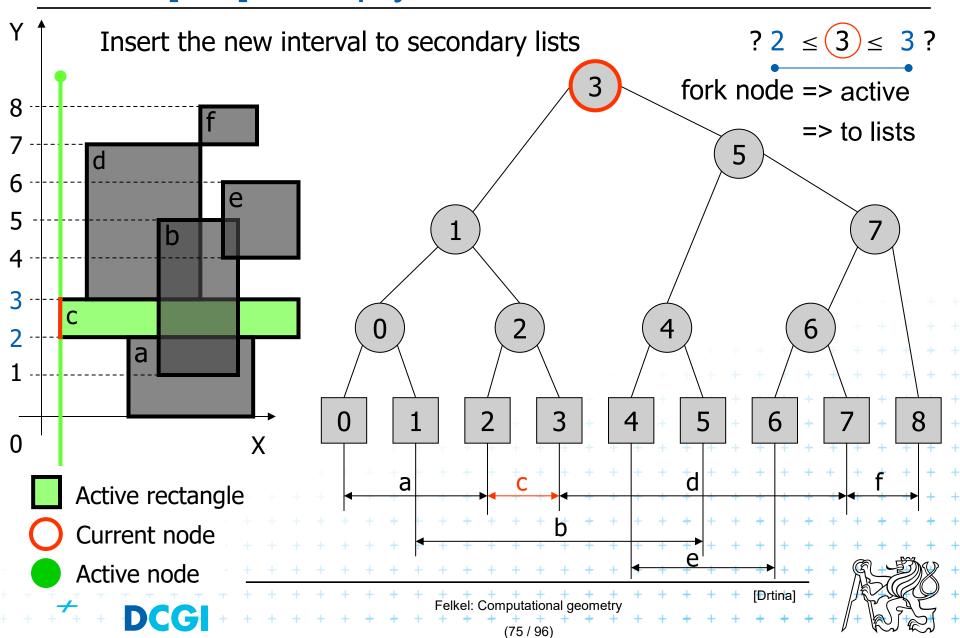


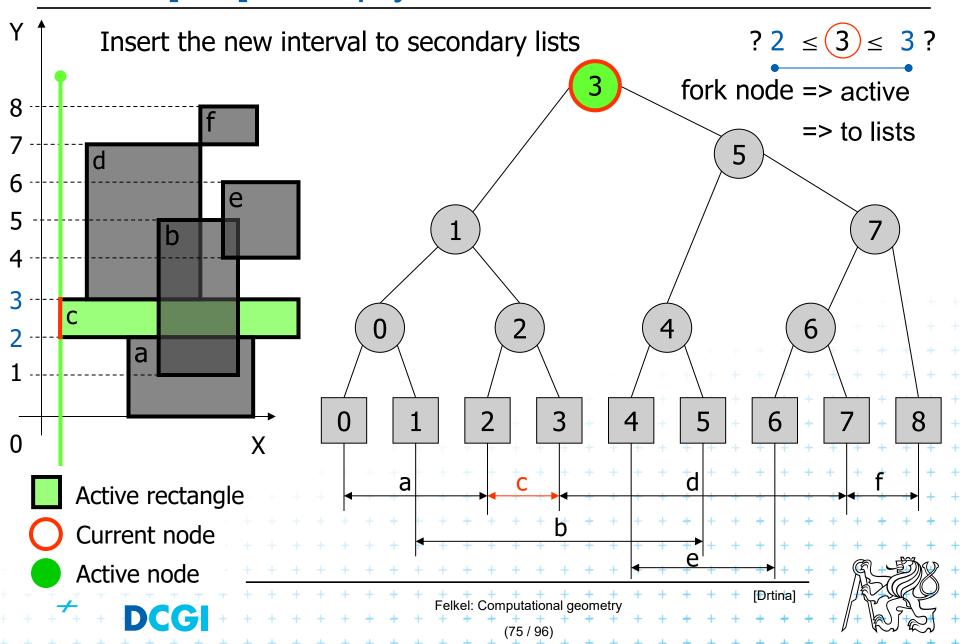
Insert [2,3] — empty => b) Insert Interval

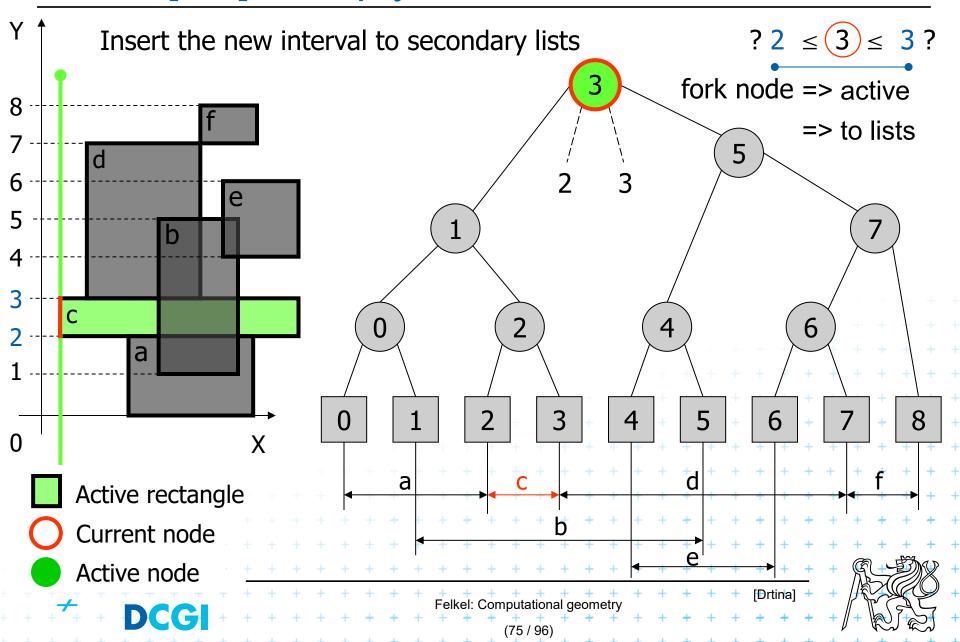
 $b \le H(v) \le e$

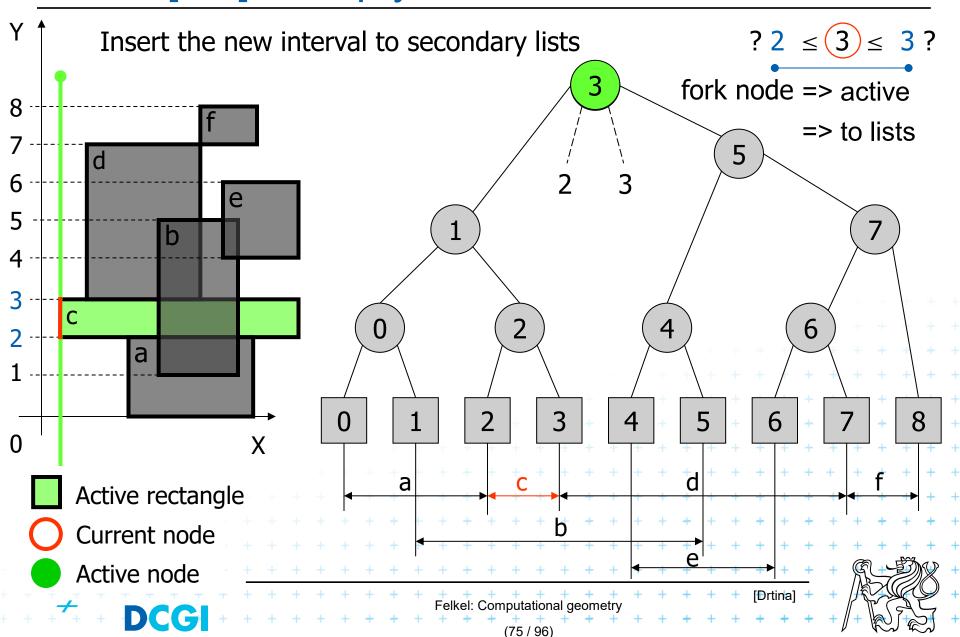


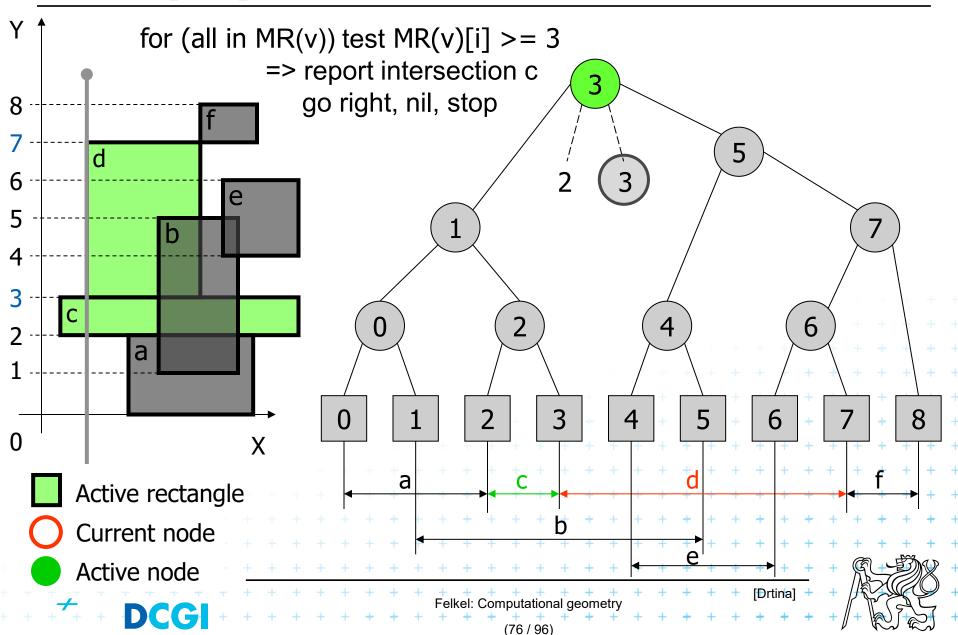


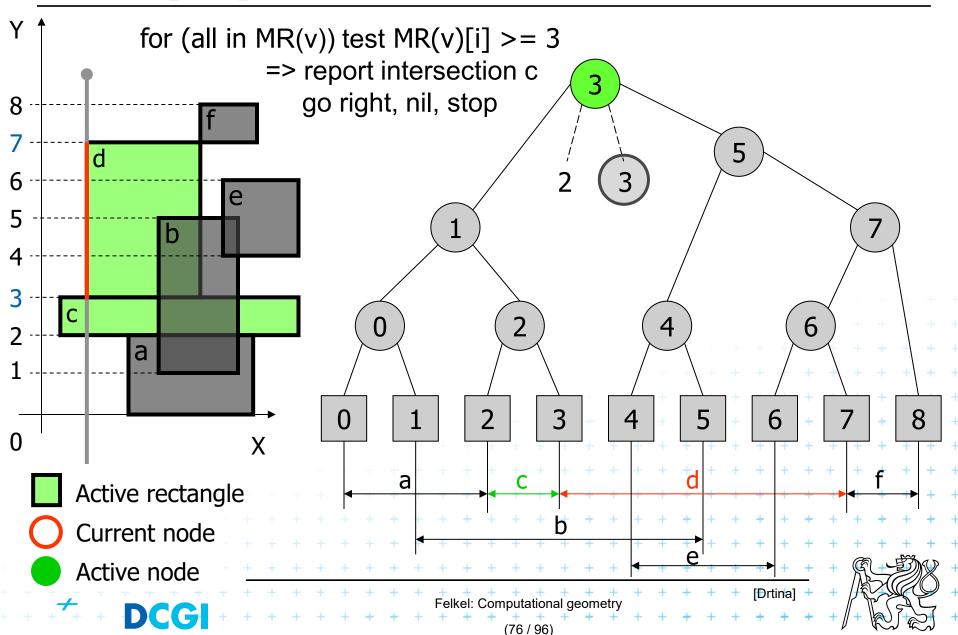


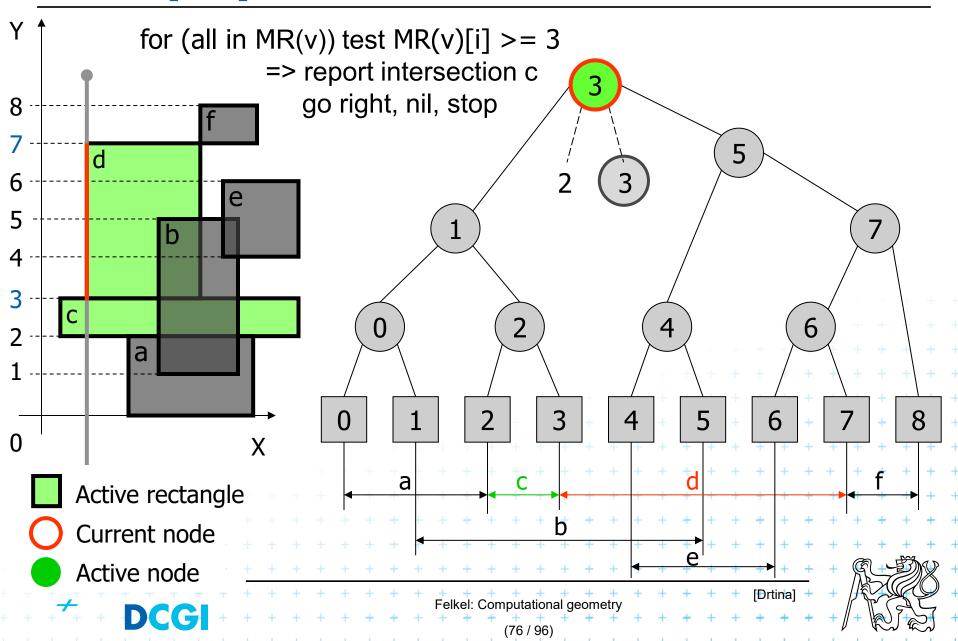


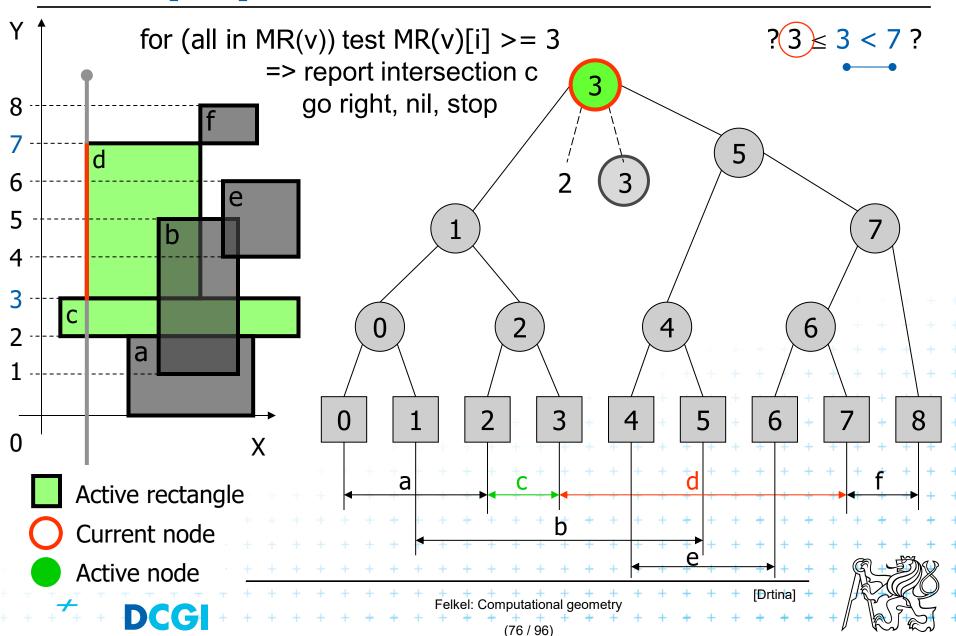


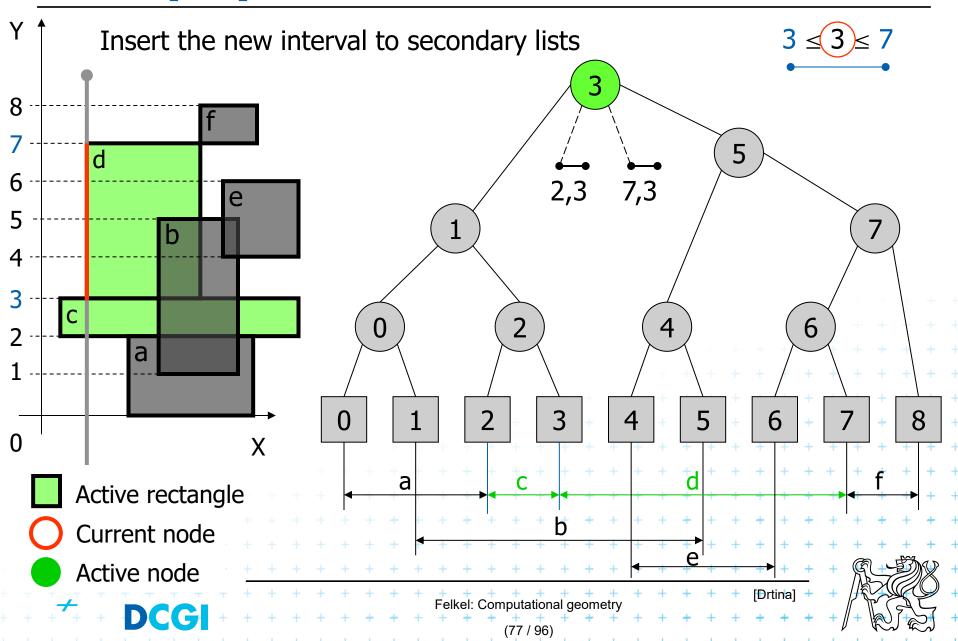


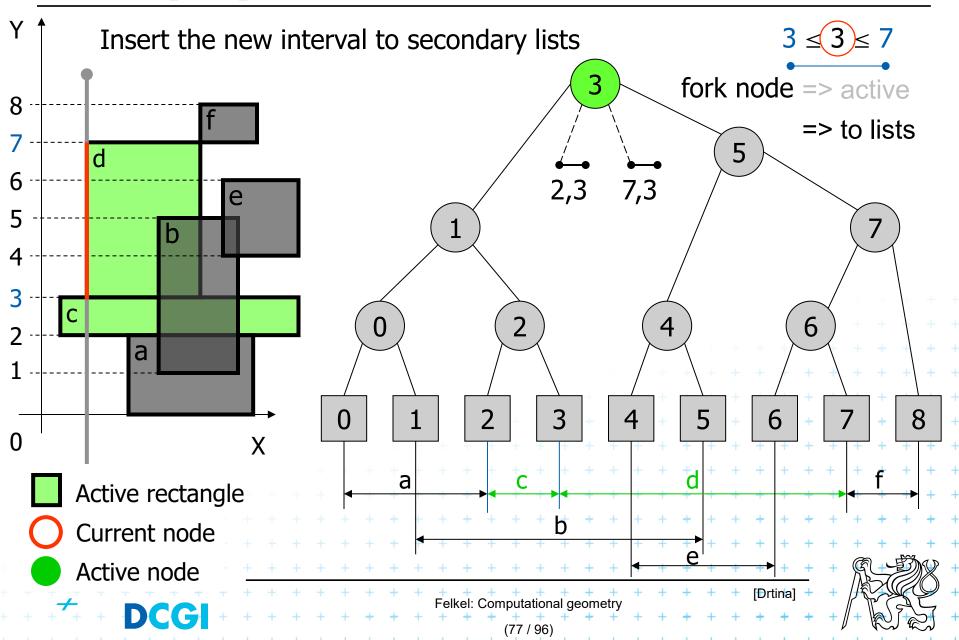




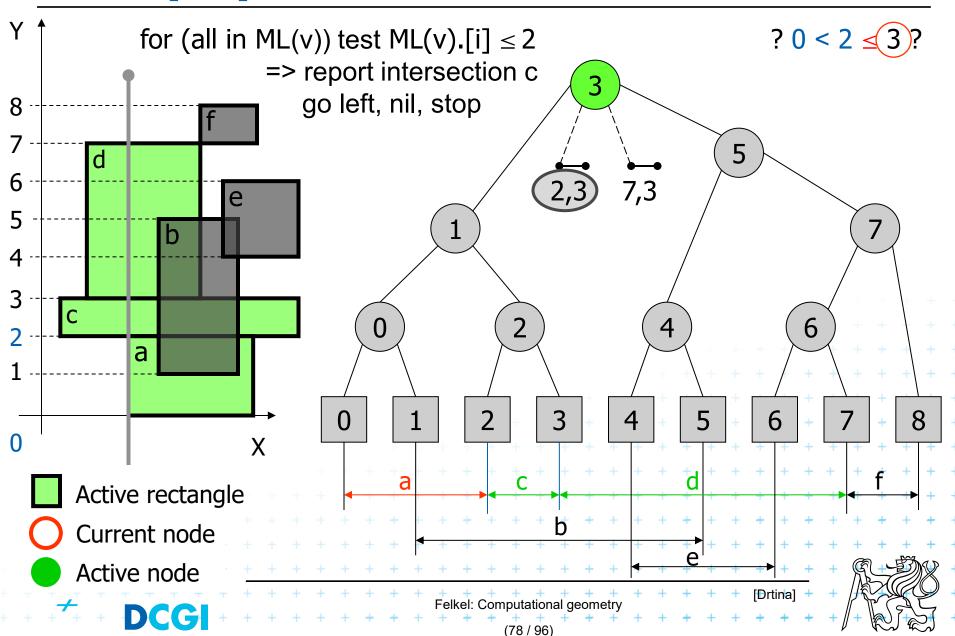




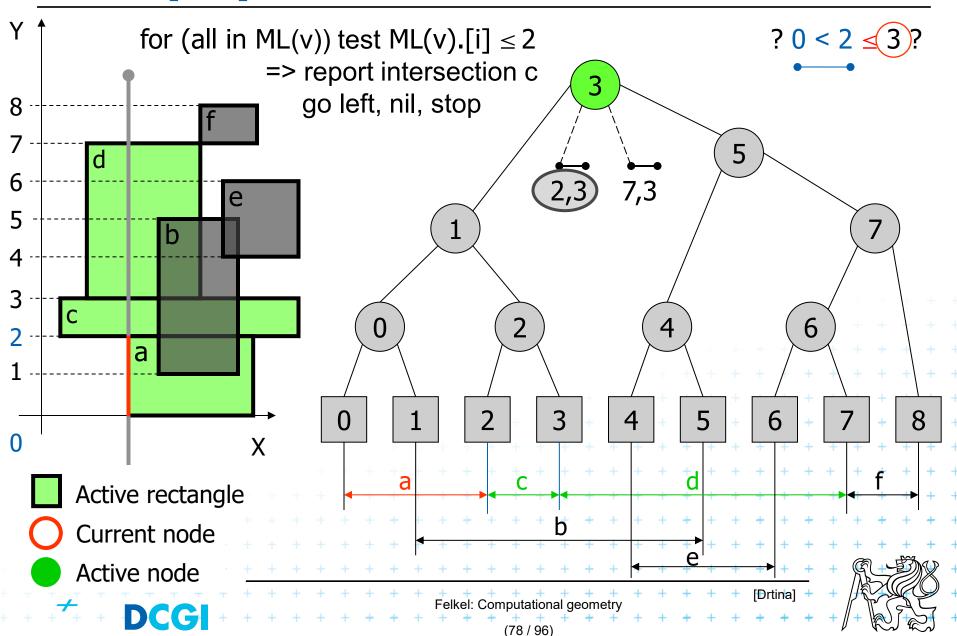




 $b < e \le H(v)$

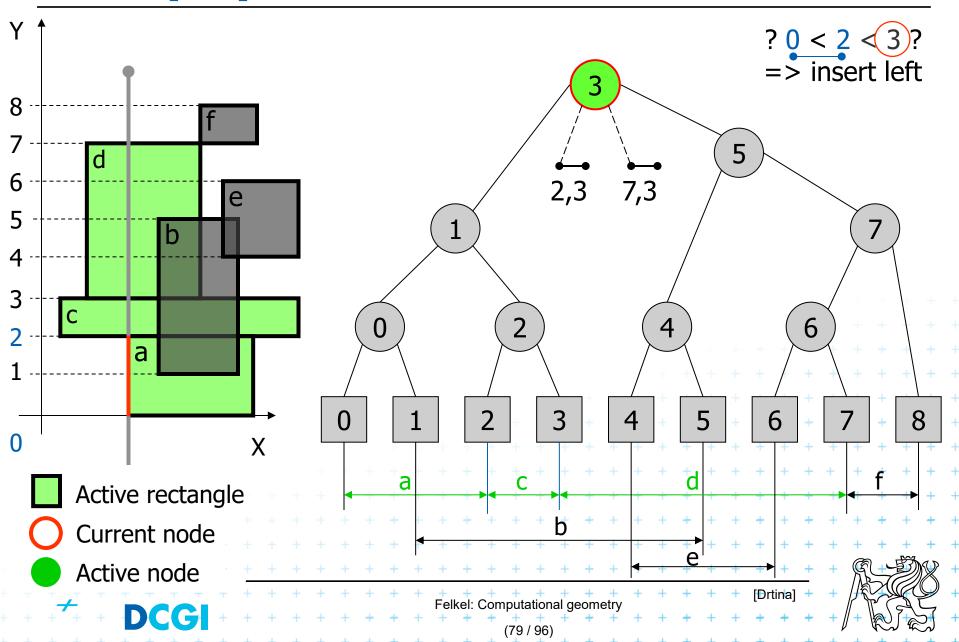


 $b < e \le H(v)$

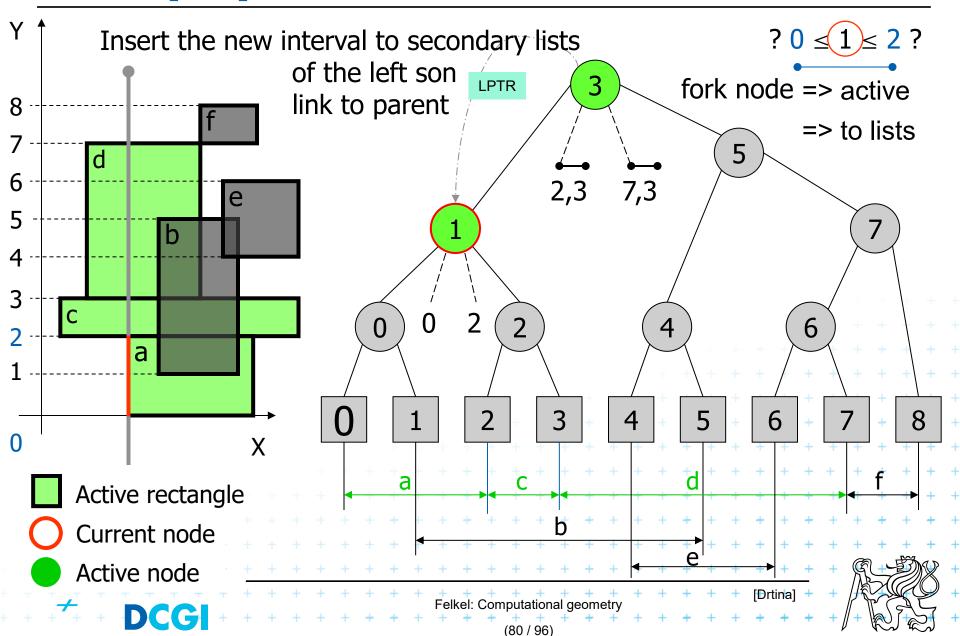


Insert [0,2] b) Insert Interval 1/2

b < e < H(v)

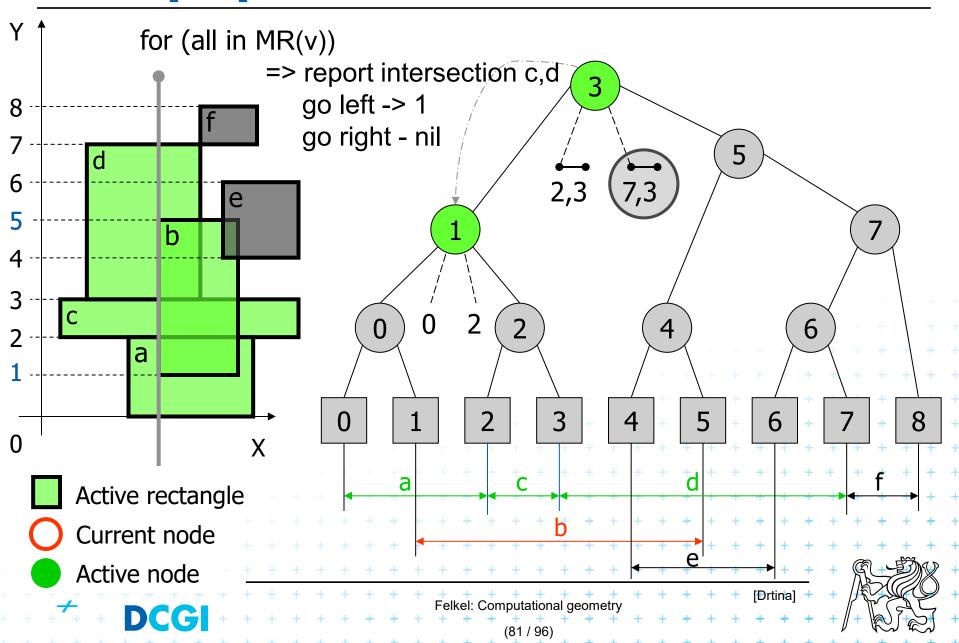


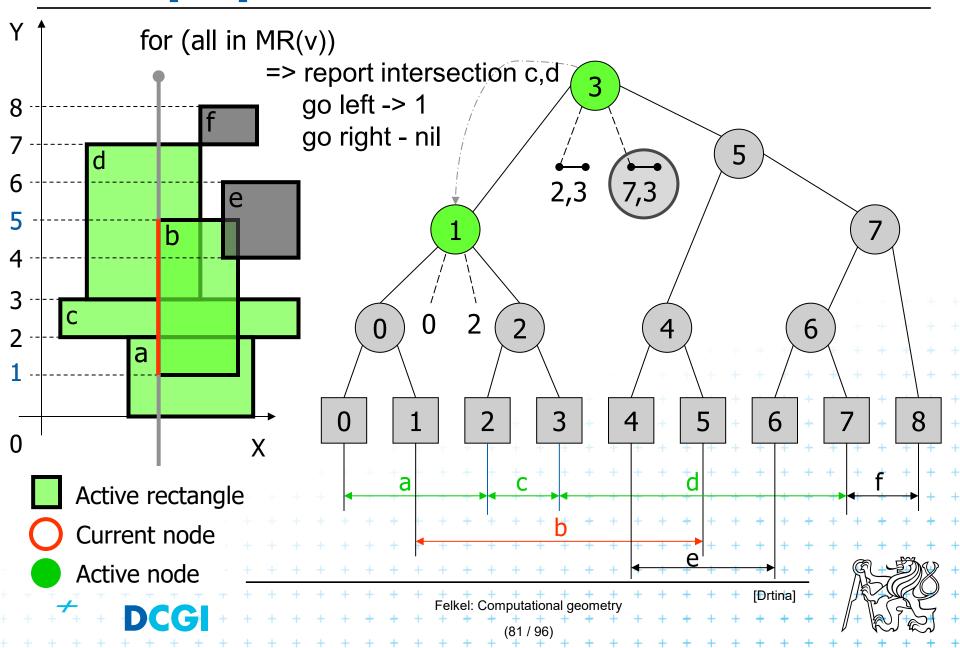
Insert [0,2] b) Insert Interval 2/2

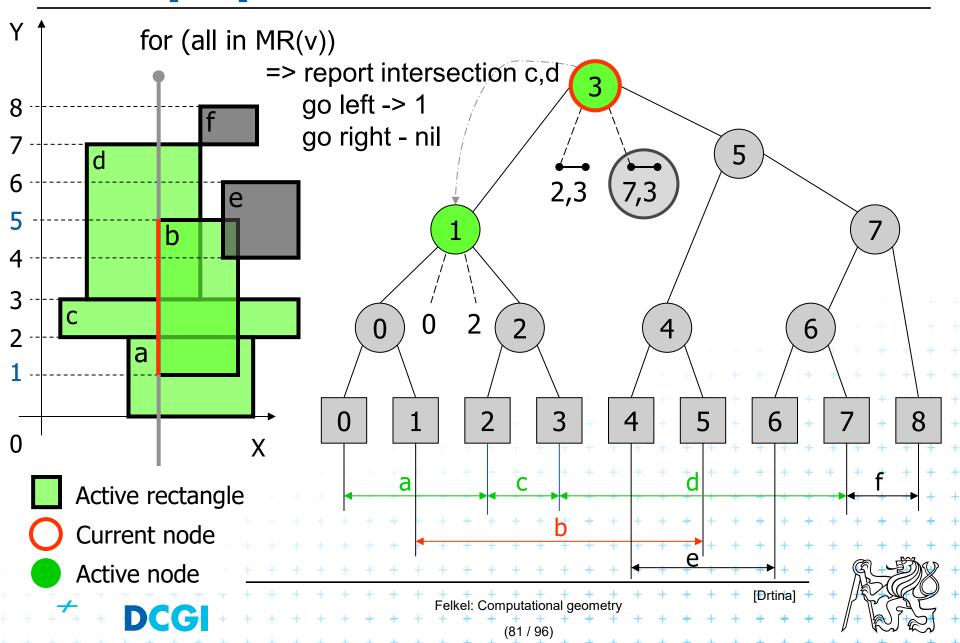


Insert [1,5] a) Query Interval 1/2

b < H(v) < e

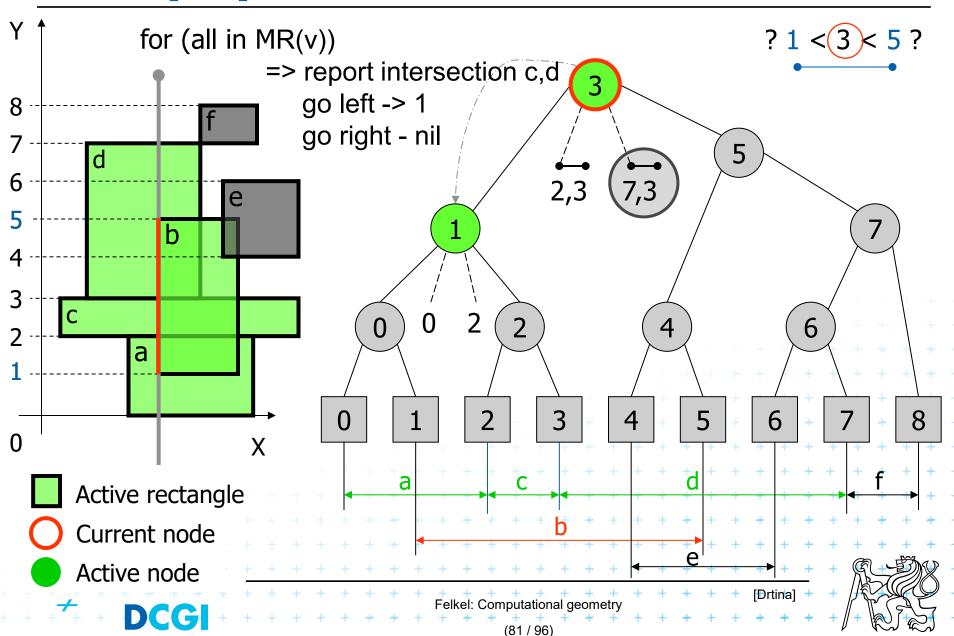






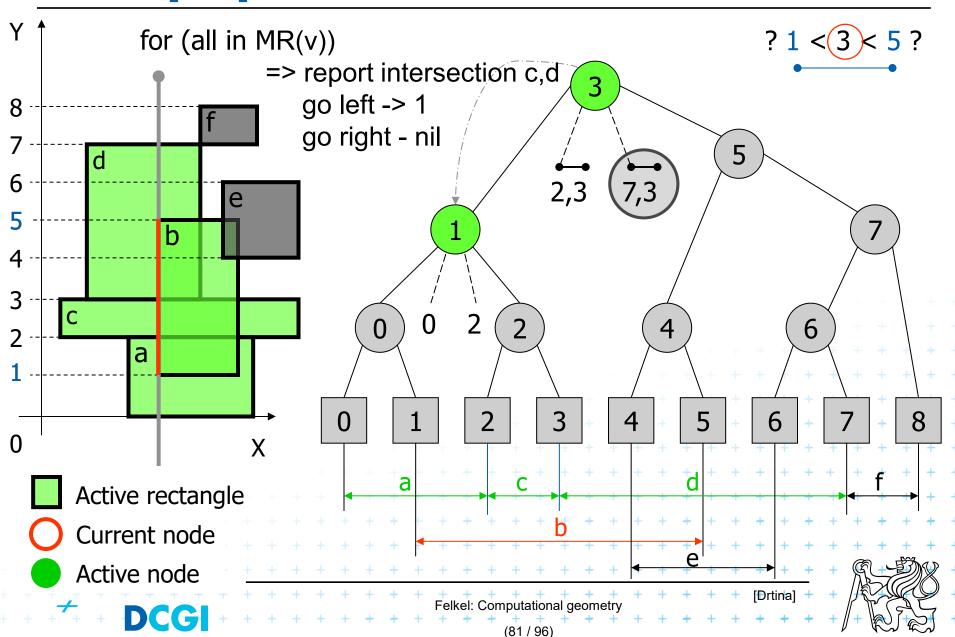
Insert [1,5] a) Query Interval 1/2

b < H(v) < e

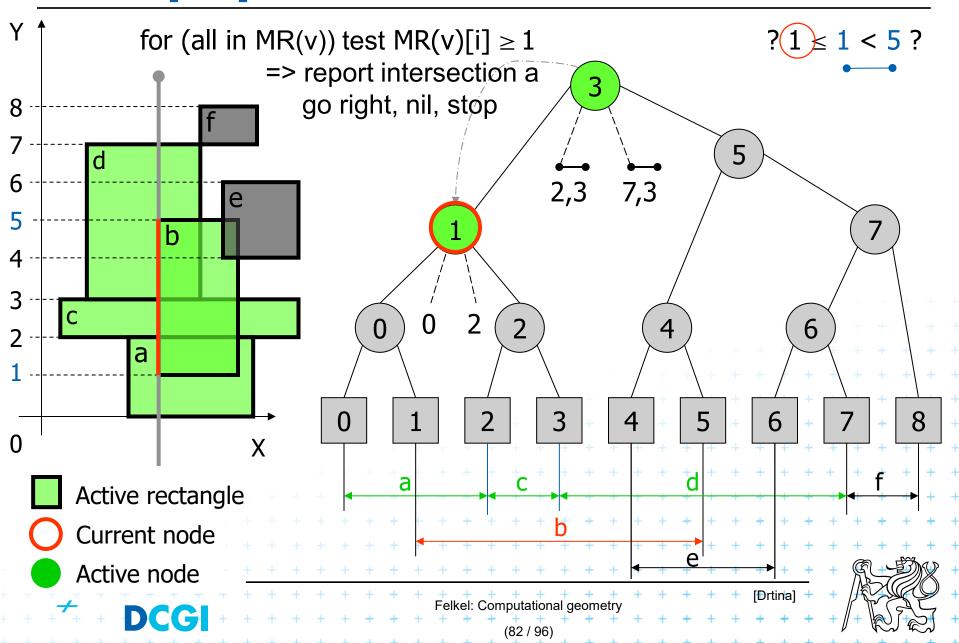


Insert [1,5] a) Query Interval 1/2

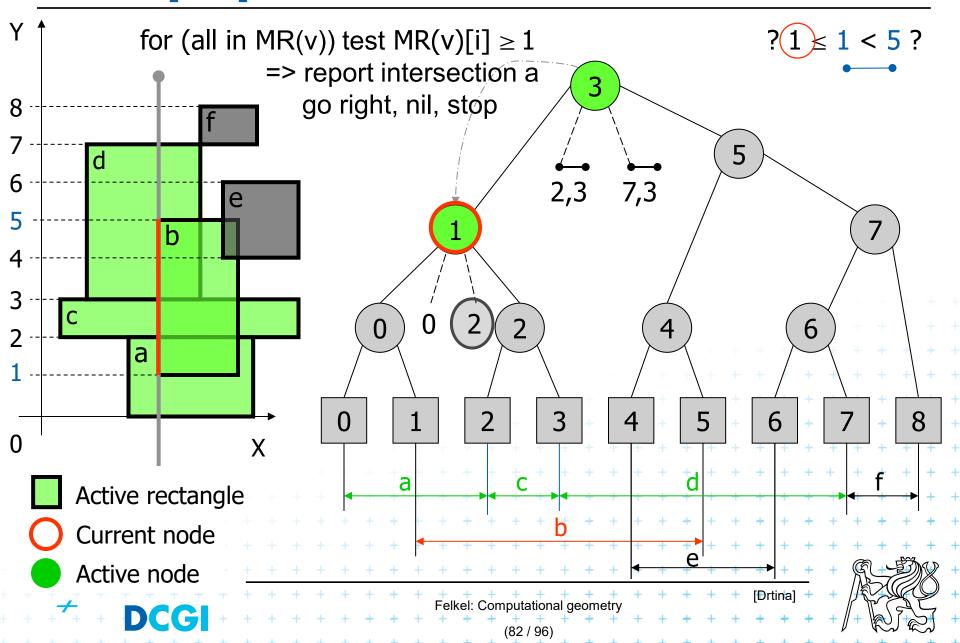
b < H(v) < e

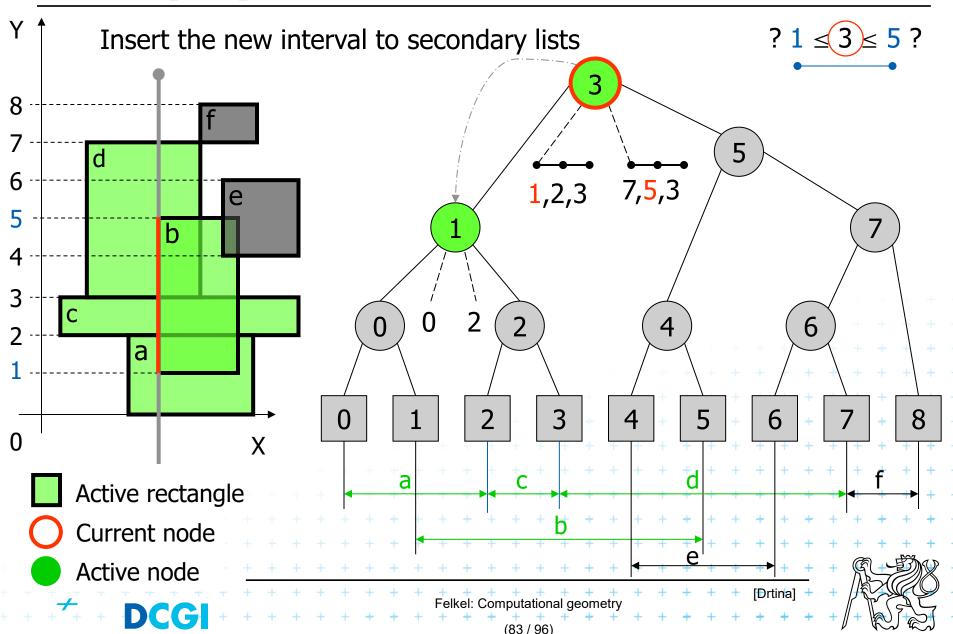


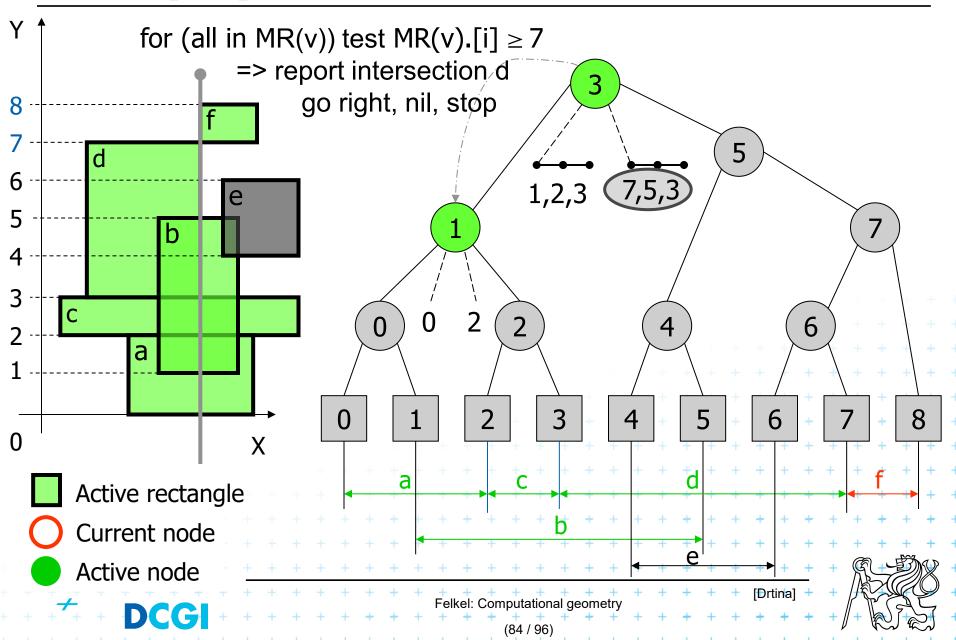
Insert [1,5] a) Query Interval 2/2

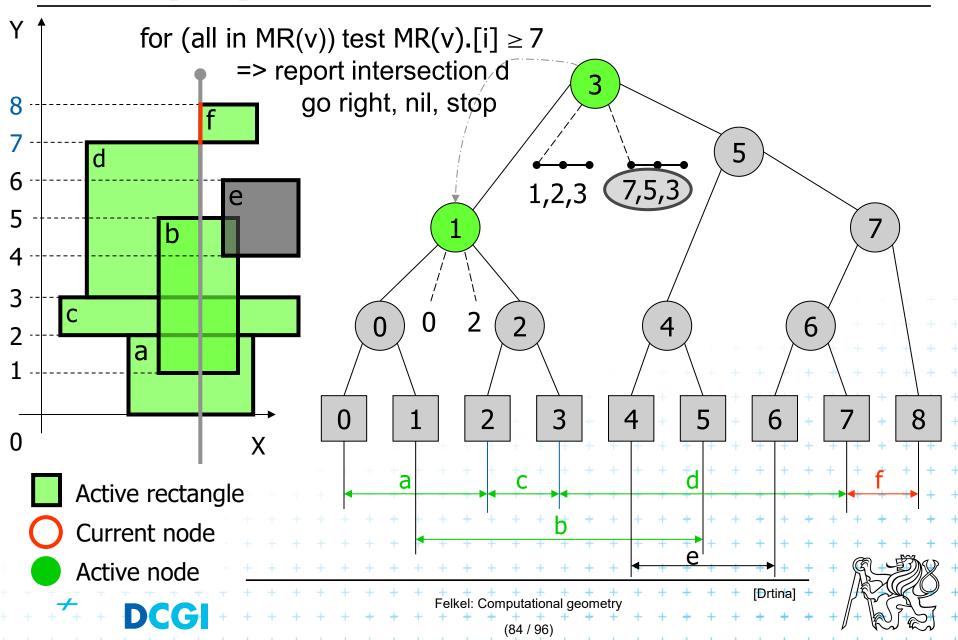


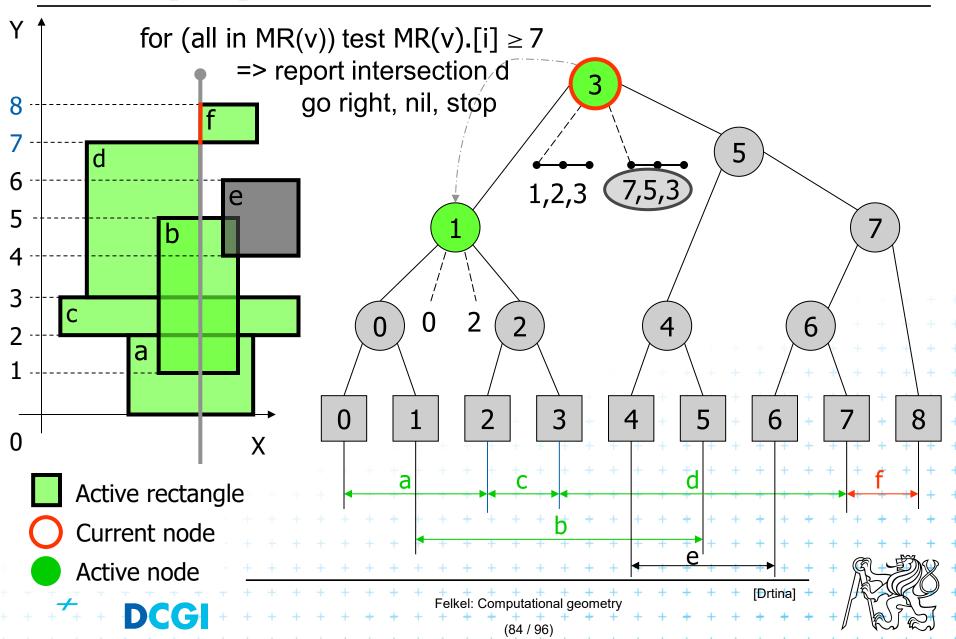
Insert [1,5] a) Query Interval 2/2

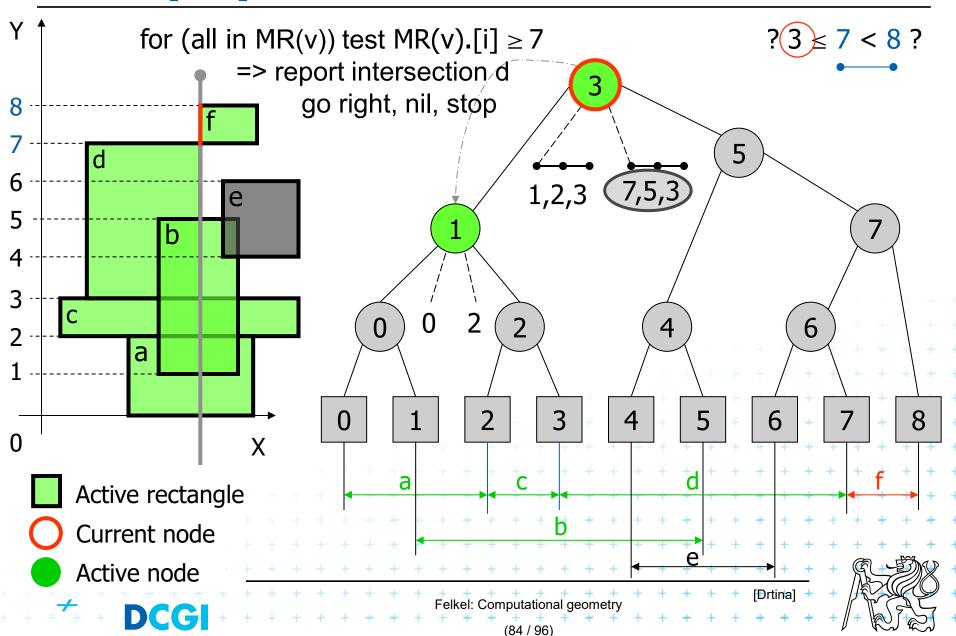


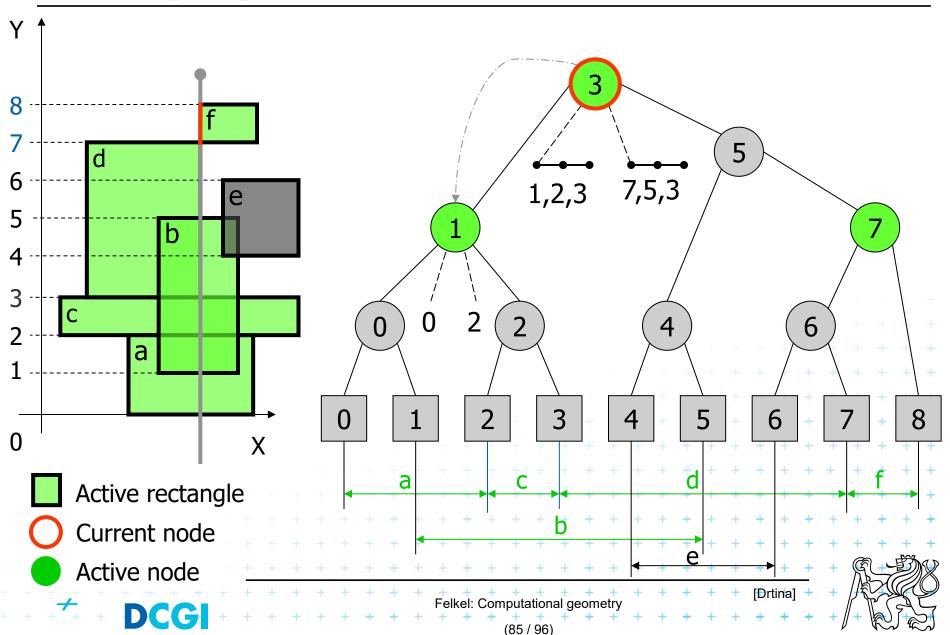


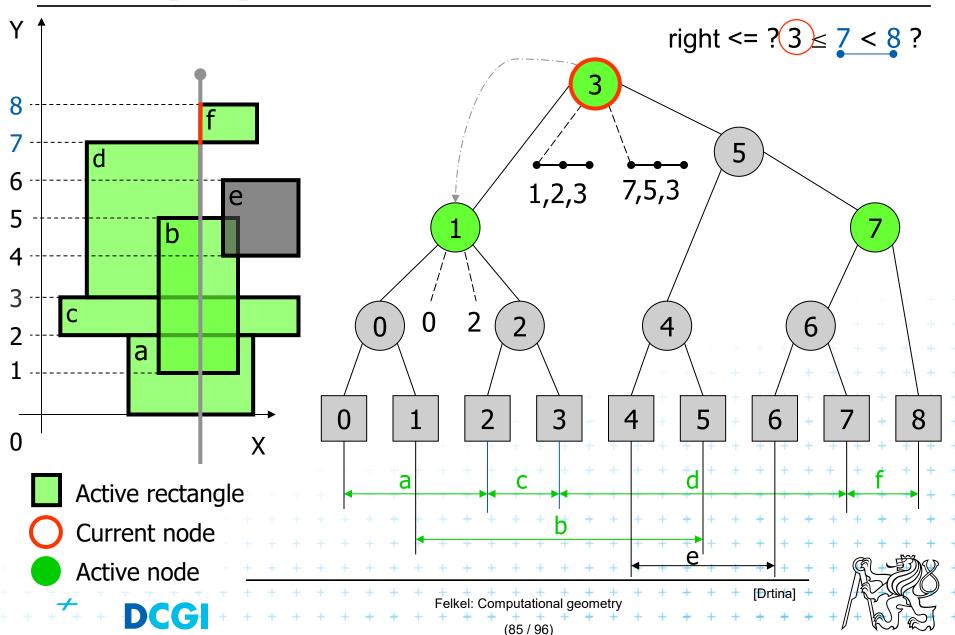


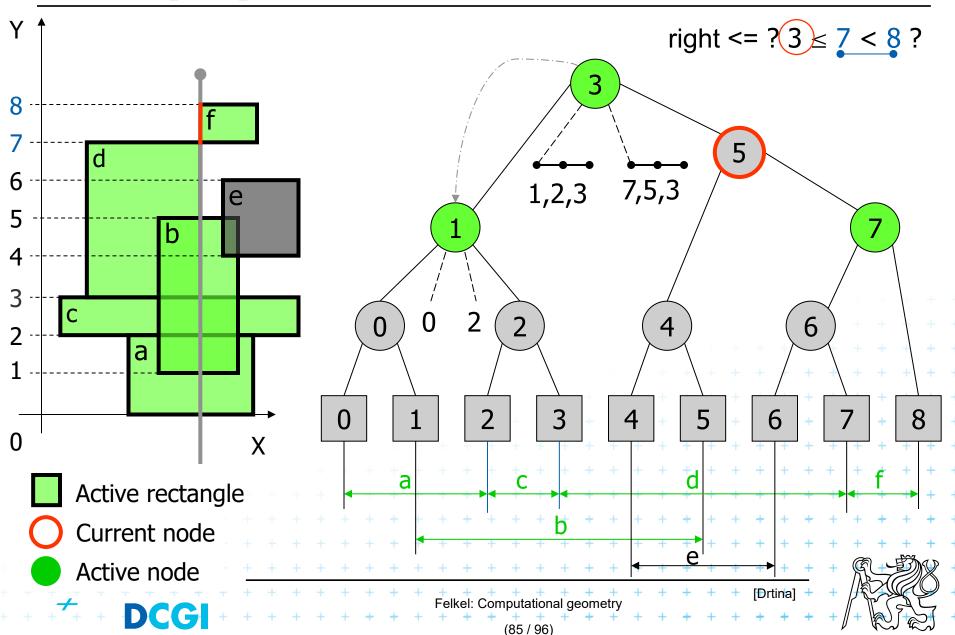


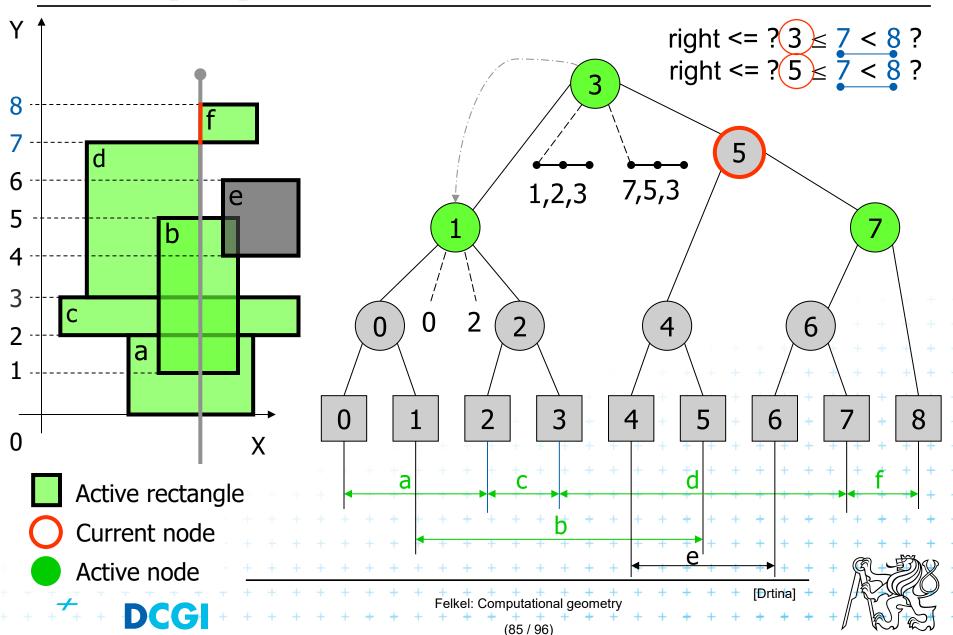


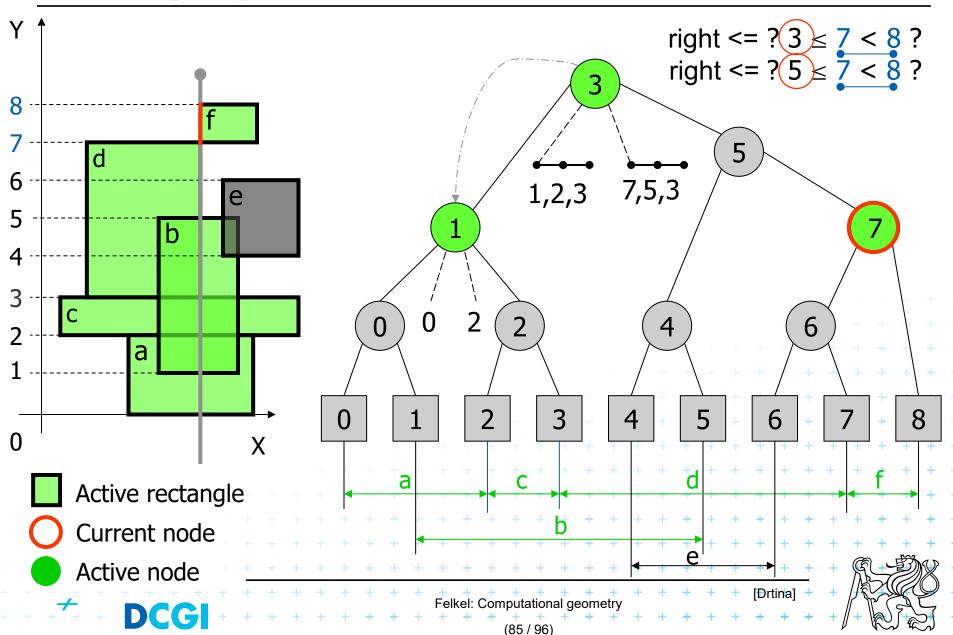


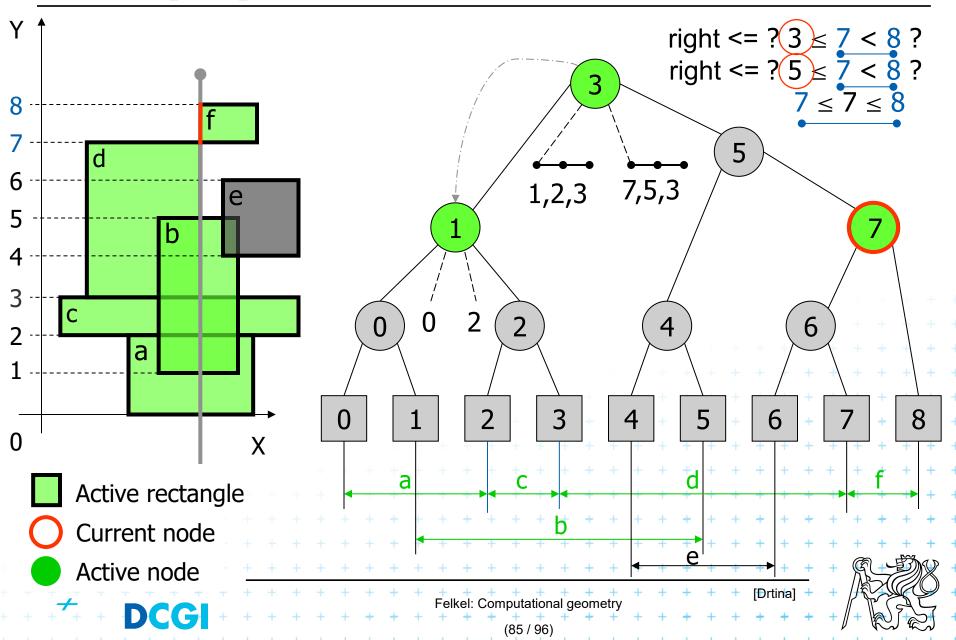


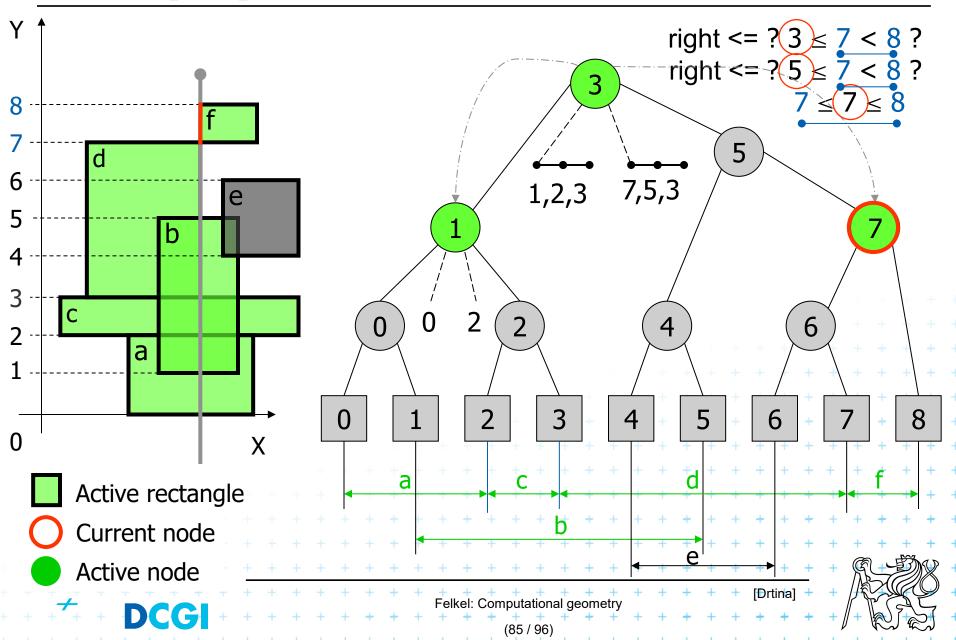


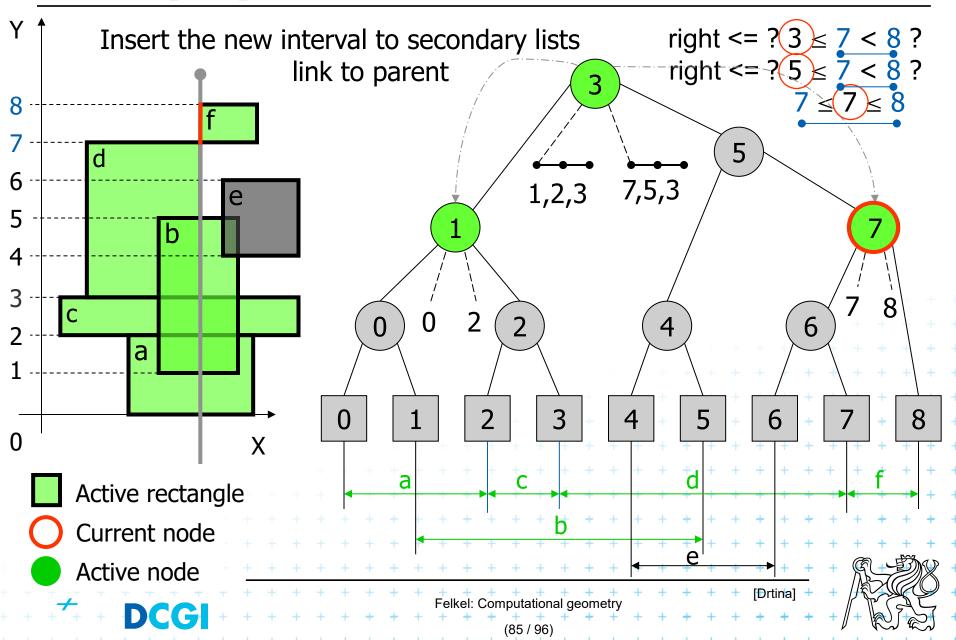




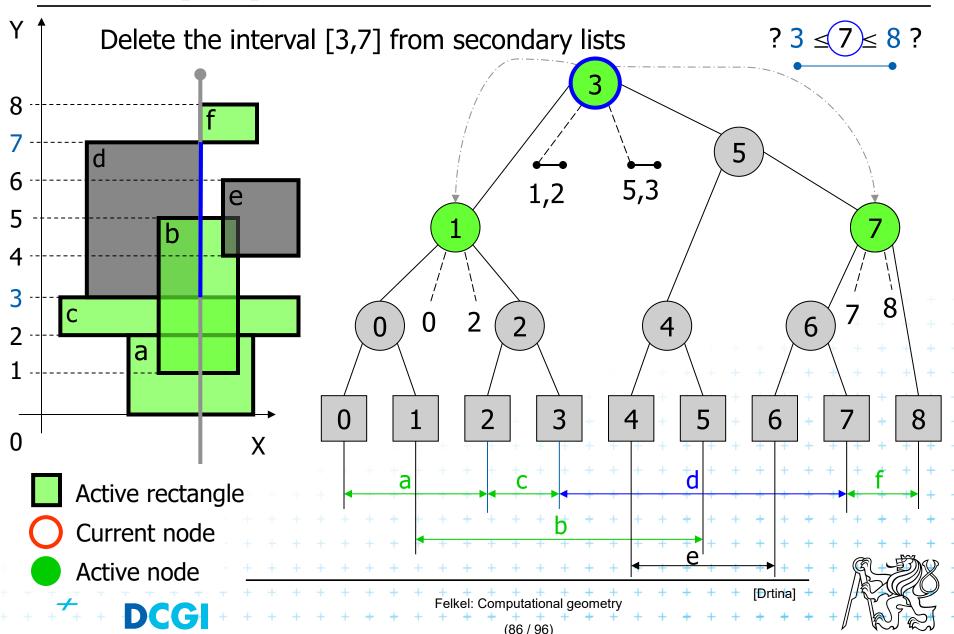


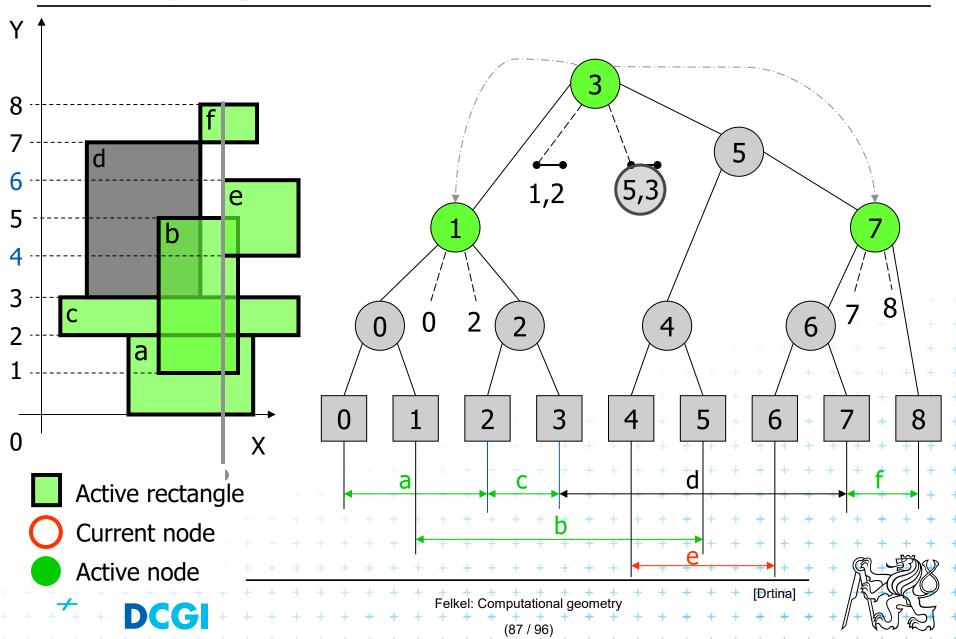


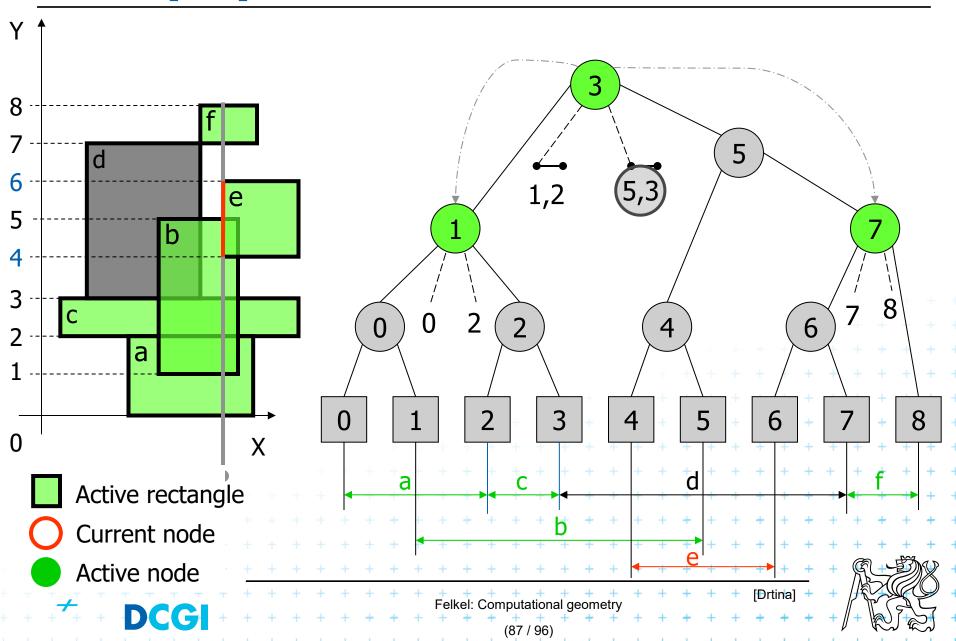


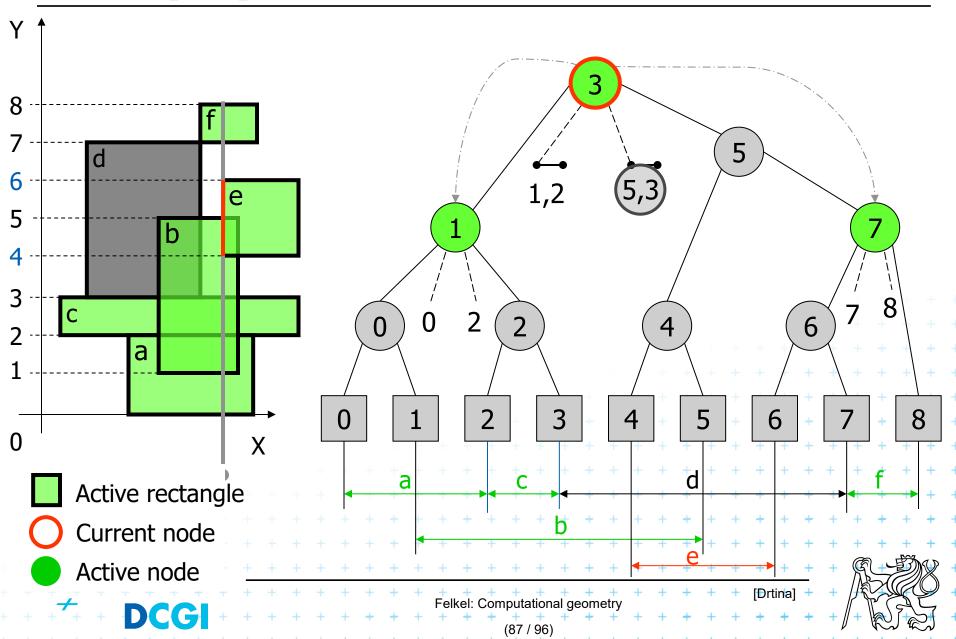


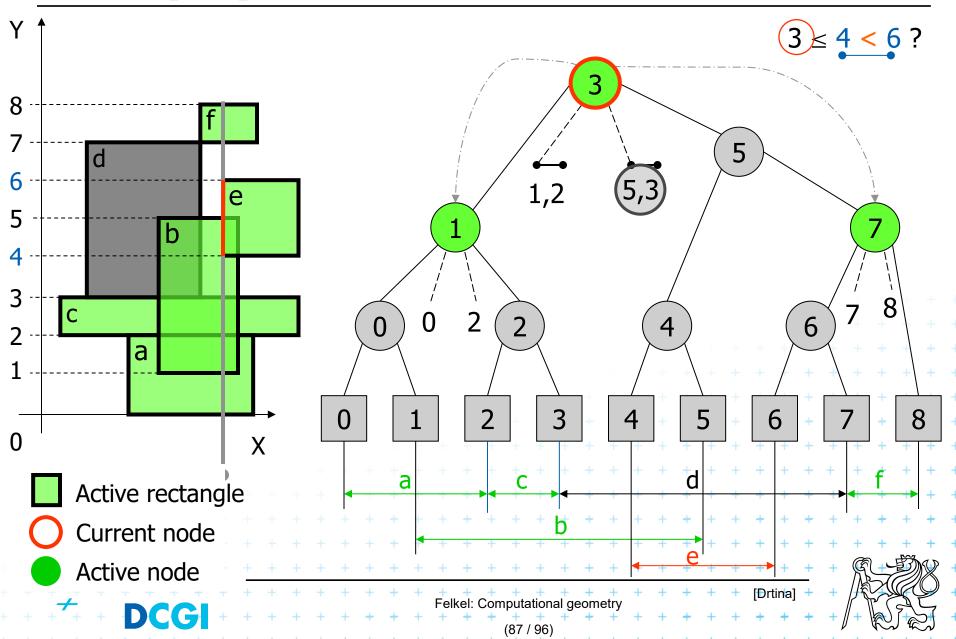
Delete [3,7] Delete Interval

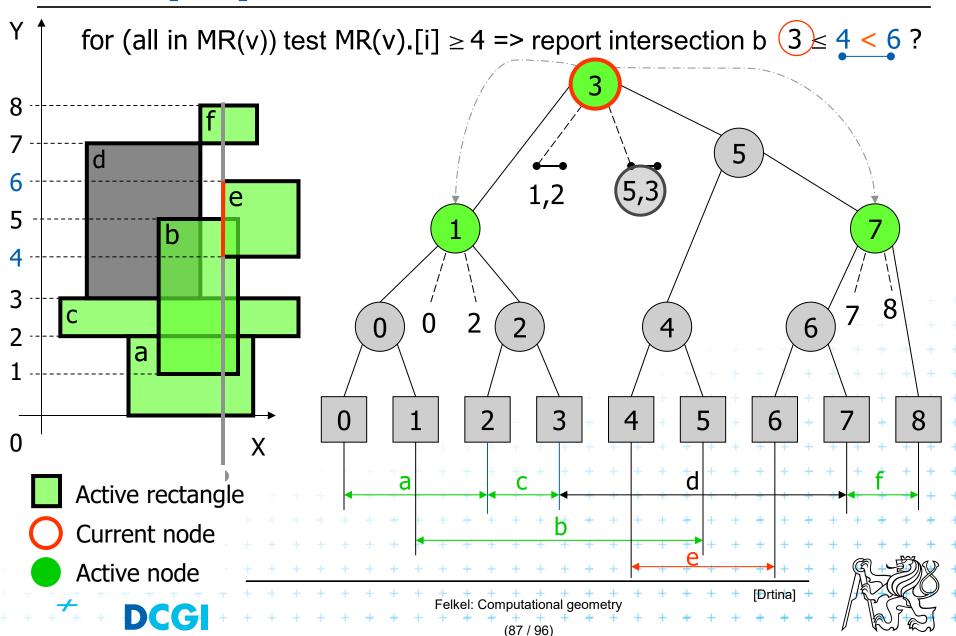


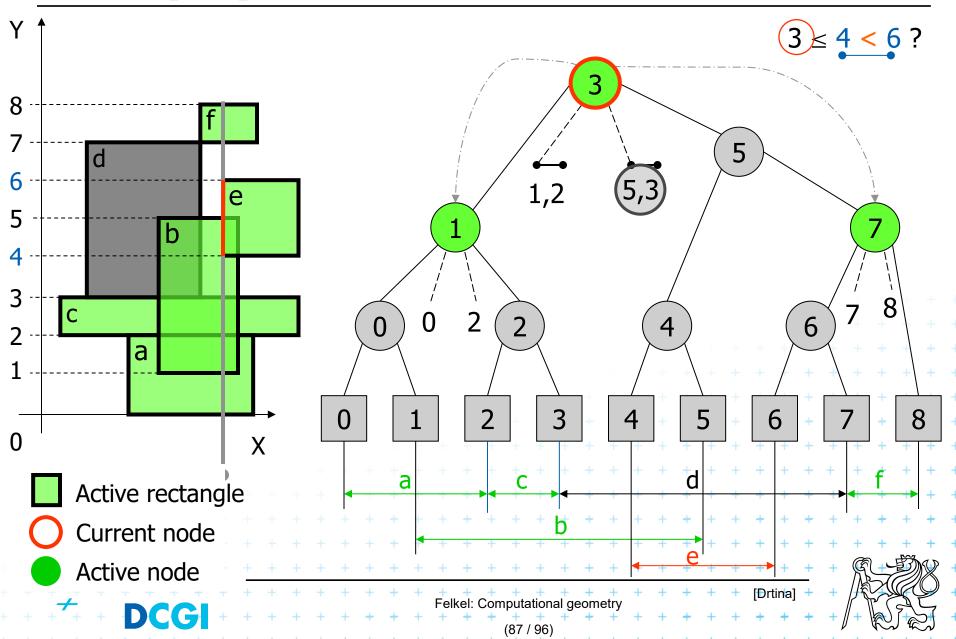


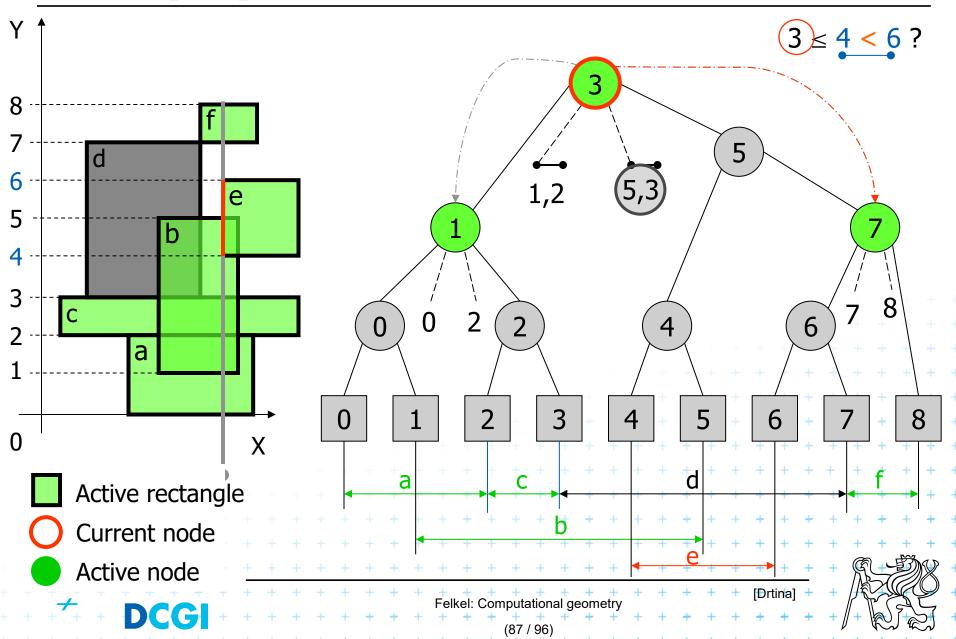


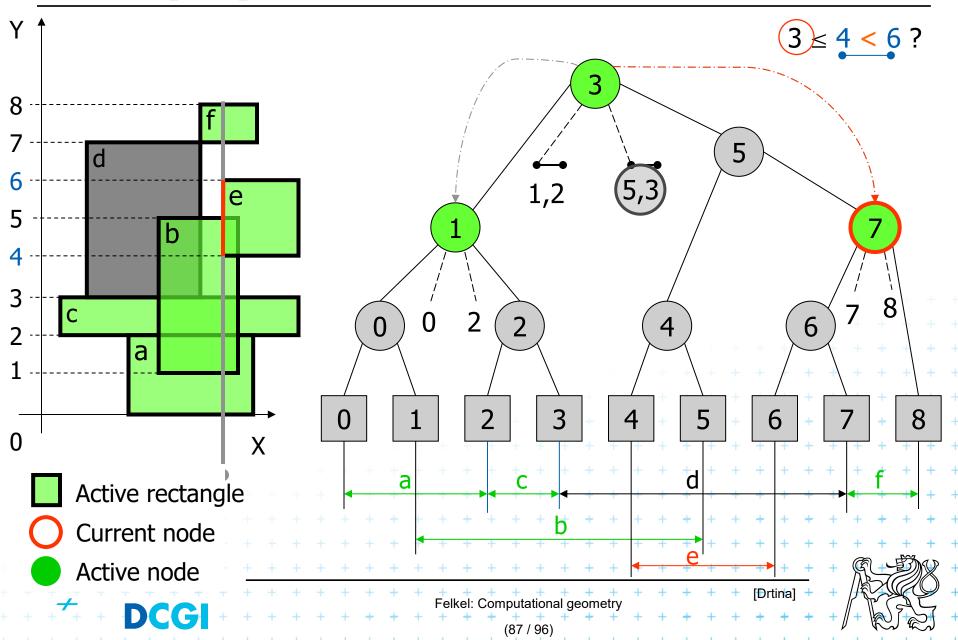


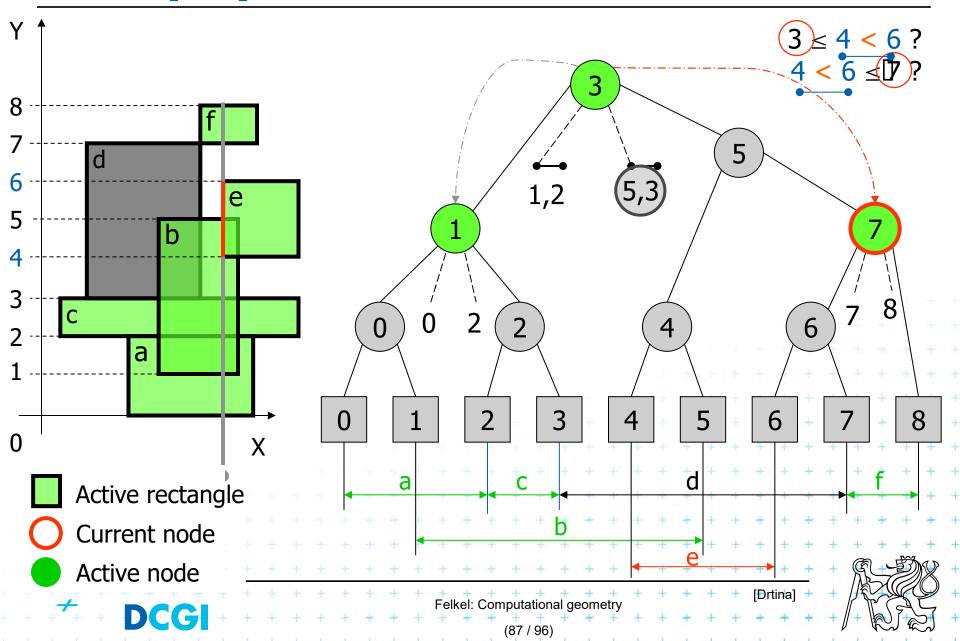


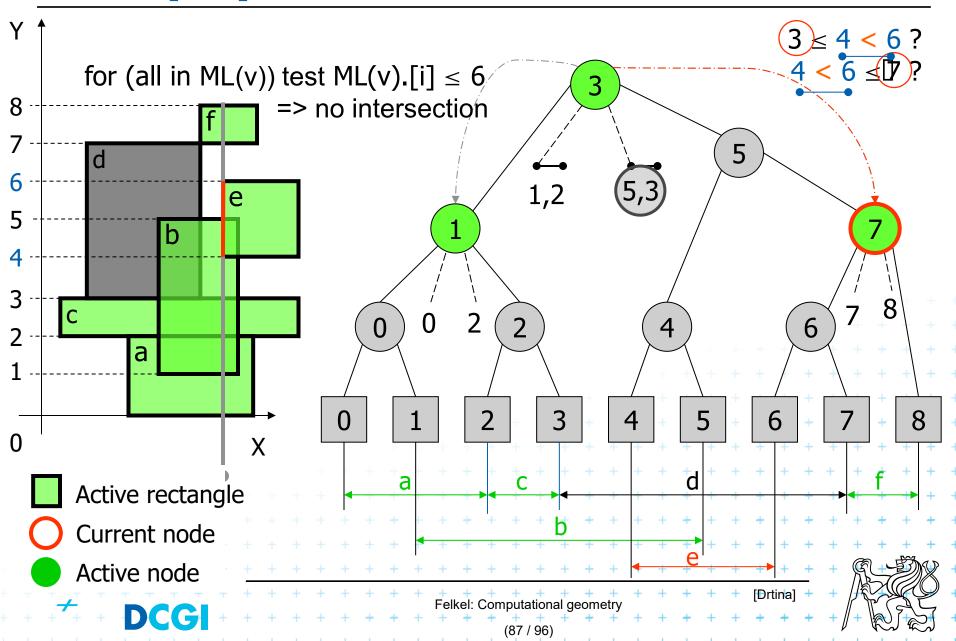


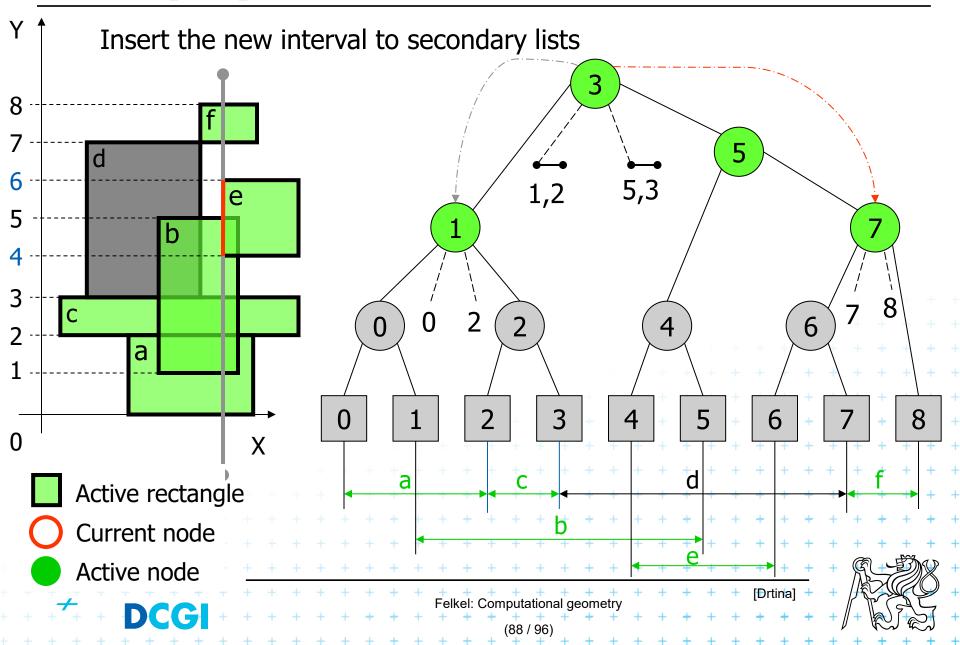


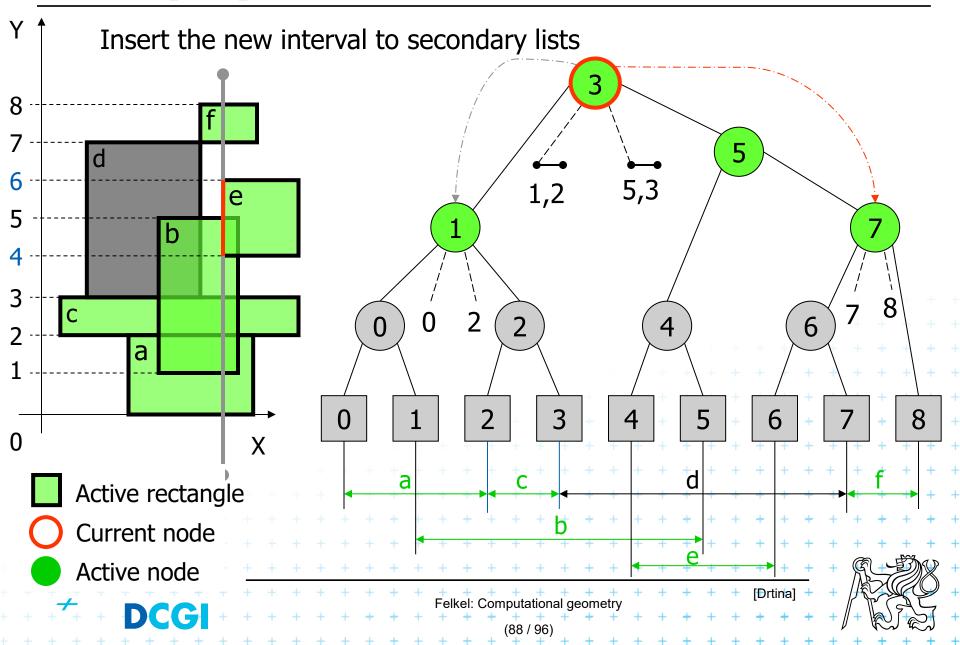


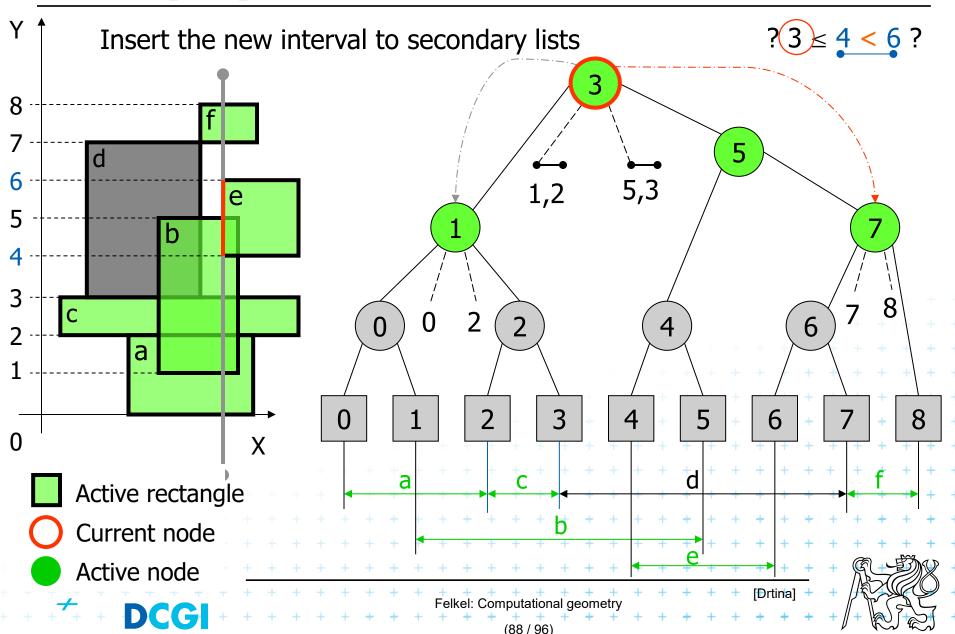


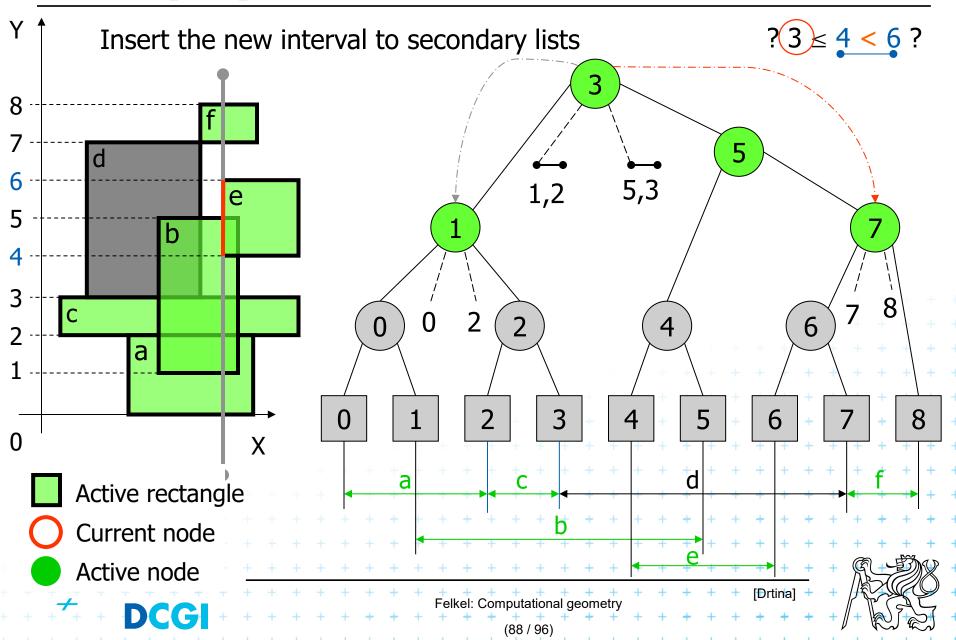


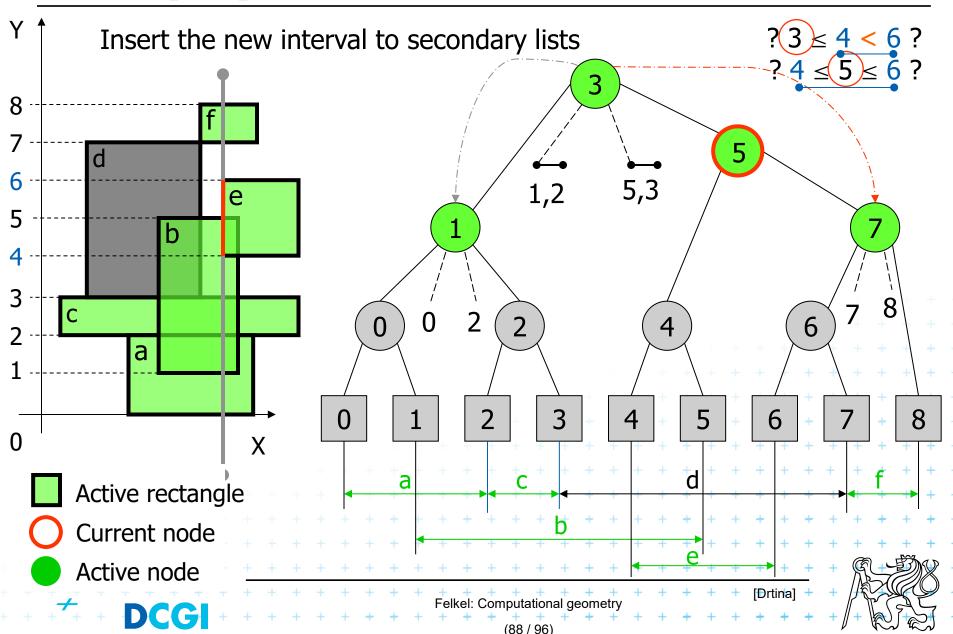


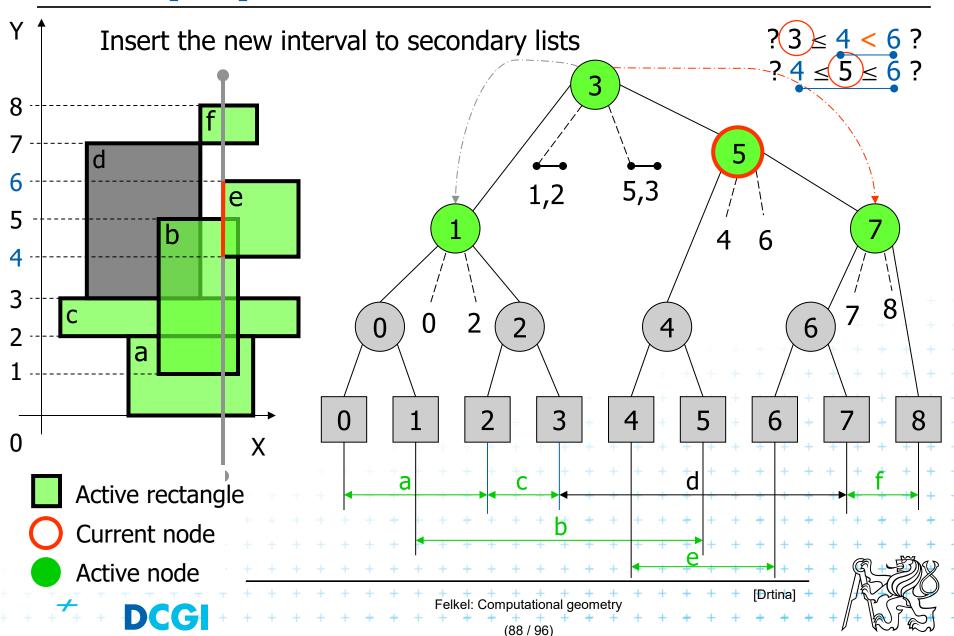


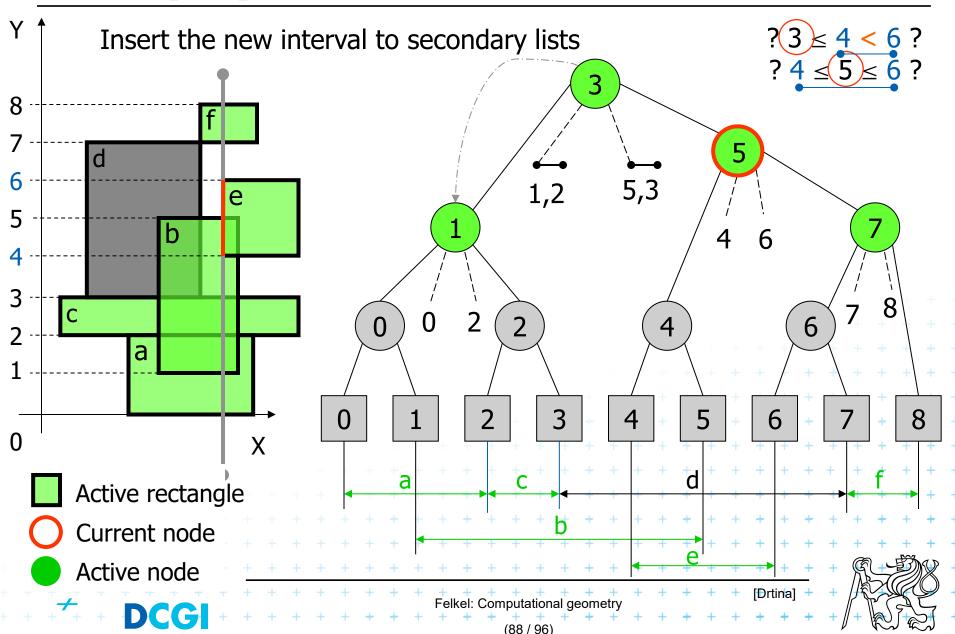


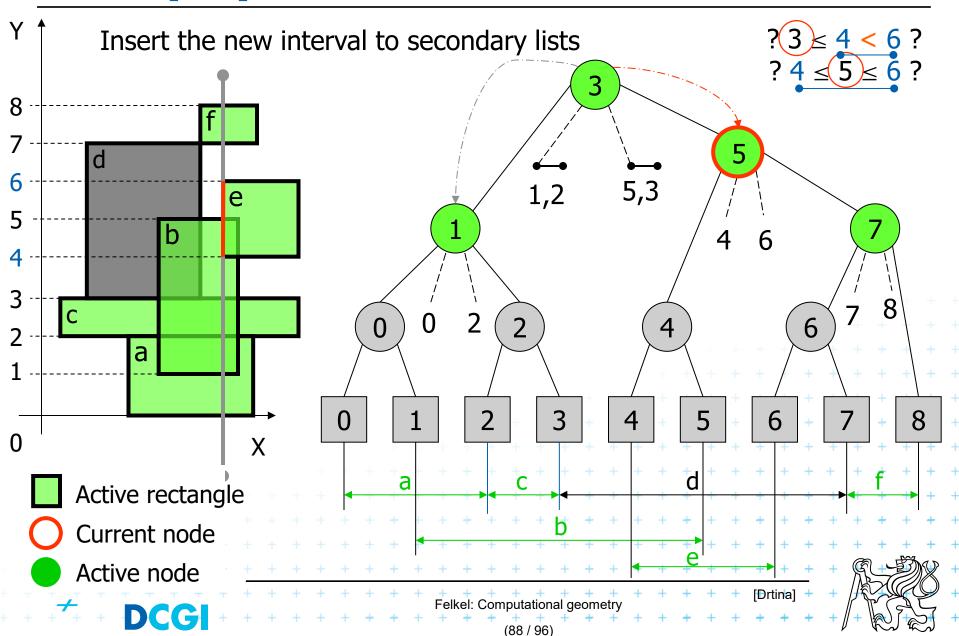


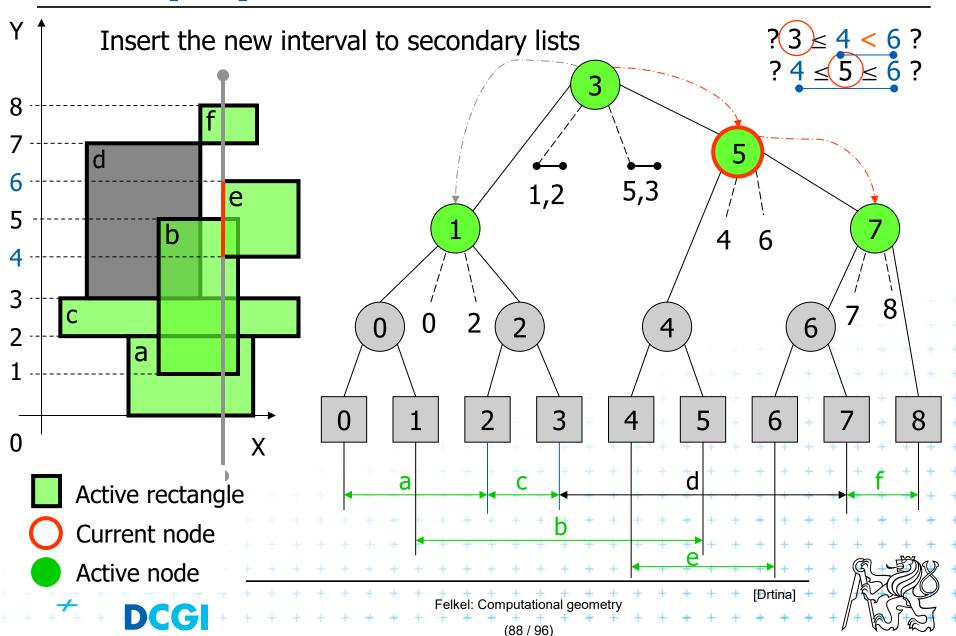


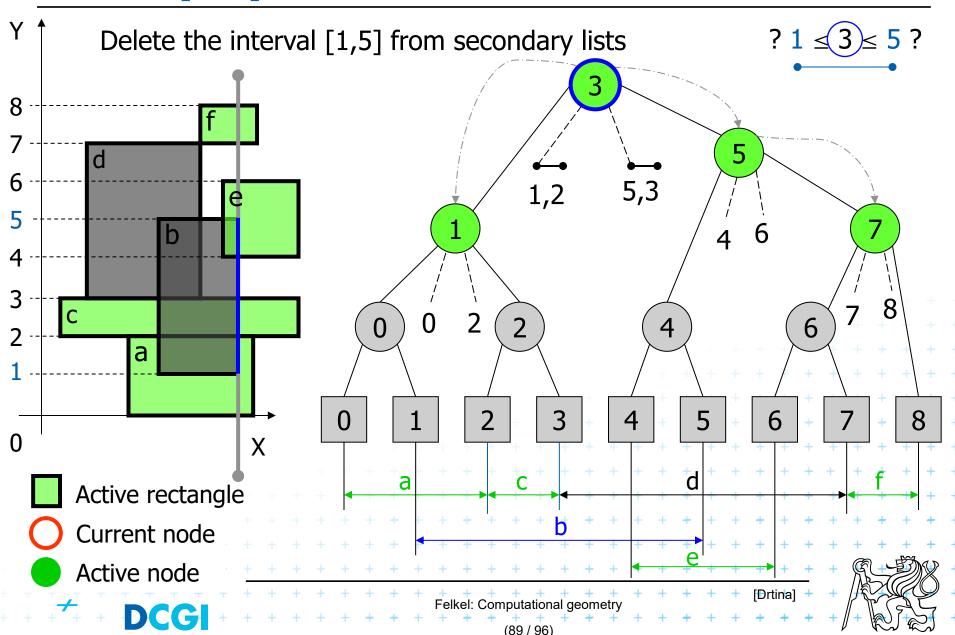


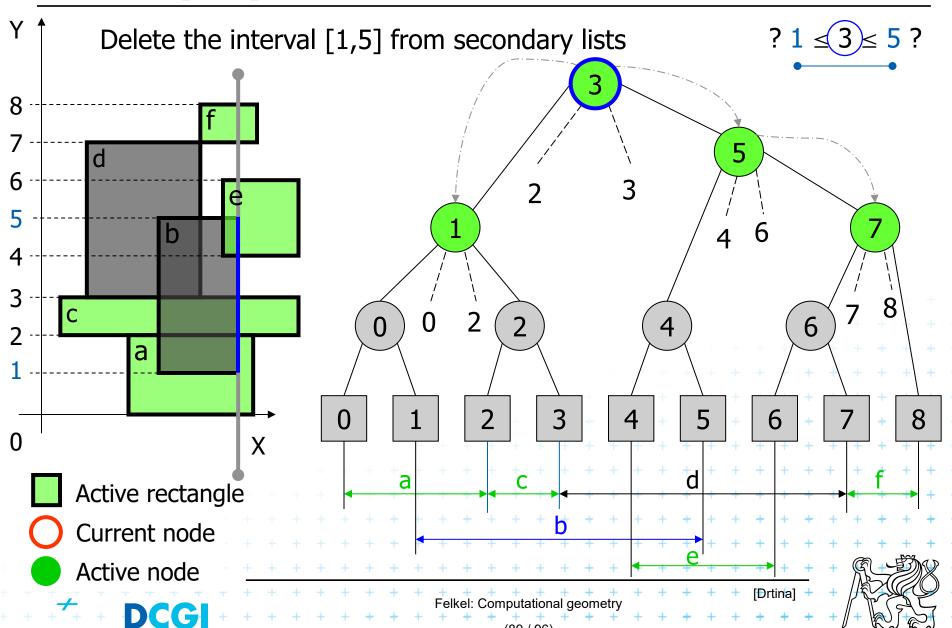






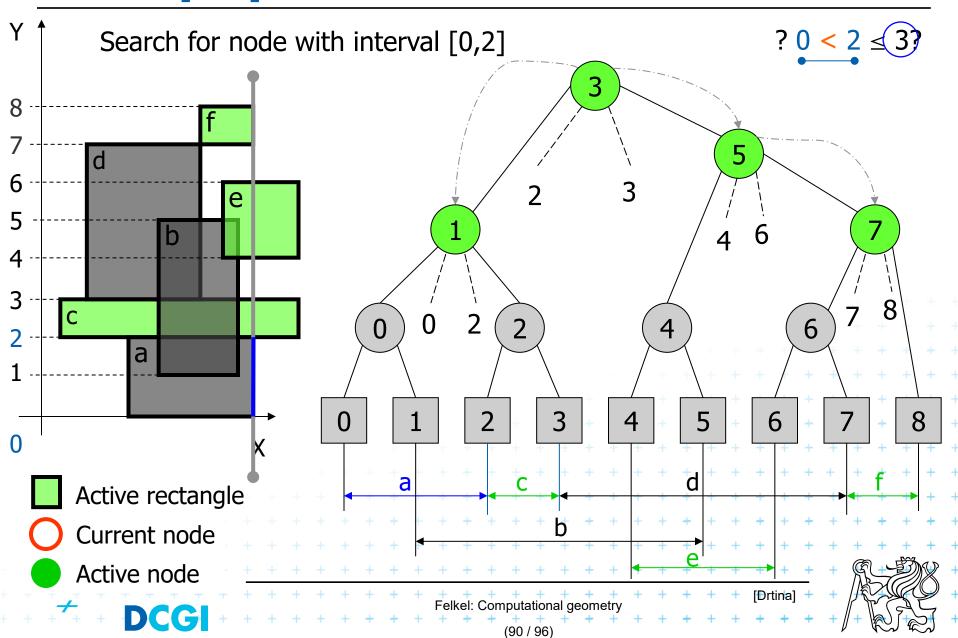






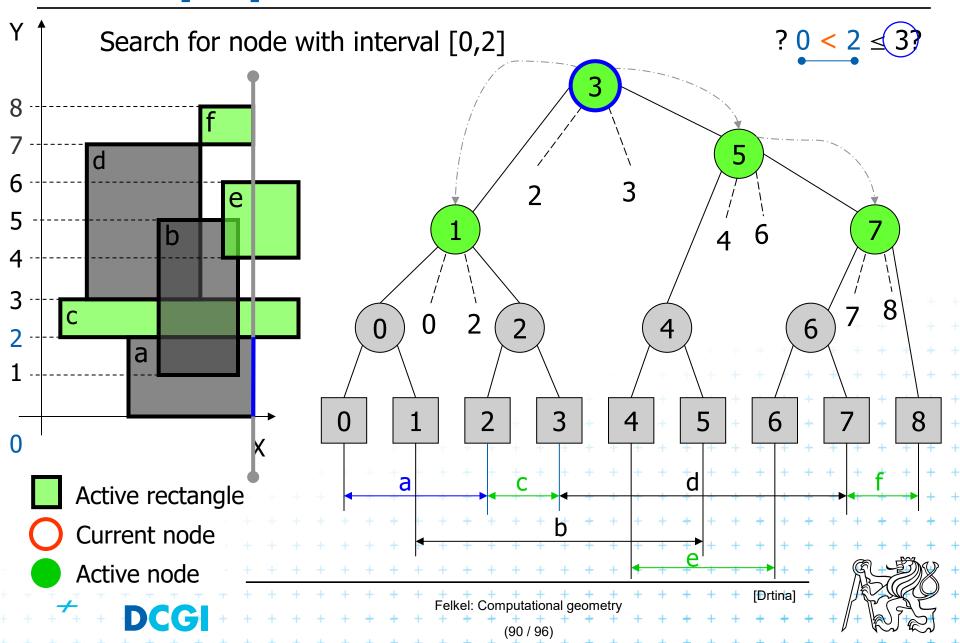
Delete [0,2] Delete Interval 1/2

 $b < e \le H(v)$



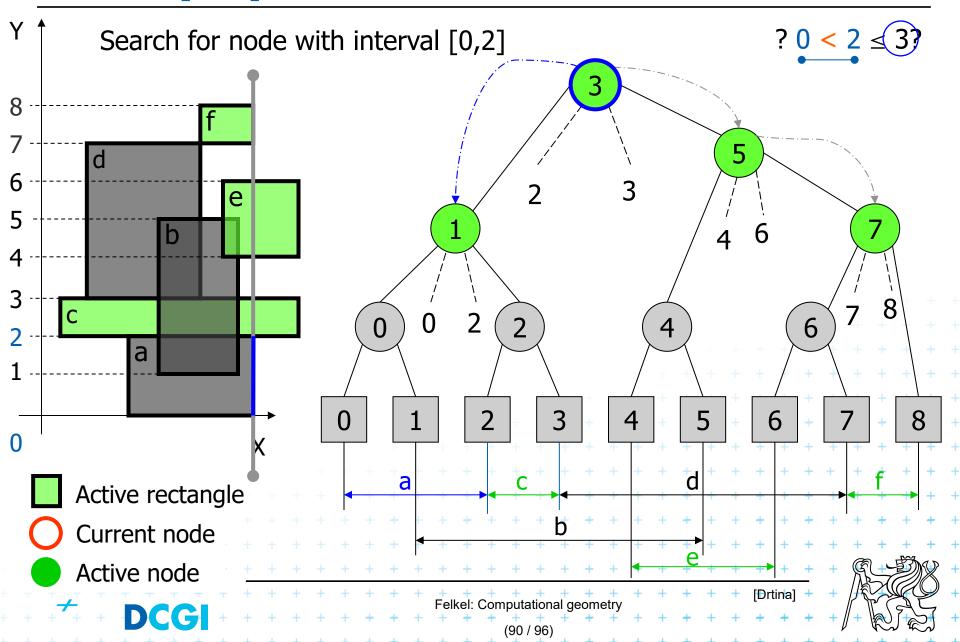
Delete [0,2] Delete Interval 1/2

 $b < e \le H(v)$

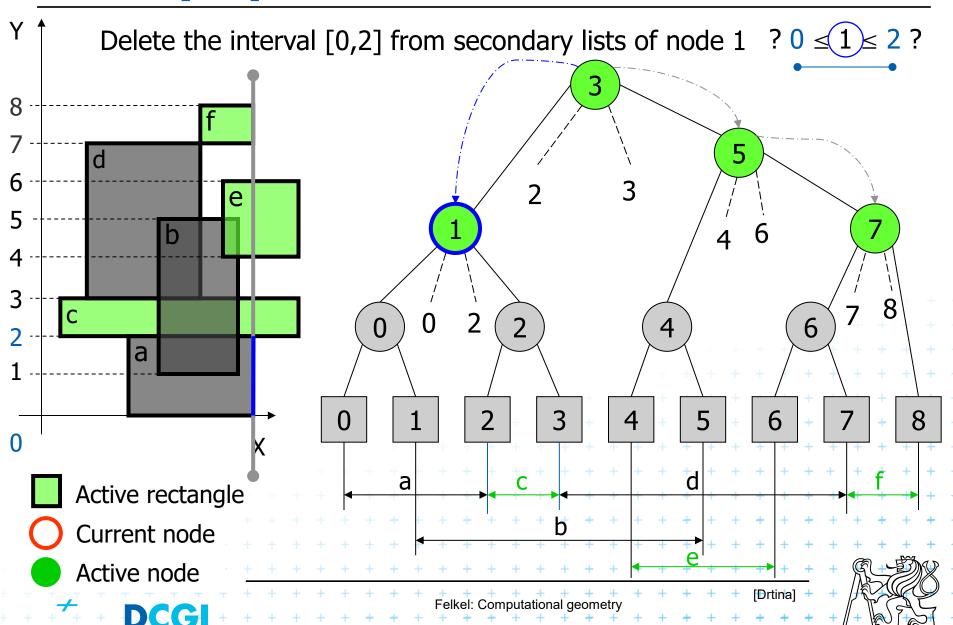


Delete [0,2] Delete Interval 1/2

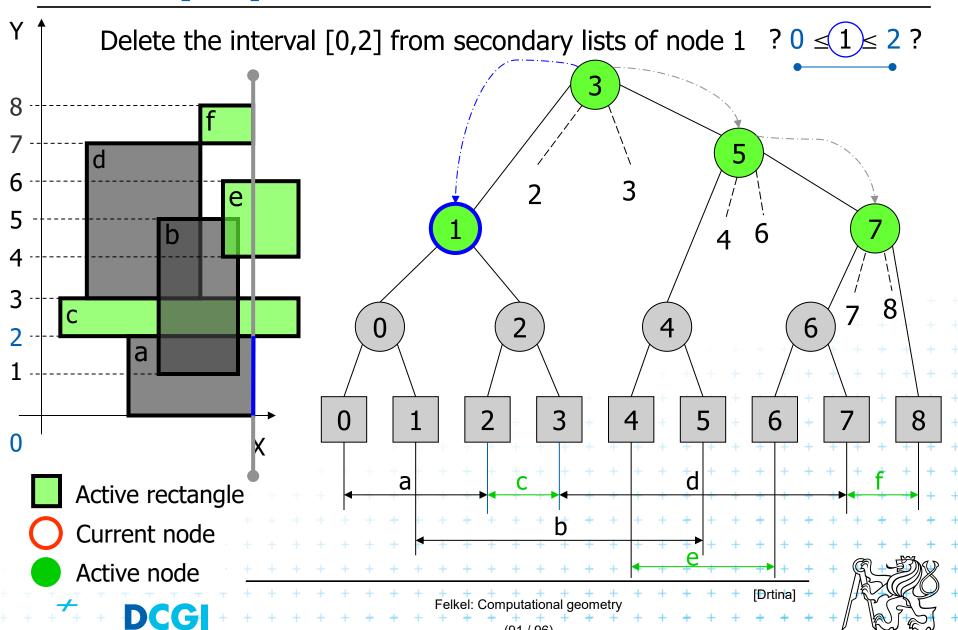
 $b < e \le H(v)$

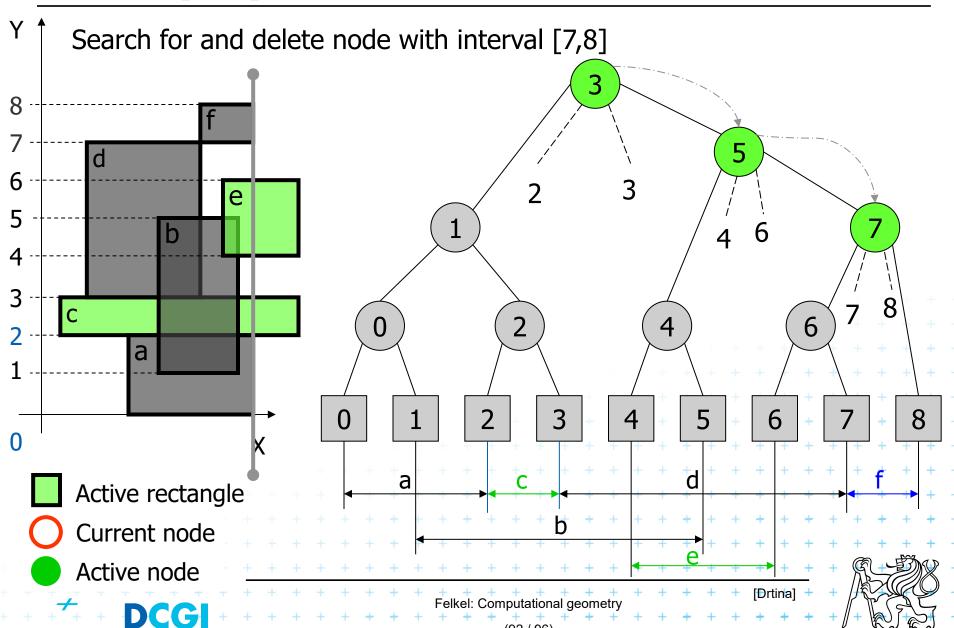


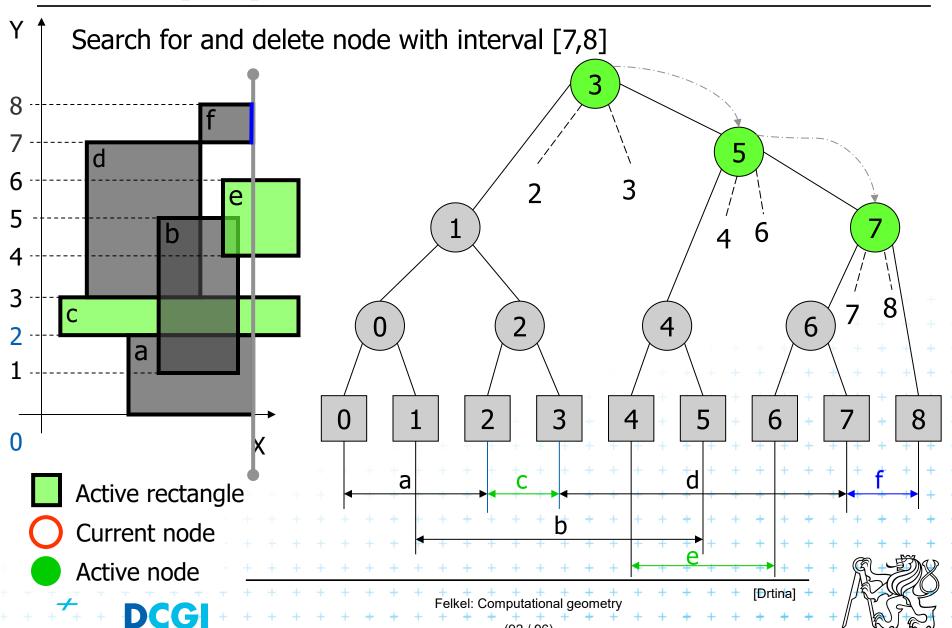
Delete [0,2] Delete Interval 2/2

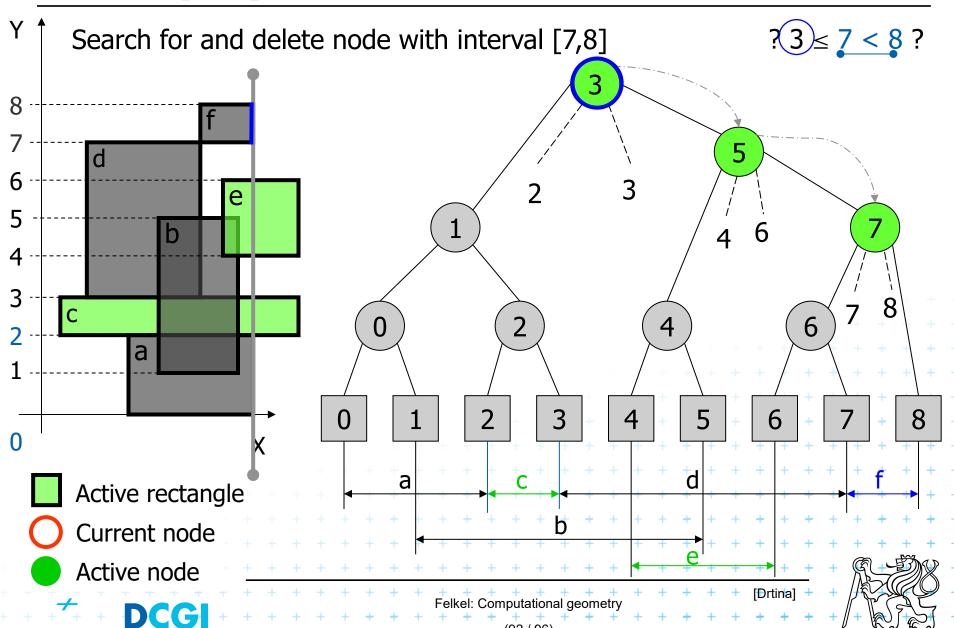


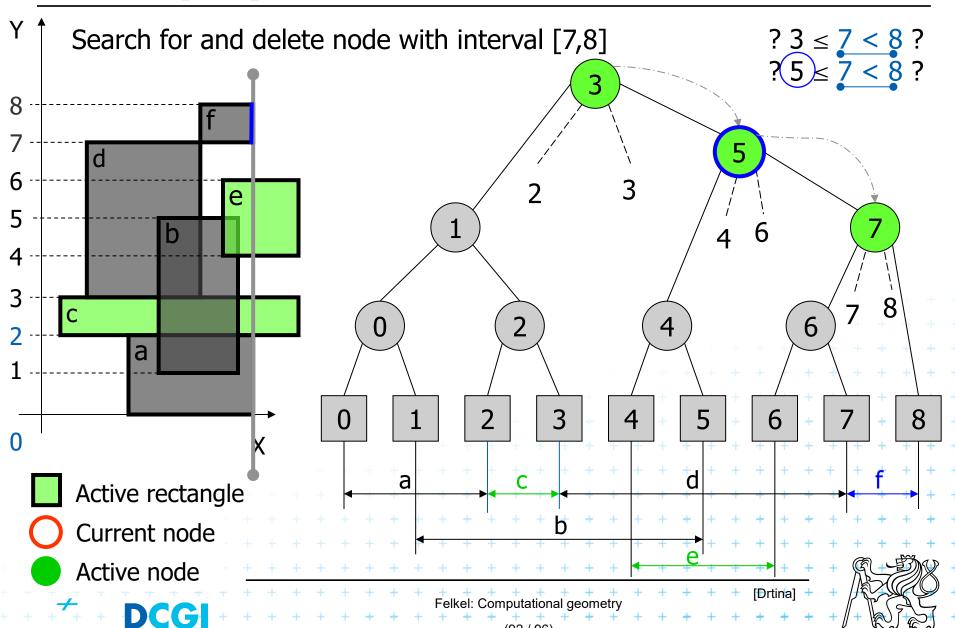
Delete [0,2] Delete Interval 2/2

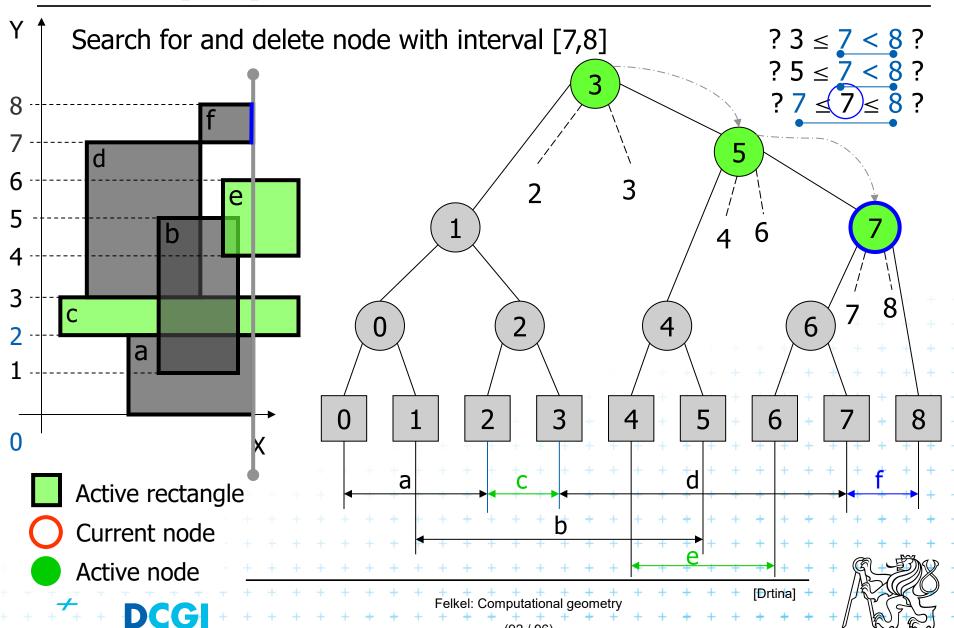


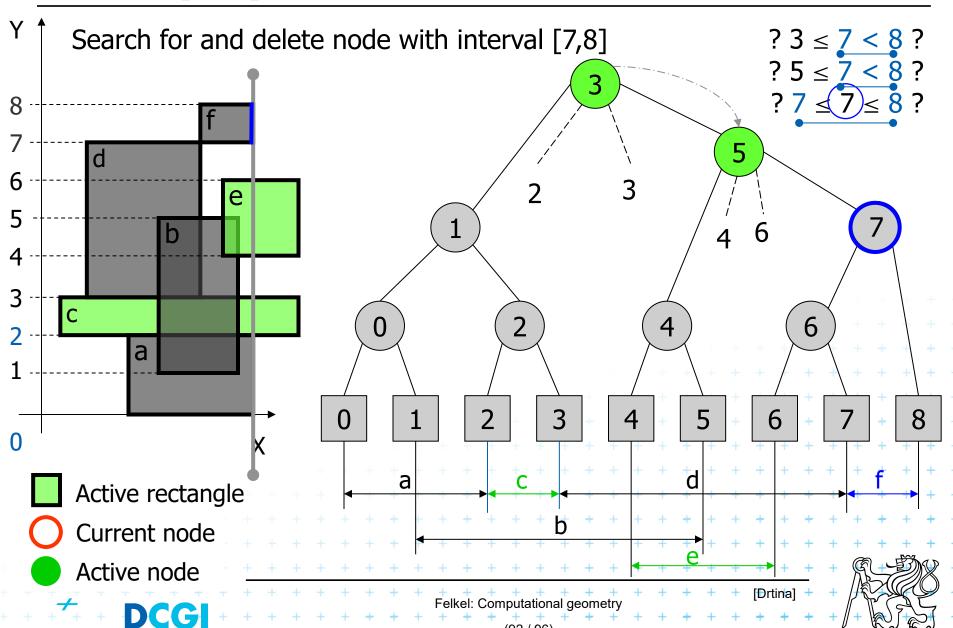


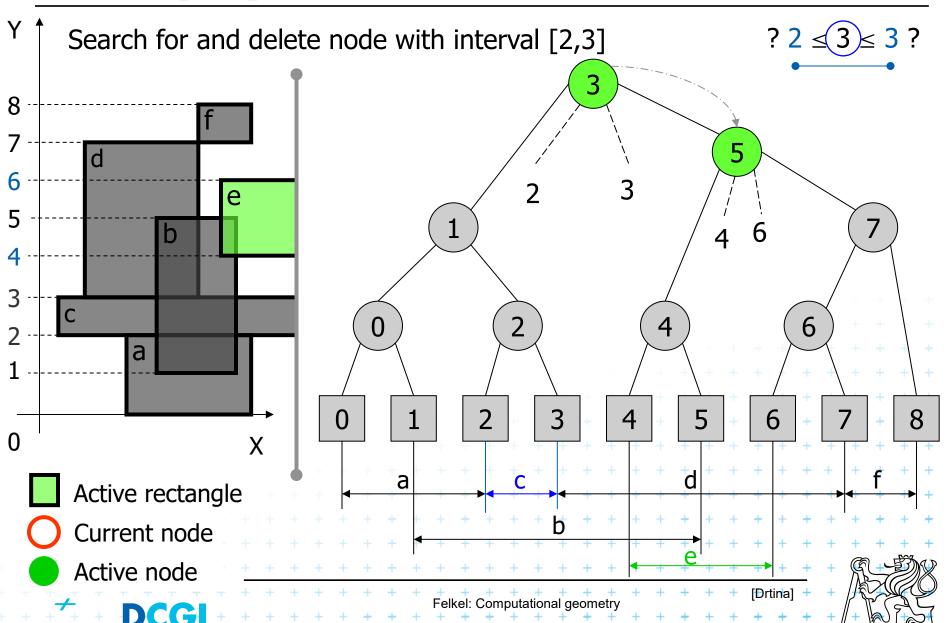


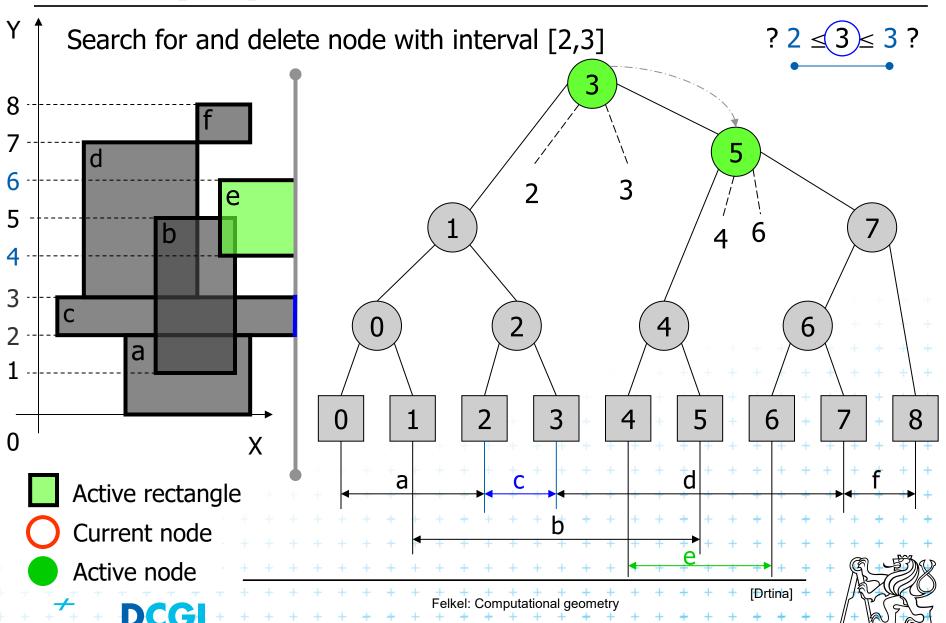


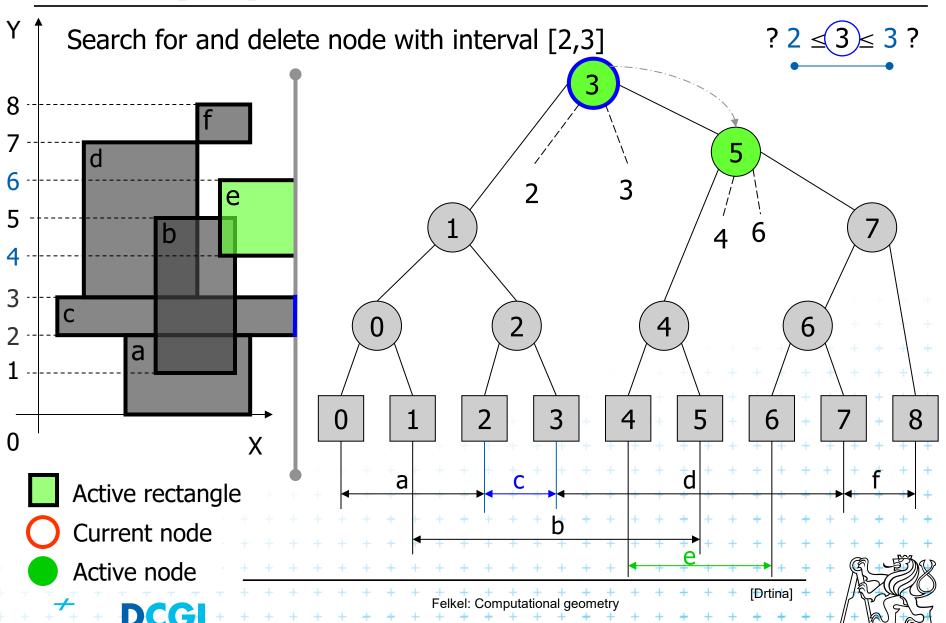


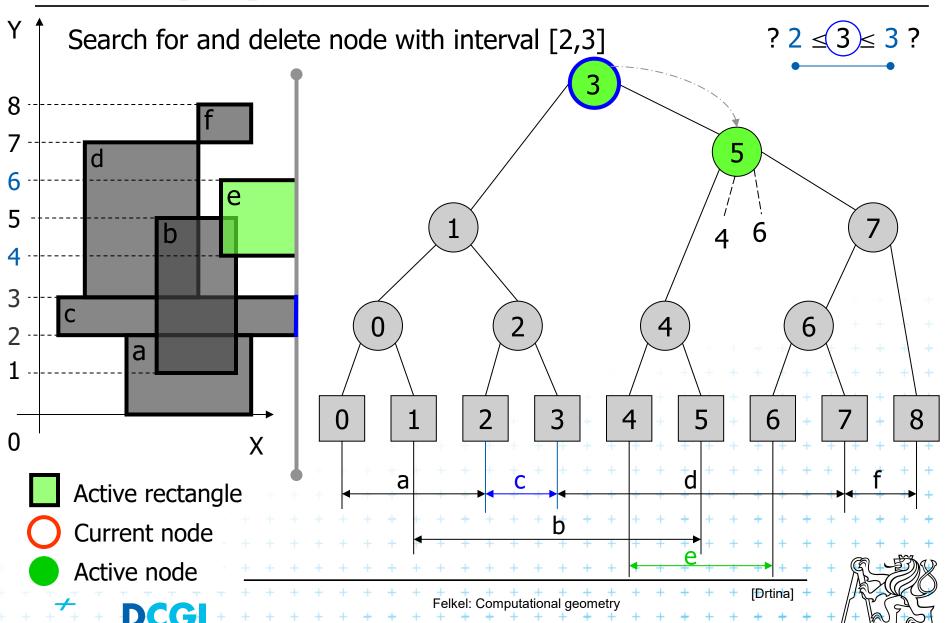


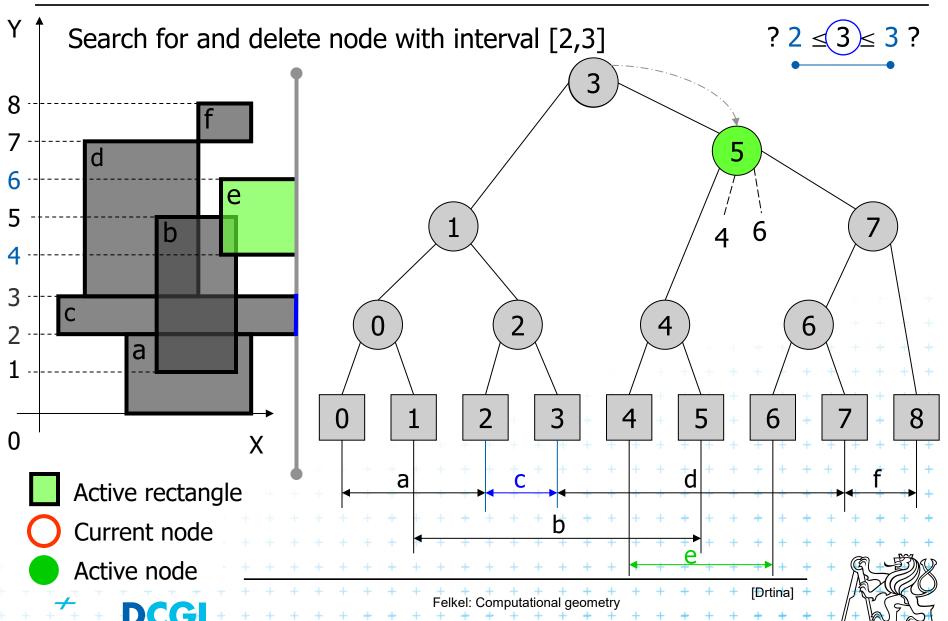


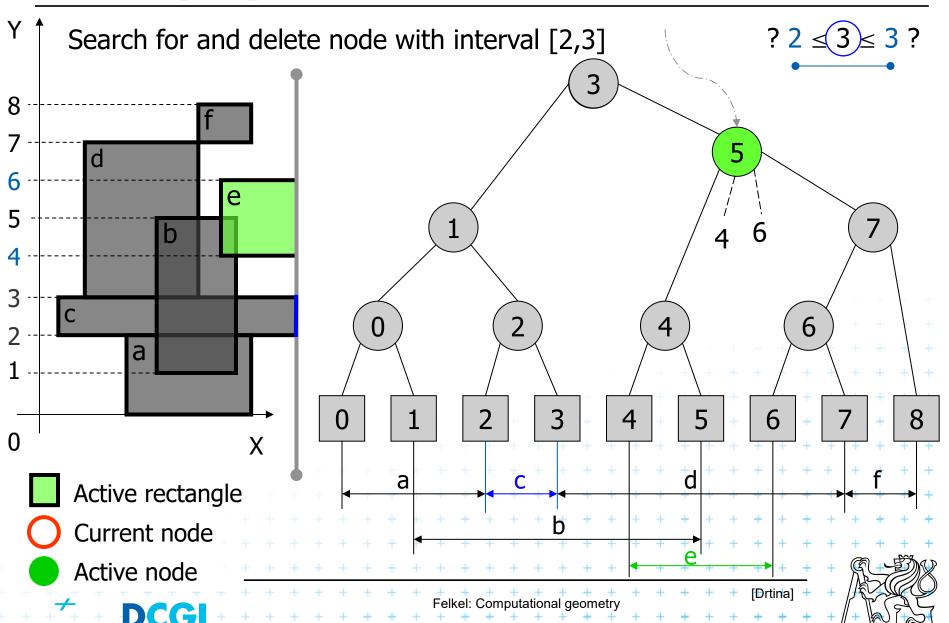


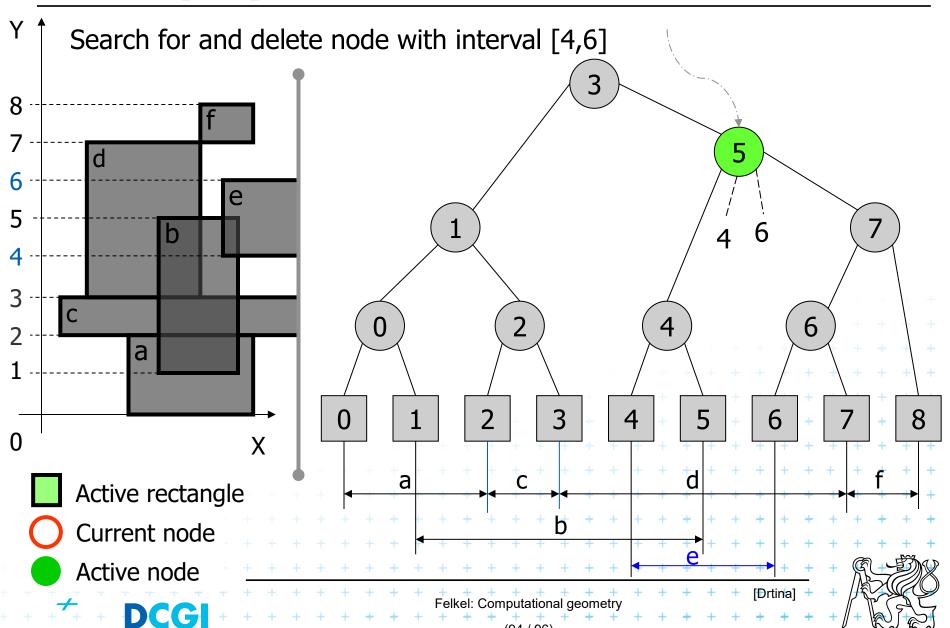


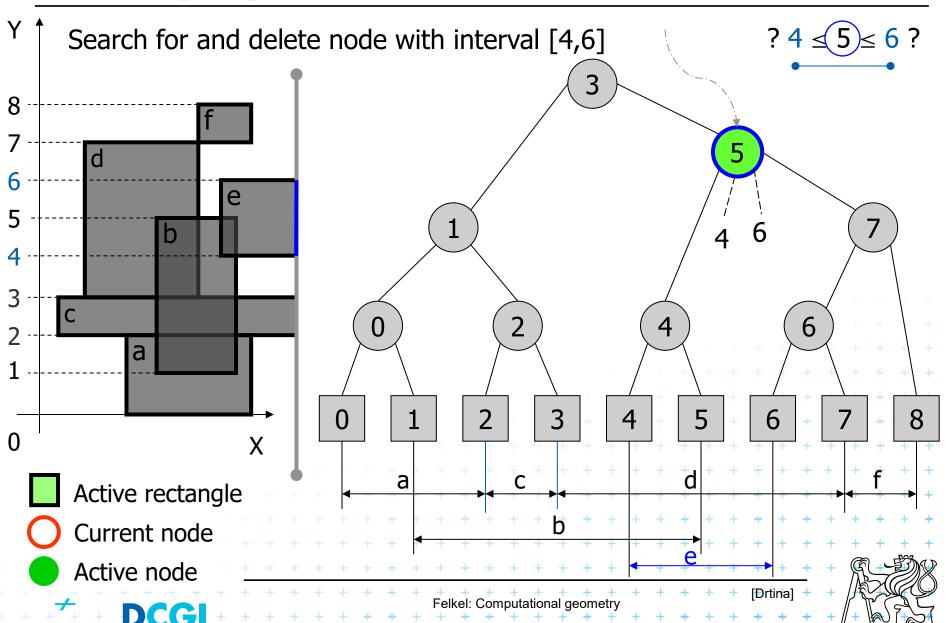


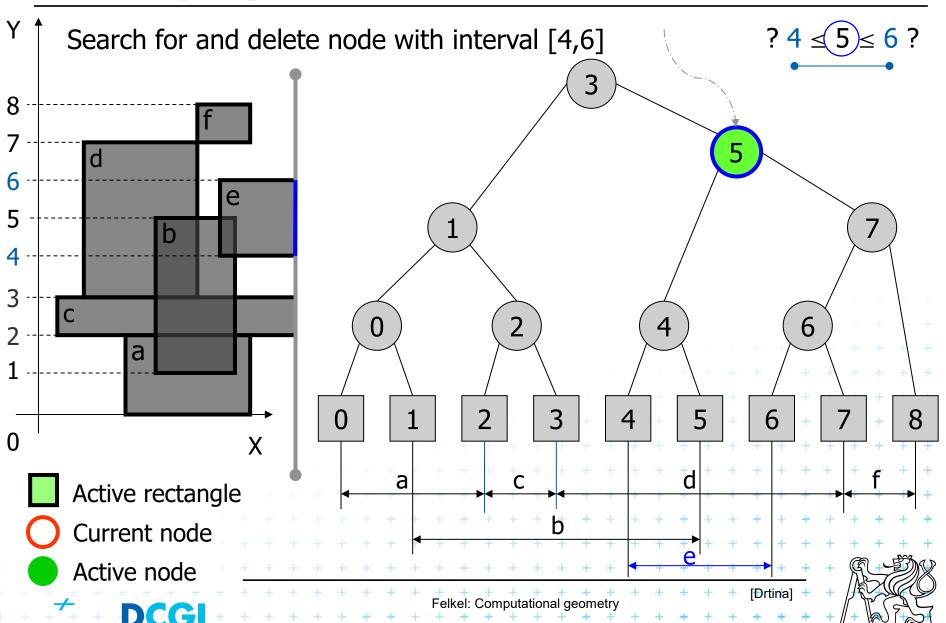


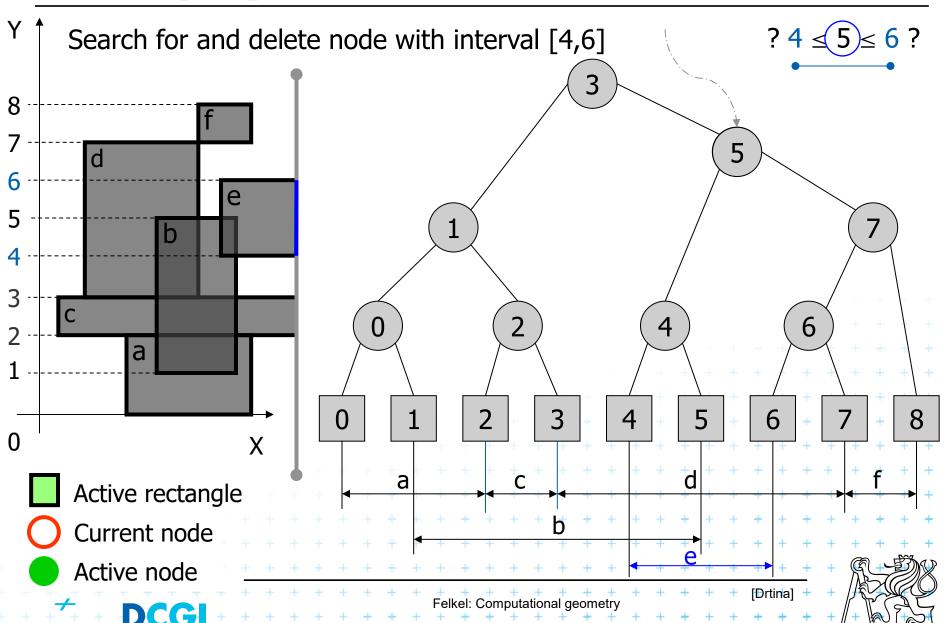


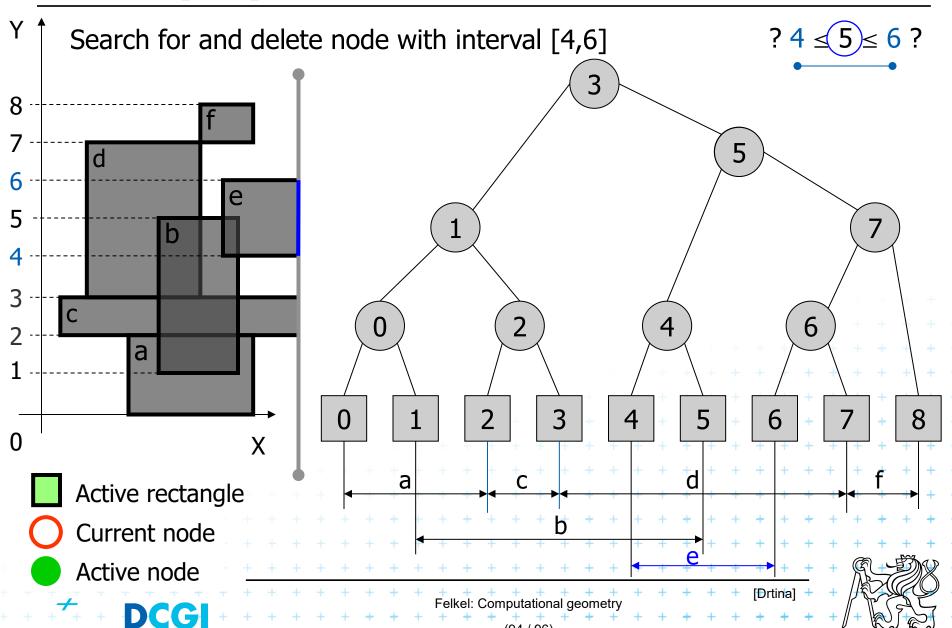




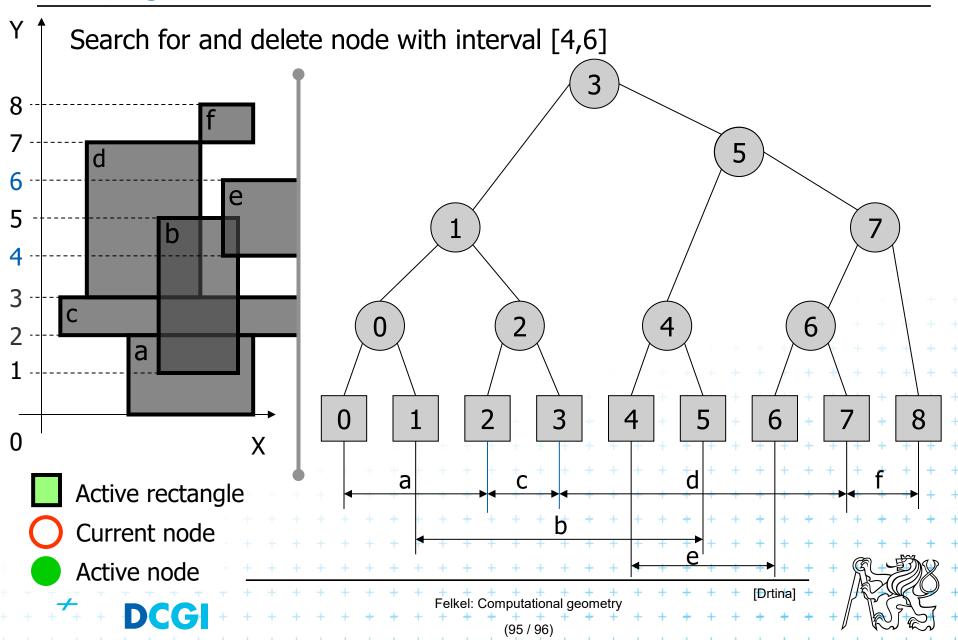








Empty tree



Complexities of rectangle intersections

- n rectangles, s intersected pairs found
- $O(n \log n)$ preprocessing time to separately sort
 - x-coordinates of the rectangles for the plane sweep
 - the y-coordinates for initializing the interval tree.
- The plane sweep itself takes $O(n \log n + s)$ time, so the overall time is $O(n \log n + s)$
- O(n) space
- This time is optimal for a decision-tree algorithm (i.e., one that only makes comparisons between rectangle coordinates).

References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/
- [Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lecture 5.

 http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
- [Rourke] Joseph O'Rourke: .: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 http://maven.smith.edu/~orourke/books/compgeom.html
- [Drtina] Tomáš Drtina: Intersection of rectangles. Semestral Assignment. Computational Geometry course, FEL CTU Prague, 2006
- [Kukral] Petr Kukrál: Intersection of rectangles. Semestral Assignment. Computational Geometry course, FEL CTU Prague, 2006
- [Vigneron] Segment trees and interval trees, presentation, INRA, France, http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html

