—_r—
—_

s o o~ ==

—_—
+

CGl

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

INTERSECTIONS OF LINE
SEGMENTS AND
AXIS ALIGNED RECTANGLES,

OVERLAY OF SUBDIVISIONS
PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/adm39vg/start

Based on [Berg], [Mount], [Kukral], and [Drtina]

Version from 20.11.2024

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Talk overview

= Intersections of line segments (Bentley-Ottmann)
— Motivation
— Sweep line algorithm recapitulation
— Sweep line intersections of line segments

= |Intersection of planar subdivisions
— See also assignment [21] or [Berg, Section 2.3]

= Intersection of axis parallel rectangles
— See also assignment [26]

- —:_ -
A e e e —f—
-+ —4
I Felkel: Computational geometry
I ,(:(; (2196)

Geometric intersections — what are they for?

One of the most basic problems in computational geometry

= Solid modeling
— Intersection of object boundaries in CSG

= Overlay of subdivisions, e.g. layers in GIS
— Bridges on intersections of roads and rivers
— Maintenance responsibilities (road network x county boundaries)

= Robotics
— Collision detection and collision avoidance

= Computer graphics
— Rendering via ray shooting (intersection of the ray with objects)

- -~ -
S A o~ - —
-+ =
DCGI Felkel: Computational geometry
(3/96)

Line segment intersection

- —.:_ -+
= == =~ ——
-+ —4
I Felkel: Computational geometry
I ,(:(; (4/96)

Line segment intersection

= [ntersection of complex shapes is often reduced to simpler
and simpler intersection problems

= Line segment intersection is the most basic intersection
algorithm

= Problem statement:
Given n line segments in the plane, report all points where
a pair of line segments intersect.

= Problem complexity
— Worst case: I = 0(n?) intersections
— Practical case: only some intersections

— Use an output sensitive algorithm
e O(nlogn + I) optimal randomized algorithm
e O(nlogn + I logn) sweep line algorithm - %

- : -
> S~ o~ = 4
+* 4 =
DCGI Felkel: Computational geometry
(5/96)

[Berg]

Plane sweep line algorithm

Sweep line (with status)

‘ Event points

%\ <~ known before
A \

~/ \ Event points

, \ / computed

e

Priority queue

- : -+
A e e e —f—
-+ -~ —+
I Felkel: Computational geometry
’ I)(:(; (6 /96)

Plane Sweep Iine algorithm recapitulation

= Horizontal line (sweep line, scan line) I moves

top-down over the set of objects
(or vertical line: left to right)

= The move is not continuous, but f jumps from one
event point to another

- —.:_ ——
o mfe f f
> -~ -
I Felkel: Computational geometry
I ,(:(; (7 196) |

Line segment intersections

Events (waiting in the priority queue) Postupovy plén
= points, where the algorithm actually does something
— Segment end-points
* known at algorithm start
— Segment intersections between neighbors along SL

* discovered as the sweep executes

Status = ordered sequence of segments stav
intersecting the sweep line

- : -+
= == =~ ——
-+ -~ —+
I Felkel: Computational geometry
’ I)(:(; (8/96)

Line segment intersection - Sweep line alg.

= Idea: Avoid testing of pairs of segments far apart
= Compute intersections of neighbors on the sweep line only
= O(nlogn + Ilogn)timein O(n) memory

- 2n steps for end points,

— I steps for intersections (I € (0,n?)),

- 0(logn) search the SL status tree

= Ignore “degenerate cases” (most of them will be solved later on)
— No segment is parallel to the sweep line
— Segments intersect in one point and do not overlap
— No three segments meet in a common point

- : -
S A o~ - —
-+ -+ -+
DCGI Felkel: Computational geometry
(9/96)

Detecting intersections

= Intersection events must be detected and inserted
to the event queue before they occur

= Given two segments a, b intersecting in point p,
there must be a placement of sweep line ! prior

to p, such that segments a, b are adjacent along /

(only adjacent will be tested for intersection)
— segments a, b are not adjacent when the alg. starts

— segments a, b are adjacent just before point p

=> there must be an event point when a, b become
adjacent and therefore are tested for intersection

=> All intersections are found

> S =~ 4

7 DCGI (10/ 96)

Data structures

Sweep line { status = order of segments along /
= Balanced binary search tree 7° of segments

= Coords of intersections with { vary as { moves
=> store pointers to line segments in tree nodes

— Position y of [is plugged into y = mx + b to get the x

Felkel: Computational geometry

(117 96)

Data structures

Event queue (postupovy plan, éasovy plan) y Jt"p'down
= Define: Order > (top-down, lexicographic)

p > qiff p, >q, orp, =q, and p, <q, x
top-down, left-right approach
(points on ! treated left to right)

= Operations
— Insertion of computed intersection points
— Fetching the next event to previous e
(highest y below [or the leftmost right of e)

— Test, if the segment is already present in the queue
(Locate and delete intersection event in the queue)

- —.:— -
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (12 /96)

Data structures

Event queue (postupovy plan, éasovy plan) y Jt"p'dOW”
= Define: Order > (top-down, lexicographic)

p > qiff p, >q, orp, =q, and p, <q, x
top-down, left-right approach
(points on ! treated left to right)

= Operations
— Insertion of computed intersection points
— Fetching the next event to previous e — Mmusthave
(highest y below [or the leftmost right of e)_|

— Test, if the segment is already present in the queue
(Locate and delete intersection event in the queue)

- —.:_ -+
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (12 /96)

Data structures

Event queue (postupovy plan, éasovy plan) y Jt"p'dOW”
= Define: Order > (top-down, lexicographic)

p > qiff p, >q, orp, =q, and p, <q, x
top-down, left-right approach
(points on ! treated left to right)

= Operations
— Insertion of computed intersection points
— Fetching the next event to previous e — Mmusthave
(highest y below [or the leftmost right of e)_|

— Test, if the segment is already present in the queue | may
(Locate and delete intersection event in the queue) | have

- —.:_ -+
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (12 /96)

Problem with duplicities of intersections

Intersection may be detected many times

- —.:— -
= == =~ ——
-+ —4
I Felkel: Computational geometry
I,(:(; (13/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —.:— -
= == =~ ——
-+ —4
I Felkel: Computational geometry
I,(:(; (13/96)

Problem with duplicities of intersections

Intersection may be detected many times

‘\

- —.:— -
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (13/96)

Problem with duplicities of intersections

Intersection may be detected many times

1 ~

- —.:— -
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (13/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —.:— -
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (13/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —.:— -
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (13/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —.:— -
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (13/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —.:— -
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (13/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —.:— -
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (13/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —.:— -
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (13/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —.:— -
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (13/96)

Problem with duplicities of intersections

Intersection may be detected many times

1
S v g
3

3% detected
intersection

- —.:— -
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (13/96)

Problem with duplicities of intersections

Intersection may be detected many times

1
S v g
3

3% detected
intersection

- —.:— -
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (13/96)

Data structures

Event queue data structure
3><.}cwletected

a) Heap l o deec

— Problem: can not check duplicated intersection events
(reinvented & stored more than once)

— Intersections processed twice or even more times
— Memory complexity of the queue Q is up to 0(n?)
b) Ordered dictionary (balanced binary tree)
— Can check duplicated events (adds just constant factor)
— Nothing inserted twice

— If non-neighbor intersections are deleted
i.e., if only intersections of neighbors along f are stored

. - then @ memory complexity just 2n + n —1 = 0(n)
- DCGI Felkel: Computational geometry %

(14 96)

l top-down

Line segment intersection algorithm

Findintersections(S)

Input: A set S of line segments in the plane

Output: The set of intersection points + pointers to segments in each
1. Init an empty event queue Q and insert the segment endpoints

2. init an empty status structure T

3. while Q in not empty

4. remove next event p from Q

3 handleEventPoint(p)

Upper endpoint
Intersection
Lower endpoint

Note: Upper-endpoint events store info about the segment

- - —+
7 DCGI

l top-down

Line segment intersection algorithm

Findintersections(S)

Input: A set S of line segments in the plane

Output: The set of intersection points + pointers to segments in each
1. Init an empty event queue Q and insert the segment endpoints

2. init an empty status structure T

3. while Q in not empty

4. remove next event p from Q

3 handleEventPoint(p)

Upper endpoint Improved algorithm:
Intersection Handles all in p
Lower endpoint In a single step

Note: Upper-endpoint events store info about the segment

- - —+
7 DCGI

handleEventPoint() principle

= Upper endpoint U(p)

— insert p (on line s;) to status T

— add intersections with left and
right neighbors to Q imersection
= Intersection C(p)
— switch order of segments in T
— add intersections with nearest left
and nearest right neighbor to Q
= Lower endpoint L(p)
— remove p (on s;) from T

— add intersections of left and right ¢
- 77+ peighbors to Q

-~
DCGI Felkel: Computational geometry
(16 / 96)

More than two segments incident

S1

52

U(p) ={s,} [starthere
C(p) = {54, 83} | cross on £
1 end here [Berg]

L(p) = {s4 Ss}

-~ =
P e fm e —f—
-+ —4
I Felkel: Computational geometry
I)(:(; (17 /1 96)

H a n d Ie Eve n ts [modified Berg, page 25]

p

handleEventPoint(p) // precisely: handle all events with point p 7@&)
1.

Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)

2. Search T for all segments S(p) that contain p (are adjacent in T°):
Let L(p) € S(p) = segments whose Lower endpointis p
Let C(p) € S(p) = segments that Contain p in interior
3. if(L(p)u U(p) U C(p) contains more than one segment)
4. report p as intersection together with L(p), U(p), C(p)
5. Delete the segmentsin L(p) U C(p) from T
6. if(U(p)UuUC(p) =0)then findNewEvent(s;, s,, p)
7. else Insert the segmentsin U(p) U C(p) into T
(order as below ¢, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) U C(p); findNewEvent(s;,s’,p) %@pg
9. s” = rightmost segm. of U(p) U C(p); findNewEvent(s”, s,, p)
— D C GI Felkel: Com(:l;t:jt;n)al geometry .

+ 4+ + + o+ 4+

H a n d Ie Eve n ts [modified Berg, page 25]

p

handleEventPoint(p) // precisely: handle all events with point p 7@&)
1.

Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)

2. Search T for all segments S(p) that contain p (are adjacent in T°):
Let L(p) € S(p) = segments whose Lower endpointis p L(p)
Let C(p) € S(p) = segments that Contain p in interior
3. if(L(p)u U(p) U C(p) contains more than one segment)
4. report p as intersection together with L(p), U(p), C(p)
5. Delete the segmentsin L(p) U C(p) from T
6. if(U(p)UuUC(p) =0)then findNewEvent(s;, s,, p)
7. else Insert the segmentsin U(p) U C(p) into T
(order as below ¢, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) U C(p); findNewEvent(s;,s’,p) %@pg
9. s” = rightmost segm. of U(p) U C(p); findNewEvent(s”, s,, p)
— D C GI Felkel: Com(:l;t:jt;n)al geometry .

+ 4+ + + o+ 4+

H a n d Ie Eve n ts [modified Berg, page 25]

p

handleEventPoint(p) // precisely: handle all events with point p 7@&)
1.

Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)

2. Search T for all segments S(p) that contain p (are adjacent in T°):
Let L(p) € S(p) = segments whose Lower endpointis p L(p)
Let C(p) € S(p) = segments that Contain p in interior
3. 1f(L(p)u U(p) U C(p) contains more than one segment) é{
4. report p as intersection o together with L(p), U(p), C(p) C(p)
5. Delete the segmentsin L(p) U C(p) from T
6. if(U(p)UC(p) =0)thenfindNewEvent(s},s,,p)
7. else Insert the segmentsin U(p) U C(p) into T
(order as below ¢, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) U C(p); findNewEvent(s;,s’,p) %}g
9. s” = rightmost segm. of U(p) U C(p); findNewEvent(s”, s,, p)
S DCGI Felkel: Com(:l:?tl;r;al geometry .

+ + + + 4+

H a n d Ie Eve n ts [modified Berg, page 25]

p

handleEventPoint(p) // precisely: handle all events with point p 7@&)

1. Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)
2. Search T for all segments S(p) that contain p (are adjacent in T°):
Let L(p) € S(p) = segments whose Lower endpointis p L(p)
Let C(p) € S(p) = segments that Contain p in interior
3. 1f(L(p)u U(p) U C(p) contains more than one segment) é{
4. report p as intersection o together with L(p), U(p), C(p) C(p)
5. Delete the segmentsin L(p) U C(p) from T s'l\bpv ‘/.Sr ¢
6. if(U(p)UC(p) =0)thenfindNewEvent(s,, S%// left & right neighbors
7. else Insert the segmentsin U(p) U C(p) into / reverse order of C(p) in T
(order as below ¢, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) U C(p); findNewEvent(s;,s’,p) %}6
9. s” = rightmost segm. of U(p) U C(p); findNewEvent(s”, s,, p)
— D C GI Felkel: cOm(:l;t:jt;n)al geometry .

+ + + + 4+

H a n d Ie Eve n ts [modified Berg, page 25]

p

handleEventPoint(p) // precisely: handle all events with point p 7@&)

1. Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)
2. Search T for all segments S(p) that contain p (are adjacent in T°):
Let L(p) € S(p) = segments whose Lower endpointis p L(p)
Let C(p) € S(p) = segments that Contain p in interior
3. if(L(p)u U(p) U C(p) contains more than one segment) é{
4. report p as intersection o together with L(p), U(p), C(p) C(p)
5. Delete the segmentsin L(p) U C(p) from T s'l\pv ‘/°s,, 0
6. if(U(p)UC(p) =0)thenfindNewEvent(s,, S%// left & right neighbors
7. else Insert the segmentsin U(p) U C(p) into / reverse order of C(p) in T
(order as below ¢, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) U C(p); findNewEvent(s;,s’,p) S/%pg
9. s” = rightmost segm. of U(p) U C(p); findNewEvent(s”, s,., p) s
— D C GI Felkel: cOm(:l;t:jt;n)al geometry .

+ + + + 4+

H a n d Ie Eve n ts [modified Berg, page 25]

p

handleEventPoint(p) // precisely: handle all events with point p 7@&)

1. Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)
2. Search T for all segments S(p) that contain p (are adjacent in T°):
Let L(p) € S(p) = segments whose Lower endpointis p L(p)
Let C(p) € S(p) = segments that Contain p in interior
3. if(L(p)u U(p) U C(p) contains more than one segment) é{
4. report p as intersection o together with L(p), U(p), C(p) C(p)
5. Delete the segmentsin L(p) U C(p) from T s'l\pv ‘/°s,, 0
6. if(U(p)UC(p) =0)thenfindNewEvent(s,, S%// left & right neighbors
7. else Insert the segmentsin U(p) U C(p) into / reverse order of C(p) in T
(order as below ¢, horizontal segment as the last)
8. s’ = leftmost segm. of U(p) U C(p); findNewEvent(s;,s’,p) %pﬁ%
9. s” = rightmost segm. of U(p) U C(p); findNewEvent(s”, s,., p) s”
— D C GI Felkel: cOm(:l;t:jt;n)al geometry .

+ + + + 4+

Detection of new intersections

findNewEvent(s;, s, p) [/ with handling of horizontal segments
Input: two segments (left & right from p in T) and a current event point p
Output: updated event queue Q with new intersection o

1. if [(s; and s, intersect below the sweep line {) // intersection below {
Non-overlapping

or (s, intersects s” on £ and to the right of p)] // horizontal segment s”

and(the intersection © is not presentin Q) _ ——
2. then o Reported intersection - line 4

o New intersection to Q - line 6,8,9

insert intersection® as a new event into Q

S” = leftmost from U(p) U C(p)
S”" = rightmost from U(p) U C(p) line 8

: lin ” o
line 6 e8 s, and s” intersect on /,

e s; and s, intersect below s” is horizontal and to the right.of p
> -+
+
DCGI

4+

Line segment intersections

= Memory 0(I) = 0(n?) with duplicities in Q
or O(n) with duplicities in Q deleted
= Operational complexity
- 2n + I stops

- logn each
=>0(I +n)logn total, where [€ (0,n*)

= The algorithm is by Bentley-Ottmann

Bentley, J. L.; Ottmann, T. A. (1979), "Algorithms for reporting and counting geometric intersections”, IEEE
Transactions on Computers C-28 (9): 643-647, doi:10.1109/TC.1979.1675432 .

See also http://wapedia.mobi/en/Bentley%E2%80%930ttmann algorithm

- : -+
A e e e —f—
> -~ -
I Felkel: Computational geometry
I,(:(; (20/96)
-

http://wapedia.mobi/en/Jon_Bentley
http://wapedia.mobi/en/Digital_object_identifier
http://dx.doi.org/10.1109/TC.1979.1675432
http://wapedia.mobi/en/Bentley%E2%80%93Ottmann_algorithm

Overlay of two subdivisions
(intersection of DCELSs)

- : -+
P e fm e —f—
-+ —4
I Felkel: Computational geometry
I)(:(; (21/96)

Overlay of two subdivisions

DCEL S,

hole

- —.:_ ——
o mfe f f
> -~ -
I Felkel: Computational geometry
I,‘:(; (22 /1 96) |

Overlay of two subdivisions

DCEL s, DCEL s,

- —.:_ ——
o mfe f f
> -~ -
I Felkel: Computational geometry
I,‘:(; (22 /1 96) |

Overlay is a new planar subdivision

DCEL 0(S,, S,)

- : -+
e fo —a— -+
- -~ -1
I Felkel: Computational geometry
I,(:(; (23 /96)

Sweep line overlay algorithm

Compute new planar subdivision

Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records and vertices ® ®

Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records and vertices ® ®

Compute intersections ® and new half-edge records %
Y W W i (24 1 96)

Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records and vertices ® ®

Compute intersections ® and new half-edge records
Compute labels of new faces %

Y W W i (24 1 96)

Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records and vertices ® ®

Compute intersections ® and new half-edge records
Compute labels of new faces %

Y W W i (24 1 96)

Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records and vertices ® ®

Compute intersections ® and new half-edge records
Compute labels of new faces %

Y W W i (24 1 96)

Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records and vertices ® ®

Compute intersections ® and new half-edge records
Compute labels of new faces (a,b) %

Y W W i (24 1 96)

The algorithm principle

Copy DCELs of both subdivisions to invalid DCEL D

Transform the result into a valid DCEL for the
subdivision overlay 0(S4,S,)

— Compute the intersection of edges
(from different subdivisions §; N S,)

— Link together appropriate parts of the two DCELSs
* Vertex and half-edge records
* Face records

- —:_ -
A e e e —f—
-+ —4
I Felkel: Computational geometry
I,(:(; (25/96)

At an Event point

. Update queue Q (pop, delete intersections of separated edges below)
and Sweep Ilne StatUS tree T (add/remove/swap edges, intersect with neighbors)
as in line segment intersection algorithm

(cross pointers between edges in tree T and DCEL D to access part of D when processing an intersection)

= For vertex from single subdivision
— No additional work

= For intersection of edges from different subdivisions
— Link both DCELs
— Handle all possible cases

- —— =
> S~ o~ = 4
+* 4 =
DCGI Felkel: Computational geometry
(26 / 96)

Three types of intersections

New are intersections of different subdivisions

vertex — vertex: overlap of vertices

vertex — edge: edge passes through a vertex

edge — edge: edges intersect in their interior
(end point or edge overlay)

-))
> -~ -
I Felkel: Computational geometry
I)(:(; (27 1 96)

L+ 4+

Three types of intersections

New are intersections of different subdivisions

vertex — vertex: overlap of vertices

vertex — edge: edge passes through a vertex

Let’s discuss this case,
the other two are similar

edge — edge: edges intersect in their interior
(end point or edge overlay)

-))
> -~ -
I Felkel: Computational geometry
I)(:(; (27 1 96)

L+ 4+

vertex — edge update — the principle

\‘Q

é 4

Before: Before: After:
The geometry two half-edges four half-edges
(two shorter
and
two new)

- -~ -
S A o~ - —
-+ -+ -+
DCGI Felkel: Computational geometry
(28 / 96)

Pointers around the end-points of edge e

1. Edge e = (w, u) splits into two edges e’ and ¢'’ at intersection v

e’ = (w,v) e = (v,u)

uhalf-edge w,v) = |2. Shorten half-edge (u,w) to (u,v)
shortened (u, w) Shorten half-edge (w,u) to (w, v))

3. Create their twin (v, w) for (w, v)

/ N Create their twin (v,u) for (u,v)

4. Set new twin’s next to former edge e next

Its new twin

next(v, u) = next(w,u) now in next(w, v)
next(v, w) = next(u, w) now in next(u, v)
5. Set prev pointers to new twins

prev(next(v,u)) = (v,u)

- prev(next(v,w)) = (v,w)
S o Felkel: Computational geometry
DCGI (29 / 96)

Pointers around the end-points of edge e

1. Edge e = (w, u) splits into two edges e’ and ¢'’ at intersection v

e’ = (w,v) e = (v,u)

uhalf-edge w,v) = |2. Shorten half-edge (u,w) to (u,v)
shortened (u, w) Shorten half-edge (w,u) to (w, v))

lts new twin . .
X& Create their twin (v, w) for (w, v)

Create their twin (v,u) for (u,v)

4. Set new twin’s next to former edge e next
next(v, u) = next(w,u) now in next(w, v)
next(v, w) = next(u, w) now in next(u, v)

5. Set prev pointers to new twins

prev(next(v,u)) = (v,u)

- prev(next(v,w)) = (v,w)
S o Felkel: Computational geometry
DCGI (29 / 96)

Pointers around the end-points of edge e

1. Edge e = (w, u) splits into two edges e’ and ¢'’ at intersection v
e’ = (w,v) e = (v,u)
4 uhalf-edge wv)= (2. Shorten half-edge (u, w) to (u, v)
shortened (u, w) Shorten half-edge (w, u) to (w, v))

lts new twin . .
X& Create their twin (v, w) for (w, v)

Create their twin (v,u) for (u,v)

(4. Set new twin’s next to former edge e next
next(v, u) = next(w,u) now in next(w, v)
next(v, w) = next(u, w) now in next(u, v)

5. Set prev pointers to new twins

prev(next(v,u)) = (v,u)

- prev(next(v,w)) = (v,w)
S o Felkel: Computational geometry
DCGI (29 / 96)

Pointers around the end-points of edge e

1. Edge e = (w, u) splits into two edges e’ and ¢'’ at intersection v
e’ = (w,v) e = (v,u)
4 uhalf-edge wv)= (2. Shorten half-edge (u, w) to (u, v)
shortened (u, w) Shorten half-edge (w, u) to (w, v))

lts new twin . .
X& Create their twin (v, w) for (w, v)

Create their twin (v,u) for (u,v)

(4. Set new twin’s next to former edge e next
next(v, u) = next(w,u) now in next(w, v)
next(v, w) = next(u, w) now in next(u, v)

5. Set prev pointers to new twins

prev(next(v,u)) = (v,u)

- prev(next(v,w)) = (v,w)
S o Felkel: Computational geometry
DCGI (29 / 96)

Pointers around the end-points of edge e

1. Edge e = (w, u) splits into two edges e’ and ¢'’ at intersection v
e’ = (w,v) e = (v,u)
& uhalf-edge w,v) = |2. Shorten half-edge (u,w) to (u,v)
shortened (u, w) Shorten half-edge (w, u) to (w, v))

lts new twin . .
X& Create their twin (v, w) for (w, v)

Create their twin (v,u) for (u,v)

(4. Set new twin’s next to former edge e next
next(v, u) = next(w,u) now in next(w, v)
next(v, w) = next(u, w) now in next(u, v)

C?. Set prev pointers to new twins
prev(next(v,u)) = (v,u)

- prev(next(v,w)) = (v,w)
S o Felkel: Computational geometry
DCGI (29 / 96)

Pointers around the end-points of edge e

1. Edge e = (w, u) splits into two edges e’ and ¢'’ at intersection v
e’ = (w,v) e = (v,u)
& uhalf-edge w,v) = |2. Shorten half-edge (u,w) to (u,v)
shortened (u, w) Shorten half-edge (w, u) to (w, v))

lts new twin . .
X& Create their twin (v, w) for (w, v)

Create their twin (v,u) for (u,v)

(4. Set new twin’s next to former edge e next

m next(v, u) = next(w,u) now in next(w, v)

next(v, w) = next(u, w) now in next(u, v)
C?. Set prev pointers to new twins

prev(next(v,u)) = (v,u)

- prev(next(v,w)) = (v,w)
S o Felkel: Computational geometry
DCGI (29 / 96)

Pointers around intersection v

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
next(w,v) = x
prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin
next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
next(w,v) = x
prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin
next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin
next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin
next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
_~prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin
next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
_~prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin
next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
_~prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
~ next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin
next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
_~prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
~ next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin
next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
_~prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
+~—~ next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin
next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
_~prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
+~—~ next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin
next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
_~prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
+~—~ next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin
next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
_~prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
+~—~ next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin
next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
_~prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
+~—~ next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin

— next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
_~prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
+~—~ next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin

— next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
_~prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
+~—~ next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin

— next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
\ next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
_~prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
+~—~ next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin

— next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination
\ next, prev similarly

Felkel: Computational geometry %
(30 /96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
_~prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
+~—~ next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin

— next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination

‘\\ next, prev similarly
Felkel: Computational geometry %

(30/96)

Pointers around intersection v

\ W

first CW half-edge
from e’

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ next(w,v) =x
_~prev(x) = (w,v)

. Find the prev edge for e’ from half-edge (v, w)

= first CCW half-edge from e’ with v as destination
+~—~ next, prev similarly

. Find the next edge for e”’ from half-edge (u, v)

= first CW half-edge from e’ with v as origin

— next, prev similarly

. Find the prev edge for e’ from half-edge (v, u)

= first CCW half-edge from e’ with v as destination

‘\\ next, prev similarly
Felkel: Computational geometry %

(30/96)

Time cost for updating half-edge records

= All operations with splitting of edges in
intersections and reconnecting of prev, next
pointers take 0(1) time

= Locating of edge x position in cyclic order
— around single vertex v takes O(deg(v))

— which sums to 0(m) = number of edges processed by
the edge intersection algorithm = 0(n) = 0(1) per step

— The overall complexity is not increased
O(nlogn + klogn)
k = complexity of the overlay (=intersections)

n = |S¢| + 1S, Complexity of the input subdivisions

= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (31/96)

Face records for the overlay subdivision

= Create face records for each face f in 0(51,5,)

— Each face f has it unique outer boundary (CCW)
(except the background that has none)

— Each face has one OuterComponent(f) edge
— All faces together = #outer boundaries + 1 background

= InnerComponents(f) — list of edges of holes (cw)

= Label of f in 51 Used for Boolean operations
= Label of fin S, suchas ;N Sz, S1U Sz S1\S

Polygon examples: % 9)2

o ofe e e —— tegeC[O

—~ DC I Felkel: Computational geometry
(; (32/96)

Extraction of faces

= Traverse cycles in DCEL (Tarjan alg. DFS) ...0(n)

= Decide, if the cycle is outer or inner boundary
— Find the leftmost vertex of the cycle (bottom leftmost)
— Incident face lies to the left of edges
— Angle < 180° = outer (around)
— Angle > 180° = inner (hole)

Leftmost
vertex

- —:_ -+
A e e e —f—
> -~ -
I Felkel: Computational geometry
I)(:(; (33/96)

Which boundary cycles bound same face?

= Single outer boundary shares the face with its
holes — inner boundaries

= Graph
— Node for each cycle
©) inner

outer € unbounded

— Arc if inner cycle has half-edge immediately to the left
of the leftmost vertex

— Each connected component — set of cycles of one face

e A o = ——
> -~ -
—~ DC I Felkel: Computational geometry
(; (34 /96)

Graph G of faces and their relations

@hfﬁner (cw)
outer (ccw)
unbounded

Connected componentin G

' v — represents a face f with its holes

— connects outer face with its.holes
InnerComponents(f)

-+ —4
—~ DC I Felkel: Computational geometry
(; (35/96)

Graph G construction

ldea — during sweep line, we know the nearest left
edge for every vertex v (and half-edge with origin v)

1. Make node for every cycle
(graph traversal)

2. During plane sweep,

— store pointer to graph node for
each edge

— remember the leftmost vertex and
its nearest left edge <«

5 (e——)

new arc 3. Create arc between cycles of the
leftmost vertex an its nearest left

i edge
-+ —4 bt
I Felkel: Computational geometry
I)(:(; 4 (36 /96)

Face label determination

For intersection v of two edges:
During the sweep-line

In both new pieces, remember the
face of half-edge being split into two

After
Label the face by both labels

For face in other face (hole):
Known half-edge label only from S;

Use graph G to locate outer boundary
label for face from S,

(or store containing face f of other
subdivision for each vertex)

Felkel: Computational geometry %
(37 /96)
v

Map overlay algorithm

MapOverlay(S4, S,)
Input: Two planar subdivisions S; and S, stored in DCEL

Output: The overlay of §; and S, stored in DCEL D

1. Copy both DCELs for of S; and S, into DCEL D

2. Use plane sweep to compute intersections of edges from S; and S, (intersection)
Update vertex and edge records in D when the event involves edges of both S, S,
Store the half-edge to the left of the event point at the vertex in D

3. Traverse D (depth-first search) to determine the boundary cycles

2. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do

6. C < the unique outer boundary cycle holes

7. f < the face bounded by the cycle C.

8. Create a face record for f

9 OuterComponent(f) « some half-edge of C ,

10. InnerComponents(f) « list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycle C and the holes

12. Label each face of 0(S;, S,) with the names of the faces of §; and S, containing it

Felkel: Computational geometry

Map overlay algorithm

MapOverlay(S4, S,)
Input: Two planar subdivisions S; and S, stored in DCEL // memory complexity n

Output: The overlay of §; and S, stored in DCEL D

1. Copy both DCELs for of S; and S, into DCEL D

2. Use plane sweep to compute intersections of edges from S; and S, (intersection)
Update vertex and edge records in D when the event involves edges of both S, S,
Store the half-edge to the left of the event point at the vertex in D

3. Traverse D (depth-first search) to determine the boundary cycles

2. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do

6. C « the unique outer boundary cycle holes

7. f < the face bounded by the cycle C.

8. Create a face record for f

9 OuterComponent(f) « some half-edge of C ,

10. InnerComponents(f) « list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycle C and the holes

12. Label each face of 0(S;, S,) with the names of the faces of §; and S, containing it

Felkel: Computational geometry

Map overlay algorithm

MapOverlay(S4, S,)
Input: Two planar subdivisions S; and S, stored in DCEL // memory complexity n

Output: The overlay of §; and S, stored in DCEL D

1. Copy both DCELs for of §; and S, into DCEL D // O(n)

2. Use plane sweep to compute intersections of edges from S; and S, (intersection)
Update vertex and edge records in D when the event involves edges of both S5, S,
Store the half-edge to the left of the event point at the vertex in D

3. Traverse D (depth-first search) to determine the boundary cycles

2. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do

6. C « the unique outer boundary cycle holes

7. f < the face bounded by the cycle C.

8. Create a face record for f

9 OuterComponent(f) « some half-edge of C ,

10. InnerComponents(f) « list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycle C and the holes

12. Label each face of 0(S;, S,) with the names of the faces of §; and S, containing it

Felkel: Computational geometry

Map overlay algorithm

MapOverlay(S4, S,)
Input: Two planar subdivisions S; and S, stored in DCEL // memory complexity n

Output: The overlay of §; and S, stored in DCEL D

1. Copy both DCELs for of §; and S, into DCEL D // O(n) /) Oén logn + k logn)

2. Use plane sweep to compute intersections of edges from S; and S, (intersection)
Update vertex and edge records in D when the event involves edges of both S5, S,
Store the half-edge to the left of the event point at the vertex in D

3. Traverse D (depth-first search) to determine the boundary cycles

2. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do

6. C « the unique outer boundary cycle holes

7. f < the face bounded by the cycle C.

8. Create a face record for f

9 OuterComponent(f) « some half-edge of C ,

10. InnerComponents(f) « list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycle C and the holes

12. Label each face of 0(S;, S,) with the names of the faces of §; and S, containing it

Felkel: Computational geometry

Map overlay algorithm

MapOverlay(S4, S,)
Input: Two planar subdivisions S; and S, stored in DCEL // memory complexity n

Output: The overlay of §; and S, stored in DCEL D

1. Copy both DCELSs for of S; anq S, into .DCEL D /I 0(n) /) Oén logn + k logn)

2. Use plane sweep to compute intersections of edges from S; and S, (intersection)
Update vertex and edge records in D when the event involves edges of both S5, S,
Store the half-edge to the left of the event point at the vertex in D

5. Traverse D (depth-first search) to determine the boundary cycles // O(n)

2. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do

6. C « the unique outer boundary cycle holes

7. f < the face bounded by the cycle C.

8. Create a face record for f

9 OuterComponent(f) « some half-edge of C ,

10. InnerComponents(f) « list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycle C and the holes

12. Label each face of 0(S;, S,) with the names of the faces of §; and S, containing it

Felkel: Computational geometry

Map overlay algorithm

MapOverlay(S4, S,)
Input: Two planar subdivisions S; and S, stored in DCEL // memory complexity n

Output: The overlay of §; and S, stored in DCEL D

1. Copy both DCELSs for of S; anq S, into .DCEL D /I 0(n) /) Oén logn + k logn)

2. Use plane sweep to compute intersections of edges from S; and S, (intersection)
Update vertex and edge records in D when the event involves edges of both S5, S,
Store the half-edge to the left of the event point at the vertex in D

5. Traverse D (depth-first search) to determine the boundary cycles // O(n)

2. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do i

6. C < the unique outer boundary cycle holes

7. f < the face bounded by the cycle C.

8. Create a face record for f _ /] 0(k)

9 OuterComponent(f) « some half-edge of C ,

10. InnerComponents(f) « list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycle C and the holes

2. Label each face of 0(S;, S,) with the names of the faces of S; and S, containing it

Felkel: Computational geometry

Map overlay algorithm

MapOverlay(S4, S,)
Input: Two planar subdivisions S; and S, stored in DCEL // memory complexity n

Output: The overlay of §; and S, stored in DCEL D

1. Copy both DCELSs for of S; anq S, into .DCEL D /I 0(n) /) Oén logn + k logn)

2. Use plane sweep to compute intersections of edges from S; and S, (intersection)
Update vertex and edge records in D when the event involves edges of both S5, S,
Store the half-edge to the left of the event point at the vertex in D

5. Traverse D (depth-first search) to determine the boundary cycles // O(n)

2. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do i

6. C < the unique outer boundary cycle holes

7. f < the face bounded by the cycle C.

8. Create a face record for f _ /] 0(k)

9 OuterComponent(f) « some half-edge of C ,

10. InnerComponents(f) « list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycle C and the holes

2. Label each face of 0(S;, S,) with the names of the faces of S; and S, containing it
Felkel: Computational geome

PIOCT 58196) P Oo(nlogn + klogn))RR

Running time

The overlay of two planar subdivisions with total
complexity n can be constructed in
O(nlogn + klogn)

where k = complexity of the overlay (=intersections)

- : -+
A e e e —f—
> -~ -
I Felkel: Computational geometry
(; (39/96)
7 DC .

Axis parallel rectangles
intersection

- : -+
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (40/96)

Intersection of axis parallel rectangles

= Given the collection of n isothetic rectangles,

report all intersecting parts

A

Fe

/"' - - - \\‘
. Overlap W

Fy

(Inclusion)

o’ o o~ == =

»
»

Alternate sides
belong to two

pencils of lines
(trsy pfimek)

(often used with
points in infinity
= axis parallel)
2D => 2 pencils

(7]

Felkel: Computational geometry

(411 96)

et

Brute force intersection

Brute force algorithm
Input: set S of axis parallel rectangles
Output: pairs of intersected rectangles

1. For every pair (1;,17) of rectangles € S,i # j
2. if (r; N7, # @) then
3. report (13, 17)

Analysis
Preprocessing: None.

Query: O(N?) (g’) = N(A;_l) € O(N?).

Storage: O(N)

- o~
>~ o~ =~ 4 —I
+

- ==

7 DCGI

Plane sweep intersection algorithm

S
y
not active
rectangle
active
rectangle
- — X
+ sweep line

+++++ [Drtina]

—~ Dc I Felkel: Computational geometry
(; (43 /96)

Plane sweep intersection algorithm

= Vertical sweep line moves from left to right
= Stops at every x-coordinate of a rectangle

(either at its left side or at its right side).
= active rectangles — a set

[]

L1

= rectangles currently intersecting the sweep line

— left side event of a rectangle [— start
=> the rectangle is added to the active set.
— right side] —end

=> the rectangle is deleted from the active set.
= [he active set used to detect rectangle intersection

o’ o o~ == =

—~ DC I Felkel: Computational geometry
(; (44 /96)

et

Interval tree as sweep line status structure

= Vertical sweep-line => only y-coordinates along it

= [he status tree is drawn horizontal - turn 90° right
as if the sweep line (y-axis) is horizontal

T - -

not active
ectangle

>

active
ectangl

- —.:_ -+
= == =~ ——
-+ —4
I Felkel: Computational geometry
I)(:(; (45/96)

Intersection test — between pair of intervals

= Giventwointervals I = [y, y,] and I' = |y, v,]
the condition I n I'is equivalent to one of these

mutually exclusive conditions: 1st variant
V1 Y2
/ v
a <y < . *
) VIS V1SV , 5
OR
V1 Y2
b) vi <y1 =3 : : .
Y1 Y2
Intervals along the sweep line a) b) b)
T T T T H - - - - FF
e e et 3 Intersection (fork)
-~ DCGI Felkel: Computational geometry %

(46 / 96)

Intersection test — between pair of intervals

= Giventwointervals I = [y, y,] and I' = |y, v,]
the condition I n I’ is equivalent to both of these

conditions simultaneously: ond yariant
Vi Y2
v
1) v, < . .
) Vi S V2 Vi Vs
AND
, Y1 Y2
2)y1 =) f : .
Intervals along the sweep line V1 Y2
2) 1,2) 1,2) 1,2) 1)
O L L L L A B I e

e e ot S Intersection (fork)
-+~ -~ -
-~ DCGI Felkel: Computational geometry
(47 /96)
v

Intersection test — between pair of intervals

= Giventwointervals I = [y, y,] and I' = |y, v,]
the condition I n I’ is equivalent to both of these

conditions simultaneously: ond yariant
y.{ 3:5
v
1) v < . *
) Vi <V, Vi , Vs
311
AND)
, Y1 Y2
2)y1 =) f : .
Intervals along the sweep line V1 Y2
2) 1,2) 1,2) 1,2) 1)
T T T &I T mem Ty T

e e ot S Intersection (fork)
+* 4 =
-~ DCGI Felkel: Computational geometry
(47 796)

Intersection test — between pair of intervals

= Given two intervals I = [y, y,] and I’ = [y}, y}]

the condition I n I’ is equivalent to both of these
conditions simultaneously:

2"d variant
1 %
v <y, ’ * °
V1 / Y2 ;
311 Y2
AND E - :
V1 Y2
2) y1 <3 | f : .
Intervals along the sweep line V1 Y2
2) 1,2) 1,2) 1,2) 1)
R L A = A N

+++++ Intersection (fork)
+* 4 =
-~ DCGI Felkel: Computational geometry
(47 796)

Static interval tree — stores all end point y,

= Letv=y,,.4 bethe median of end-points of segments

= §; :segments of S that are completely to the left of y,,,.q4
= Shneq- Segments of S that contain y,,,.4

= S, :segments of S that are completely to the right of y,,.4

Smed

Sy

_>y

Ymed

o [Vigneron]
s S -~ ——
-+ -+ -+
—~ DC I Felkel: Computational geometry
(; (48 /96) |

Fo+ +

Static interval tree — stores all end point y,

= Letv=y,,.4 bethe median of end-points of segments

= §; :segments of S that are completely to the left of y,,,.q4
= Shneq- Segments of S that contain y,,,.4

= S, :segments of S that are completely to the right of y,,.4

~aned

Sy

“toilet brush”

_>y

Ymed

o [Vigneron]
s S -~ ——
-+ -+ -+
—~ DC I Felkel: Computational geometry
(; (48 /96) |

Fo+ +

Static interval tree — Example

'.8 l <—
S3 ; S9
— Sy
%
S6
S5 0
Smed 57

Left ends —ascending —>
Right ends — descending <—

5y

Interval tree on Interval tree on
S3 and sx So and s~

-
- i [Vigneron]
- DCGI Felkel: Computational geometry J
(49 / 96)

Static interval tree [edeisbrunnerso;

= Stores intervals along y sweep
line T

= 3 kinds of information /‘
- end points

- incident
intervals

- active nodg

5 ¢
1 2 |3 |4 |5 |6

Primary structure — static tree for endpoints

Static — known

v = midpoint of all T
from beginning

segment endpoints ~ _--
H(v) = value (y-coord) of v /

Secondary lists of incident interval end-pts.

ML(v) — left endpoints of interval containing v Dynamic

(sorted ascending)
MR(v) — right endpoints ./
(descending)

7\
5 6

o
. e s T S -
B
+++++ ®
-+ -+~ [Kukral]
-+ DCGI Felkel: Computational geometry
(52 / 96)

Active nodes — Intersected by the sweep line

Subset of all nodes currently LPTR | Dynamic
intersected by the sweep line Active node
(nodes with intervals) / , 4‘ ~BTR
7
Active node 2 ,/ \
— e

Active node

1 2 3 4 5 6

o’ e [Kukral]

o DC GI Felkel: Computational geometry :>
(53 /96)

Entries in the event queue

——0

. (Xi »YiL,Yir»t)
(xq,1, 3, lef)
(x,,2,4, left)
(x3,1, 3, right)
(x4,2,4, right)

_Y_I
Static nodes in the SL status tree

. 1,2,3,4

- —.:_ ——
o mfe f f
> -~ -
I Felkel: Computational geometry
+
I,(:(; (54 /96)

+ + + + 4+

Query = sweep and report intersections

Rectanglelntersections(S)
Input: Set S of rectangles
Output: Intersected rectangle pairs

1. Preprocess(S) /] create the interval tree T (for y-coords)

/[and event queue Q

(for x-coords)

2. while(Q #0)do

3. Get next entry (x;, y;, yig, t) from Q II't €{left| ri&ht}

4. if (t=left) //leftedge [LU

5. a) QuerylInterval (y;;, y;r,root(T)) // report intersections
0. b) Insertinterval (y;; y;r,root(T)) // insert new interval
7. else // right edge []

8. c) Deletelnterval (y;; yir, root(T))

g

Preprocessing

Preprocess(S)
Input: Set S of rectangles
Output: Primary structure of the interval tree T and the event queue Q

1. T =PrimaryTree(S) // Construct the static primary structure
I/ of the interval tree -> sweep line STATUS T

2. [/ Init event queue Q with vertical rectangle edges in ascending order ~x
// Put the left edges with the same x ahead of right ones (lexicographic)

3. fori=1ton

4, insert((xiL,yiL, Yirs left), Q) /I left edges of i-th rectangle

5. insert((xiR,yiL, YiRs right), Q) // right edges

- - —+
7 DCGI |

Interval tree — primary structure construction

PrimaryTree(S) I/ only the y-tree structure, without intervals
Input: Set S of rectangles

Output: Primary structure of an interval tree T

1. §, = Sort endpoints of all segments in S according to y-coordinate
2. T=BST(S,))

3. return T

BST(S,)

if(|[S,|=0) return null

yMed = median of S, // the smaller item for even S,.size
L = endpoints p, < yMed

R = endpoints p, > yMed

t = new IntervalTreeNode(yMed)

t.left =BST(L)

t.right = BST(R)

return ¢t

—
—
+

+ + + + 4+

ONSIOR WD~

*I

3
t!
b

!
=
&
@

Interval tree — search the intersections

Queryinterval (b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [b, €] HS) o enal beha
b | Je
® - ®

Other new interval being
tested for intersection

|

Crosses A,B

Crdgsses A,B,C

4——.—-——————.———-—.-—.—.-—.—.—.—.—

@ Cross.B
H
Crosses A,B,C
@
Crosses C
® r
Crosses nothin
o &
Stored intervals A 5 i
- of active rectangles C‘ °
> S o~ —— ® v oV
- -+ -+

7 DCGI &= UIJDTR—o. o] [T.RP.TR ,_',_] .

Interval tree — search the intersections

Queryinterval (b, e, T)
Input: Interval of the edge and currenttree T _ _
Output: Report the rectangles that intersect [b, e] H(v) Newinterval being

. tested for intersection
1. if(T = null) return Q
b | ¥ e
@ A ®

Other new interval being
tested for intersection

|

Crosses A,B

Crdgsses A,B,C

4——.—-——————.———-—.-—.—.-—.—.—.—.—

@ Cross.B
H
Crosses A,B,C
@
Crosses C
® r
Crosses nothin
o &
Stored intervals A 5 i
- of active rectangles C‘ °
> S o~ —— ® v oV
- -+ -+

7 DCGI & UIJDTR—o. .] [T.RP.TR ,_',_] .

Interval tree — search the intersections

Queryinterval (b, e, T)

Input: Interval of the edge and currenttree T
Output: Report the rectangles that intersect [b, e]
1. if(T = null) return

2. i=0;if(b <H(v)<e) // forks at this node ° | v e

H(V) New interval being
Q tested for intersection

Other new interval being
tested for intersection

|

Crosses A,B

Crdgsses A,B,C

4——.—-——————.———-—.-—.—.-—.—.—.—.—

@ Cross.B
H
Crosses A,B,C
@
Crosses C
® r
Crosses nothin
o &
Stored intervals A 5 i
- of active rectangles C‘ °
> S o~ —— ® v oV
- -+ -+

7 DCGI & UIJDTR—o. .] [T.RP.TR ,_',_] .

Interval tree — search the intersections

Queryinterval (b, e, T)

Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [b, e] H(v) te’:;"; Ifztre.r:ir:::in
1. if(T = null) return @ /

2. i=0; if(b < H(v) <e) /I forks at this node > BN

3. while LMEOA T =>=Hh 1 && (i < Count(v)) // Repor{t all intervals inM

4, Reportintersection; i++

Other new interval being
tested for intersection

|

|
|
|
?

Crosses A,B
Crdsses A,B,C. Cross.B
H
Crosses A,B,C
@
C C
® rosses
Crosses nothin
o 5
/Stored intervals + A 5 $
- of active rectangles —3 °
- ++: —7—_ — ® v C oV
- -+ -+
7 = | (zrerR ,_',_]
. ® ® .
DCGI a | :

Interval tree — search the intersections

Queryinterval (b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [b, e] H(v) te’:;"; Ifr:)trelrr\\ltaelrls)ee(l::il)n
1. if(T = null) return @ /

2. i=0; if(b < H(v) <e) /I forks at this node > BN

3 while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++

5 Queryinterval(b,e, T.LPTR) e // jump to active ©thernewintervalbeing

tested for intersection

|

Crosses A,B
o

I
I
|
I
I
|
i@ _Cross.B
P "0

gsses A,B,C
Crosses A,B,C
@
C C
® rosses
Crosses nothin
o 5
/Stored intervals + A 5 $
- of active rectangles —3 °
S ® \ 4 C .V
> S~ o~ 4
- -+ -+
7 = | (zrerR ,_',_]
. ® ® .
DCGI a | :

Interval tree — search the intersections

Queryinterval (b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [b, e] H(v) te’:;"; Ifr:)trelrr\\ltaelrls)ee(l::il)n

1. if(T = null) return @ /

2. i=0; if(b < H(v) <e) /I forks at this node > BN

3 while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++

5 Querylinterval(b,e, T.LPTR) e— // jump to active; = "ewene being
6 Queryinterval(b,e, T.RPTR)e— [/ node below

|

Crosses A,B
o

I
I
I
I
I
|
i@ _Cross.B
P "0

gsses A,B,C
Crosses A,B,C
@
C C
® rosses
Crosses nothin
o 5
/Stored intervals + A 5 $
- of active rectangles —3 °
S ® \ 4 C .V
> S~ o~ 4
- -+ -+
7 = | (zrerR ,_',_]
. ® ® .
DCGI a | :

Interval tree — search the intersections

Queryinterval (b, e, T)

Input: Interval of the edge and currenttree T
Output: Report the rectangles that intersect [b, €] H(v) ot for i
1. if(T = null) return @ /

2. i=0; if(b < H(v) <e) /I forks at this node > BN

3 while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++

5. Queryinterval(b,e, T.LPTR) e— /[jump to active.
6

7

New interval being

Other new interval being
tested for intersection

|

Crosses A,B
o

Querylinterval(b,e, T.RPTR)— // node below
else if (H(v) < b <e) // search RIGHT (<)

I

I

I

I

I

|

r g Cross.B
H

gsses A,B,C
Crosses A,B,C
@
C C
® rosses
Crosses nothin
o 5
/Stored intervals + A 5 $
- of active rectangles —3 °
S ® \ 4 C .V
> S~ o~ 4
- -+ -+
7 = | (zrerR ,_',_]
. ® ® .
DCGI a | :

Interval tree — search the intersections

Queryinterval (b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [b, e] H(v) te’:;"; Ifr:)trelrr\\ltaelrls)ee(l::il)n
1. if(T = null) return @ /
2. i=0; if(b < H(v) <e) /I forks at this node > BN
3. while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++
5. Querylnterval(b,e,T.LPTR) s //jump to actlve: O e e e
6. Queryinterval(b,e, .RPTR)e— // node below . 1
7. elseif (H(v) <b<e) //search RIGHT (+-) | Crosets A5
8. while (MR(v).[i] >= b) && (i < Count(v)) 9
0. Reportintersection; i++ p—=IRR0olBle (CrossB
° Crosses A,B,C
® Crosses C
./Crosses noth|n$
: A
o S e | B
S DCGI <:| \\[T.L’DTR—.. °] [T.RP.TR ,—.,_] +

Interval tree — search the intersections

Queryinterval (b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [b, e] H(v) te’:;"; Ifr:)trelrr\\ltaelrls)ee(l::il)n
1. if(T = null) return @ /
2. i=0; if(b < H(v) <e) /I forks at this node > BN
3. while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++
5. Querylnterval(b,e,T.LPTR) s //jump to actlve: O e e e
6. Queryinterval(b,e, .RPTR)e— // node below . 1
7. elseif (H(v) <b<e) //search RIGHT (+-) | Crosets A5
8. while (MR(v).[i] >= b) && (i < Count(v)) 9
0. Reportintersection; i++ p—=IRR0olBle (CrossB
10. Queryinterval(b,e, T.RPTR)e—e o CrOSSeSABC
® Crosses C
./Crosses nothina
; A
o S e | B
S DCGI <:| \\[T.L’DTR—.. °] [T.RP.TR ,—.,_] +

Interval tree — search the intersections

Queryinterval (b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [b, e] H(v) te’:;"; Ifr:)trelrr\\ltaelrls)ee(l::il)n
1. if(T = null) return @ /
2. i=0; if(b < H(v) <e) /I forks at this node > BN
3. while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++
5. Querylnterval(b,e,T.LPTR) s //jump to actlve: O e e e
6. Queryinterval(b,e, .RPTR)e— // node below . 1
7. elseif (H(v) <b<e) //search RIGHT (+-) | Crosets A5
8. while (MR(v).[i] >= b) && (i < Count(v)) |
0. Reportintersection; i++ p—=IRR0olBle (CrossB
10. Queryinterval(b,e, T.RPTR)e—e o CrOSSeSABC
11. else // b <e < H(v) //[search LEFT(-g) Crossesc_
° Crosses nothina
‘. . A
o S e | B
S DCGI <:| \\[T.L’DTR—.. °] [T.RP.TR ,—.,_] +

Interval tree — search the intersections

Queryinterval (b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [b, e] H(v) te’:;"; Ifr:)trelrr\\ltaelrls)ee(l::il)n
1. if(T = null) return @ /
2. i=0; if(b < H(v) <e) /I forks at this node > BN
3. while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++
5. Querylnterval(b,e, .LPTR)e— // jump to actlve: Other new interval being
6. Queryinterval(b,e, .RPTR)e— // node below . 1
7. elseif (H(v) <b<e) //search RIGHT (+-) | Crosets A5
8. while (MR(v).[i] >= b) && (i < Count(v)) i+ + T
0. Reportintersection; i++ p—=IRR0olBle (CrossB
10. Queryinterval(b,e, T.RPTR)e—e o CrOSSeSABC
11. else // b <e < H(v) //[search LEFT(-g) Crossesc_
12. while (ML(V)[l] <= e) .Crosses nothina
13. Reportintersection; i++ stored interv:t |.A —e
. T of active rect glef ! C‘ 3 !]
S DCGI <:| \\[T.L’DTR—.. °] [T.RP.TR ,—.,_] +

Interval tree — search the intersections

Queryinterval (b, e, T)
Input: Interval of the edge and currenttree T

Output: Report the rectangles that intersect [b, e] H(v) te’:;"; Ifr:)trelrr\\ltaelrls)ee(l::il)n
1. if(T = null) return @ /
2. i=0; if(b < H(v) <e) /I forks at this node > BN
3. while LMEOA T =>=Hh 1 && (i < Count(v)) // Repoﬂt all intervals inM
4. Reportintersection; i++
5. Querylnterval(b,e, .LPTR)e— // jump to actlve: Other new interval being
6. Queryinterval(b,e, .RPTR)e— // node below . 1
7. elseif (H(v) <b<e) //search RIGHT (+-) | Crosets A5
8. while (MR(v).[]] >= b) && (i < Count(v)) .
0. Reportintersection; i++ p—=IRR0olBle (CrossB
10. Queryinterval(b,e, T.RPTR)e—e o CrOSSeSABC
11. else // b <e < H(v) //[search LEFT(-g) Crossesc_
12. while (ML(V)[l] <= e) .Crosses nothina
13. Reportintersection; i++ (stored .nterv:t |. A —e
_14. = -QuerylInterval(b,e, T.LPTR) ofactiverectapgles |~ :
S DCGI <:| \\[T.L’DTR—.. °] [T.RP.TR ,—.,_] +

Interval tree - interval insertion

Insertinterval (b, e, T)
Input: Interval [b,e] and interval tree T
Output: T after insertion of the interval

New interval
1 oy = rOOt(T) H(V) being inserted
2. while(v!=null) // find the fork node @ /
3. i if(H(v)<b<e) | ’ :
4. v =v.right // continue right |
5. elseif (b<e<H(WV) . .
6. v = v.left // continue left |
7. else // b <H(v) <e //insertinterval . e— .
8. set v node to active ¢ 1
9. i connect LPTR resp. RPTR to its parent (active node above)
10. ¢ insert [b,e] into list ML(v) — sorted in ascending order of b’s
11. ¢ insert [b,e] into list MR(v) — sorted in descending order of e’s
12. break
13. endwhile

14, return T %
” DCGI |

o+ 4+

Example 1

Felkel: Computational geometry

(60 / 96)

fet

Example 1 — static tree on endpoints

H(v) — value of node v

e [Drtina]
-+ -+ -+
—~ DC I Felkel: Computational geometry
+
(; (61/96)

Fo+ + +

Interval insertion [1,3] a) Query Interval O

Search MR(Vv) or ML(v): —— b < H(v) <e

MR(V) is empty 1 <)< 3
No active sons, stop

1

|:| Active rectangle
O Current node

@ Active node

—-~

DCGI

[Drtina]
Felkel: Computational geometry
(62 / 96)

Interval insertion [1,3]

b) Insert Interval &

1

|:| Active rectangle
O Current node

@ Active node

—-~

b<H(v)<e

?1<2)=<37?

DCGI

Felkel: Computational geometry

(63 /96)

Interval insertion [1,3] b) Insert Interval [
b<H(v)<e

? 1 <)< 3 fork
=> to lists

[X

|:| Active rectangle
(O current node A

’ Active node [Drtinal %
S o Felkel: Computational geometry
DCGI 3

Interval insertion [2,4] a) Query Interval [

Search MR(v) only: -« H(v) <b<e
MR(V)[1] = 3 > 22 2)<2<4
=> |ntersection

|:| Active rectangle
O Current node
@ Active node

7 DCGI

[Drtina]
Felkel: Computational geometry
(65 / 96)

Interval insertion [2,4] b) Insert Interval &
b<H(v)<e

2=(2)=4 fork
=> to lists

|:| Active rectangle
O Current node

‘ Active node [Drtina] %
= Felkel: Computational geometry
DCGI e

Interval delete [1,3]]

|:| Active rectangle
O Current node =

@ Active node [Drtina %
S o Felkel: Computational geometry
DCGI e

Interval delete [1,3]

|:| Active rectangle
O Current node
@ Active node

A

” DCGI

Felkel: Computational geometry

(68 / 96)

Interval delete [2,4]

|:| Active rectangle
O Current node
@ Active node

” DCGI

Felkel: Computational geometry

(69 1 96)

Interval delete [2,4] 1

—
N
9
AN

A 4

- £+ 4 [Drtina]
-~ -+ -+
= DC GI Felkel: Computational geometry
1 +
(70/96)

+ 4+ + + o+ 4+

Example 2

Felkel: Computational geometry

(711 96)

et

Query = sweep and report intersections

Rectanglelntersections(S)
Input: Set S of rectangles

Il this is a copy of the slide before
Il just to remember the algorithm

Output: Intersected rectangle pairs

1. Preprocess(S) /] create the interval tree T (for y-coords)
// and event queue Q (for x-coords)

2. while (Q +0)do

3. Get next entry (x;, y;, yig, t) from Q II't e{left] ri&ht}

4. if (t=left) //leftedge [LU

5. a) QuerylInterval (y;;, y;r,root(T)) // report intersections

6. b) Insertinterval (y;; y;r,root(T)) // insert new interval

7. else // right edge []

8. c) Deletelnterval (y;; yir, root(T))

fet

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ _ [Drtina]
S DCGI Felkel: Computational geometry
- +
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

@)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

@)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ _ [Drtina]
S DCGI Felkel: Computational geometry
- +
(73 /96)

Example 2 — tree created by PrimaryTree(S)

@)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ _ [Drtina]
S DCGI Felkel: Computational geometry
- +
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ _ [Drtina]
S DCGI Felkel: Computational geometry
- +
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ _ [Drtina]
S DCGI Felkel: Computational geometry
- +
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ _ [Drtina]
S DCGI Felkel: Computational geometry
- +
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

- —.:_ —+ < e >
+++++
x ¥+ 7 : [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

+++++

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

- —.:_ —+ < e >
+++++
x ¥+ 7 : [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

+++++

Example 2 — tree created by PrimaryTree(S)

o’ o o~ == =

WE

»ld »ld
Ll Lt

b

Felkel: Computational geometry

(731 96)

+++++

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

- —.:_ —+ < e >
+++++
x ¥+ 7 : [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

++++++

Example 2 — tree created by PrimaryTree(S)

- —.:_ —+ < e >
+++++
x ¥+ 7 : [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

+++++

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

A 4
A
Y

- —.:_ —+ < e >
+++++
< ¥ i+ , [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

Example 2 — tree created by PrimaryTree(S)

- —.:_ —+ < e >
+++++
x ¥+ 7 : [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

++++++

Example 2 — tree created by PrimaryTree(S)

- * = ”
o mfe f f
-+ -+ = [Drtina]
I Felkel: Computational geometry
+
I)‘:(; (73 /96)

++++++

Example 2 — tree created by PrimaryTree(S)

- —.:_ —+ < e >
+++++
x ¥+ 7 : [Drtina]
S DCGI Felkel: Computational geometry
+
(73 /96)

++++++

Example 2 — tree created by PrimaryTree(S)

o’ o o~ == =

»ld
Lt

Felkel: Computational geometry

(731 96)

++++++

Example 2 — tree created by PrimaryTree(S)

o’ o o~ == =

»ld
Lt

Felkel: Computational geometry

(731 96)

++++++

Example 2 — slightly unbalanced tree

Insert [2,3] — empty =>b) Insert Interval b < H(v) <e

A

Insert the new interval to secondary lists

X

|:| Active rectangle
O Current node b
@ Active node

S >
: [Drtina]
- DCGI Felkel: Computational geometry
(757 96)
v

A
A 4
A
A 4

A 4
A

A
A 4

A

Insert [2,3] — empty =>b) Insert Interval b < H(v) <e

A

Insert the new interval to secondary lists

X

|:| Active rectangle
O Current node b
@ Active node

S >
: [Drtina]
- DCGI Felkel: Computational geometry
(757 96)
v

A
A 4
A
A 4

A 4
A

A
A 4

A

Insert [2,3] — empty =>b) Insert Interval b < H(v) <e

A

Insert the new interval to secondary lists

X

|:| Active rectangle
O Current node b
@ Active node

S >
: [Drtina]
- DCGI Felkel: Computational geometry
(757 96)

A
A 4
A
A 4

A 4
A

A
A 4

A

Insert [2,3] — empty =>b) Insert Interval b < H(v) <e

A

Insert the new interval to secondary lists 22 <(3)< 37

X

|:| Active rectangle
O Current node b
@ Active node

S >
: [Drtina]
- DCGI Felkel: Computational geometry
(757 96)
v

A
A 4
A
A 4

A 4
A

A
A 4

A

Insert [2,3] — empty =>b) Insert Interval b < H(v) <e

A

Insert the new interval to secondary lists 22 <(3)< 37

X

|:| Active rectangle
O Current node b
@ Active node

S >
: [Drtina]
- DCGI Felkel: Computational geometry
(757 96)
v

A
A 4
A
A 4

A 4
A

A
A 4

A

Insert [2,3] — empty =>b) Insert Interval b < H(v) <e

A

Insert the new interval to secondary lists 22 <(3)< 37

X

|:| Active rectangle
O Current node b
@ Active node

S >
: [Drtina]
- DCGI Felkel: Computational geometry
(757 96)
v

A
A 4
A
A 4

A 4
A

A
A 4

A

Insert [2,3] — empty =>b) Insert Interval b < H(v) <e

A

Insert the new interval to secondary lists 22 <(3)< 37

X

|:| Active rectangle
O Current node b
@ Active node

S >
: [Drtina]
- DCGI Felkel: Computational geometry
(757 96)
v

A
A 4
A
A 4

A 4
A

A
A 4

A

Insert [2,3] — empty =>b) Insert Interval b < H(v) <e

A

Insert the new interval to secondary lists 22 <(3)< 37

X

|:| Active rectangle
O Current node b
@ Active node

S >
: [Drtina]
- DCGI Felkel: Computational geometry
(757 96)

A
A 4
A
A 4

A 4
A

A
A 4

A

Insert [3,7] a) Query Interval H(v) <b <e

for (all in MR(v)) test MR(V)[i] >= 3
o => report intersection c
go right, nil, stop

X

A
A 4
A
\ 4

A 4
A

|:| Active rectangle
O Current node b >
@ Active node

S >
) [Drtina]
- DCGI Felkel: Computational geometry
(76 / 96)

A

A

Insert [3,7] a) Query Interval H(v) <b <e

for (all in MR(v)) test MR(V)[i] >= 3
o => report intersection c
go right, nil, stop

X

A
A 4
A
\ 4

A 4
A

|:| Active rectangle
O Current node b >
@ Active node

S >
) [Drtina]
- DCGI Felkel: Computational geometry
(76 / 96)

A

A

Insert [3,7] a) Query Interval H(v) <b <e

for (all in MR(v)) test MR(V)[i] >= 3
o => report intersection c
go right, nil, stop

X

A
A 4
A
\ 4

A 4
A

|:| Active rectangle
O Current node b >
@ Active node

S >
) [Drtina]
- DCGI Felkel: Computational geometry
(76 / 96)

A

A

Insert [3,7] a) Query Interval H(v) <b <e

for (all in MR(v)) test MR(V)[i] >= 3 A3x3<77?
o => report intersection c
go right, nil, stop

X

A
A 4
A
\ 4

A 4
A

|:| Active rectangle
O Current node b >
@ Active node

S >
) [Drtina]
- DCGI Felkel: Computational geometry
(76 / 96)

A

A

Insert [3,7] b) Insert Interval b < H(v) <e
Y A

Insert the new interval to secondary lists 3«37

X

|:| Active rectangle
O Current node b
@ Active node

€ >
) [Drtina]
S o DC GI Felkel: Computational geometry
(77 196)

A
A 4
A
\ 4

4
A 4

A
A 4

A

Insert [3,7] b) Insert Interval b < H(v) <e
Y A

Insert the new interval to secondary lists 3«37

X

|:| Active rectangle
O Current node b
@ Active node

€ >
) [Drtina]
S o DC GI Felkel: Computational geometry
(77 196)

A
A 4
A
\ 4

4
A 4

A
A 4

A

Insert [0,2] a) Query Interval b <e < H(V)

for (all in ML(v)) test ML(V).[i] <2 ?20<2<3p
o => report intersection c
go left, nil, stop

v
o
—
N
W
AN
i
(@)}
N
(0]

A
A 4
A
A 4

4
A 4

|:| Active rectangle
O Current node b >
@ Active node

S >
: [Drtina]
- DCGI Felkel: Computational geometry
(78 / 96)

A

A

Insert [0,2] a) Query Interval b <e < H(V)

for (all in ML(v)) test ML(V).[i] <2 ?20<2<3p
o => report intersection c o
go left, nil, stop

v
o
—
N
W
AN
i
(@)}
N
(0]

A
A 4
A
A 4

4
A 4

|:| Active rectangle
O Current node b >
@ Active node

S >
: [Drtina]
- DC GI Felkel: Computational geometry
(78 / 96)

A

A

Insert [0,2] b) insert Interval 1/2 b < e <H(v)

'] 29<2 <37

=> insert left
g -
7.
6 -
5
4 -
3
5

|:| Active rectangle
O Current node
@ Active node

DCGI

—-~

X

v

0 1 2 3 4 5 6 7/ 8
< Pl ¢ P d e f >
< b >
. €

Felkel: Computational geometry

(79 / 96)

[Drtina]

=

Insert [0,2] b) Insert Interval 2/2 b <H(V) <e
" Insert the new interval to secondary lists ?70<1<27?
® ————————o

|:| Active rectangle

O Current node
@ Active node

DCGI

—-~

of the left son
link to parent |

;
LPTR

> 0 1 2 3 4 5 6 7/ 8
< > ¢ pie d >l f >
< b >
< € >
. %

Felkel: Computational geometry

(80/96)

Insert [1 ,5] a) Query Interval 1/2 b < H(v) <e
‘ for (all in MR(v))

goleft->1 /
go right - nil /

______________________ 5 _/ ‘—‘/ \\@ e
| 2,3
I b_ _- o 0

[\

I\

/A

/ \

r / \
d

v
o
—
N
W
AN
i
(@)}
N
(0]

|:| Active rectangle
(O current node b

@ Active node S >
7 Felkel: Computational geometry [Drtina]
DCGI (81/96)

A
A 4
A
A 4

A
\ 4

A
\ 4

A

Insert [1 ,5] a) Query Interval 1/2 b < H(v) <e
‘ for (all in MR(v))

goleft->1 /
go right - nil /

______________________ 5 _/ ‘—‘/ \\@ e
| 2,3
I b_ _- o 0

[\

I\

/A

/ \

r / \
d

v
o
—
N
W
AN
i
(@)}
N
(0]

|:| Active rectangle
(O current node b

@ Active node S >
7 Felkel: Computational geometry [Drtina]
DCGI (81/96)

A
A 4
A
A 4

A
\ 4

A
\ 4

A

Insert [1 ,5] a) Query Interval 1/2 b < H(v) <e
‘ for (all in MR(v))

goleft->1 /
go right - nil /

______________________ 5 _/ ‘—‘/ \\@ e
| 2,3
I b_ _- o 0

[\

I\

/A

/ \

r / \
d

v
o
—
N
W
AN
i
(@)}
N
(0]

|:| Active rectangle
(O current node b

@ Active node S >
7 Felkel: Computational geometry [Drtina]
DCGI (81/96)

A
A 4
A
A 4

A
\ 4

A
\ 4

A

Insert [1 ,5] a) Query Interval 1/2 b < H(v) <e

for (all in MR(v)) 21 <@< 5 ?
® => report intersectj_dﬁ c,d -~
goleft->1

go right - nil /

______________________ 5 _/ ‘—‘/ \\@ e
| 2,3
I b_ _- o 0

[\

I\

/A

/ \

r / \
d

v
o
—
N
W
AN
i
(@)}
N
(0]

|:| Active rectangle
(O current node b

@ Active node S >
7 Felkel: Computational geometry [Drtina]
DCGI (81/96)

A
A 4
A
A 4

A
\ 4

A
\ 4

A

Insert [1 ,5] a) Query Interval 1/2 b < H(v) <e

for (all in MR(v)) 21 <@< 5 ?
® => report intersectj_dﬁ c,d -~
goleft->1

go right - nil /

______________________ 5 _/ ‘—‘/ \\@ e
| 2,3
I b_ _- o 0

[\

I\

/A

/ \

r / \
d

v
o
—
N
W
AN
i
(@)}
N
(0]

|:| Active rectangle
(O current node b

@ Active node S >
7 Felkel: Computational geometry [Drtina]
DCGI (81/96)

A
A 4
A
A 4

A
\ 4

A
\ 4

A

Insert [1 5]) Query Interval 2/2 H(v) <b<e

for (all in MR(v)) test MRWI]=1 1x1<57?

v
o
—
N
W
AN
i
(@)}
N
(0]

A
A 4
A
A 4

A
\ 4

|:| Active rectangle
O Current node b

@ Active node S >
7 Felkel: Computational geometry [Drtina]
DCGI (82 / 96)

A
\ 4

A

Insert [1 5]) Query Interval 2/2 H(v) <b<e

for (all in MR(v)) test MRWI]=1 1x1<57?

v
o
—
N
W
AN
i
(@)}
N
(0]

A
A 4
A
A 4

A
\ 4

|:| Active rectangle
O Current node b

@ Active node S >
7 Felkel: Computational geometry [Drtina]
DCGI (82 / 96)

A
\ 4

A

Insert [1 ,5] b) Insert Interval b < H(v) <e

A Insert the new interval to secondary lists 21357

/
8 -

LA
6- i 1,2,3 7,53
. 7,
4 - // \\
3t oA
2 £ L (o2 @ (&

a
1 b

g 0 1 2 3 4 5 6 7/ 8

0 X
|:| Active rectangle 9 e d L
(O current node . b .

€ o
Active node R
‘+ Felkel: Computational geometry [Drtina]
DC GI (83 /96)

Insert [7 8]) Query Interval H(v) <b< e

for (all in MR(v)) test MR(V).[i] =7
e =>report mtersectlon/d “"'

O —— f_l go right, nil, Stpp

: 5
L C— -- .- 123‘
Tl e

[\

B // \\
@0 @ @
a_

v
o
=
N
w
AN
i
(@)
N
(0]

A
A 4
A
A 4
A

A 4
A
A 4

|:| Active rectangle
O Current node b

@ Active node S >
7 Felkel: Computational geometry [Drtina]
DCGI (84 / 96)

A
\ 4

A

Insert [7 8]) Query Interval H(v) <b< e

for (all in MR(v)) test MR(V).[i] =7
e =>report mtersectlon/d “"'

O — f_l go right, nil, Stpp

: 5
L C— -- .- 123‘
Tl e

[\

B // \\
@0 @ @
a_

v
o
=
N
w
AN
i
(@)
N
(0]

A
A 4
A
A 4
A

A 4
A
A 4

|:| Active rectangle
O Current node b

@ Active node S >
7 Felkel: Computational geometry [Drtina]
DCGI (84 / 96)

A
\ 4

A

Insert [7 8]) Query Interval H(v) <b<e
for (all in MR(v)) test MR(V).[i] = 7

o => reportlntersectlon/d "
O — f_l go right, nil, Stpp

: 5
L C— -- .- 123‘
Tl e

[\

B // \\
@0 @ @
a_

v
o
=
N
w
AN
i
(@)
N
(0]

A
A 4
A
A 4
A

A 4
A
A 4

|:| Active rectangle
O Current node b

@ Active node S >
7 Felkel: Computational geometry [Drtina]
DCGI (84 / 96)

A
\ 4

A

Insert [7,8] a) Query Interval

for (all in MR(v)) test MR(V).[i] = 7
¢ =>reportintersectiond

B 7 oo risht,nil stop /%

I | / \

: Vartas
T i /1,23
b—.

g 0 1 2 3 4 5 6 / 8
X
|:| Active rectangle 9 e d Jdof
O Current node < b >
« e R
@ Active node « > %
: [Drtina]
- Felkel: Computational geometr
DCGI A

(84 / 96)

Insert [7,8] b) insert interval

b <H(v)=<e

0

|:| Active rectangle
O Current node
@ Active node

7 DCGI

g 0 1 2 3 4 5 6 7 8
< >l c pi<t d Dl<t f >
< b >
< S >
[Drtina]

Felkel: Computational geometry

(85 / 96)

fet

Insert [7,8] b) insert interval

0

|:| Active rectangle
O Current node
@ Active node

7 DCGI

g 0 1 2 3 4 5 6 7 8
< >l c pi<t d Dl<t f >
< b >
< S >
[Drtina]

Felkel: Computational geometry

(85 / 96)

fet

Insert [7,8] b) insert interval

0

|:| Active rectangle
O Current node
@ Active node

7 DCGI

g 0 1 2 3 4 5 6 7 8
< >l c pi<t d Dl<t f >
< b >
< S >
[Drtina]

Felkel: Computational geometry

(85 / 96)

fet

Insert [7,8] b) insert interval

b <H(v)=<e

0

|:| Active rectangle
O Current node

@ Active node

-~

DCGI

right <=
right <=?

5

7] <87?
7] <87

g 0 1 2 3 4 5 6 7 8
< d >l c pi<t d Dl<t f >
< b >
< S >
[Drtina]

Felkel: Computational geometry

(85 / 96)

fet

Insert [7,8] b) insert interval

b <H(v)=<e

0

|:| Active rectangle
O Current node

@ Active node

-~

DCGI

right <=
right <=?

5

7] <87?
7] <87

g 0 1 2 3 4 5 6 7 8
< d >l c pi<t d Dl<t f >
< b >
< S >
[Drtina]

Felkel: Computational geometry

(85 / 96)

fet

Insert [7,8] b) Insert Interval b < H(v) <e
I right<=?%7<8?
o ST right <=7 7 <87?

,’/ /<7<8

|:| Active rectangle
O Current node

@ Active node

-~

DCGI

v

A

A 4
A
A 4
A

A

\ 4
A
\ 4

\ 4

A

Felkel: Computational geometry

(85 / 96)

e >
[Drtlna] %

Insert [7,8] b) Insert Interval b < H(v) <e

A Iright<=7<8?
® /././‘,. ______ ____._.ri.g.ht_<_=_\? 7 < 8 ?
__ =7 <t

/ \
: /
/ / d \\

" 1,23 75,3 |

v
o
—
N
W
AN
i
(@)}
N
(0]

|:| Active rectangle
O Current node b

@ Active node S >
7 Felkel: Computational geometry [Drtina]
DCGI (85 /96)

A
A 4
A
A 4
A

\ 4
A
\ 4

A
\ 4

A

Insert [7,8] b) Insert Interval b < H(v) <e

I Insert the new interval to secondary lists right <= . 7<87?
o link to parent //”“"”'thc\? /<87

- ; >~ 7/ s@‘S

, / \ ————
i b | / \ \
. / \ '\

d i —eo—o o—o—0 .

T - /123 753 ‘
I —

/ \ 1
// \\ ’I
e / \ 7
@@ @ @ °
d

\
\

\

\

v
o
—
N
W
AN
i
(@)}
N
(0]

|:| Active rectangle
O Current node b

@ Active node S >
7 Felkel: Computational geometry [Drtina]
DCGI (85 /96)

A
A 4
A
A 4
A
A 4
A

\ 4

A
\ 4

A

Delete [3,7] Delete Interval b <H(V) <e

YA

v
o
—
N
(@)
AN
i
(@)}
N
(0]

|:| Active rectangle
O Current node b
@ Active node

S >
) [Drtina]
- DCGI Felkel: Computational geometry
(86 / 96)

A

A 4
A
A\ 4
A
A 4
A
A 4

A
\ 4

A

)
|:| Active rectangle
O Current node
@ Active node

” DCGI

g 0 1 2 3 4 5 6 7 8
< > C > d P P>
) b ;
< S >
[Drtina]

Felkel: Computational geometry

(87 1 96)

)
|:| Active rectangle
O Current node
@ Active node

” DCGI

g 0 1 2 3 4 5 6 7 8
< > C > d P P>
) b ;
< S >
[Drtina]

Felkel: Computational geometry

(87 1 96)

)
|:| Active rectangle
O Current node
@ Active node

” DCGI

g 0 1 2 3 4 5 6 7 8
< > C > d P P>
) b ;
< S >
[Drtina]

Felkel: Computational geometry

(87 1 96)

)
|:| Active rectangle
O Current node

@ Active node

—-~

DCGI

8
g 0 1 2 3 4 5 6 7 8
< d >l C e d > B>
< b >
< € >
[Drtina]

/ \ /

/ \ /
/ \ /
/ \

\

\
\
\

Felkel: Computational geometry

(87 1 96)

Insert [4 6]) Query Interval H(v) <b<e
for (all in MR(v)) test MR(V).[i] >4 => report intersection b @s 4<67?

v
o
—
N
W
AN
i
(@)}
N
(0]

)
|:| Active rectangle
O Current node b

@ Active node S >
7 Felkel: Computational geometry [Drtina]
DCGI (87 / 96)

A
A 4
A
A\ 4
A
A 4
A

A 4

A
\ 4

A

)
|:| Active rectangle
O Current node

@ Active node

—-~

DCGI

8
g 0 1 2 3 4 5 6 7 8
< d >l C e d > B>
< b >
< € >
[Drtina]

/ \ /

/ \ /
/ \ /
/ \

\

\
\
\

Felkel: Computational geometry

(87 1 96)

)
|:| Active rectangle
O Current node

@ Active node

—-~

DCGI

8
g 0 1 2 3 4 5 6 7 8
< d >l C e d > B>
< b >
< € >
[Drtina]

/ \ /

/ \ /
/ \ /
/ \

\

\
\
\

Felkel: Computational geometry

(87 1 96)

)
|:| Active rectangle
O Current node
@ Active node

” DCGI

g 0 1 2 3 4 5 6 7 8
< > C > d P P>
) b ;
< S >
[Drtina]

Felkel: Computational geometry

(87 1 96)

)
|:| Active rectangle
O Current node
@ Active node

” DCGI

g 0 1 2 3 4 5 6 7 8
< > C > d P P>
) b ;
< S >
[Drtina]

Felkel: Computational geometry

(87 1 96)

Insert [4,6] a) Query Interval H(v) <b<e

for (all in ML(v)) test ML(v).[i] < 6~ e """"""""""""" -4 <677
:l => no intersection P
L e BN

e ‘ 1,2 "'

v
o
—
N
W
AN
i
(@)}
N
(0]

)
|:| Active rectangle
O Current node b
@ Active node

€ >
) [Drtina]
- DCGI Felkel: Computational geometry
(87 /1 96)

A
A 4
A
A\ 4
A
A 4
A

A 4

A
\ 4

A

Insert [4,0] b) insert interval

YA

)
|:| Active rectangle
O Current node
@ Active node

” DCGI

8
g 0 1 2 3 4 5 6 7 8
< d >l C e d > B>
< b >
< € >
[Drtina]

Insert the new interval to secondary lists

'/.
/
/

! / /// \\\

.I // \
il “—e —
' 1,2 53

/ \ /

/ \ /
/ \ /
/ \

\
\
\

\

Felkel: Computational geometry

(88 / 96)

Insert [4,0] b) insert interval

YA

)
|:| Active rectangle
O Current node
@ Active node

” DCGI

8
g 0 1 2 3 4 5 6 7 8
< d >l C e d > B>
< b >
< € >
[Drtina]

Insert the new interval to secondary lists

'/.
/
/

! / /// \\\

.I // \
il “—e —
' 1,2 53

/ \ /

/ \ /
/ \ /
/ \

\
\
\

\

Felkel: Computational geometry

(88 / 96)

Insert [4,0] b) insert interval

YA

)
|:| Active rectangle
O Current node
@ Active node

” DCGI

8
g 0 1 2 3 4 5 6 7 8
< d >l C e d > B>
< b >
< € >
[Drtina]

Insert the new interval to secondary lists

o AN T
/
/

! / /// \\\

.I // \
il “—e —
' 1,2 53

/ \ /

/ \ /
/ \ /
/ \

\
\
\

\

Felkel: Computational geometry

(88 / 96)

Insert [4,0] b) insert interval

YA

)
|:| Active rectangle
O Current node
@ Active node

” DCGI

8
g 0 1 2 3 4 5 6 7 8
< d >l C e d > B>
< b >
< € >
[Drtina]

Insert the new interval to secondary lists

Y St
/
/

! / /// \\\

.I // \
il “—e —
' 1,2 53

/ \ /

/ \ /
/ \ /
/ \

\
\
\

\

Felkel: Computational geometry

(88 / 96)

Insert [4,6] b) Insert Interval H(v) <b<e
Y A . . ? ?
Insert the new interval to secondary lists @s 4<6"
® /'/,/‘”' """" e \?\4 < < 6 ?
8" /‘/. / \ | N
7 ljl .’/_/. \H e
6) i 1,2 5[3 '
> L 7
4 - // \\
3 / \
7 8
@03 @ @
1 I I
0 g 0 1 2 3 4 5 6 7/ 8
)
|:| Active rectangle 2 &l d > >
(O current node . b .
@ Active node — >
[Drtina]

” DCGI

Felkel: Computational geometry

(88 /96)

Insert [4,6] b) Insert Interval H(v) <b<e
Y A . . ? ?
Insert the new interval to secondary lists @s 4<6"
® /'/,/‘”' """" e \?\4 < < 6 ?
8" /‘/. / \ | N
7 ljl .’/_/. \H e
6 i 1,2 513 / \‘\ :
> (L i6 (D
4 - // \\
3 / \
7 8
@03 @ @
1 I I
0 g 0 1 2 3 4 5 6 7/ 8
)
|:| Active rectangle 2 &l d > >
(O current node . b .
@ Active node — >
[Drtina]

” DCGI

Felkel: Computational geometry

(88 /96)

Insert [4,6] b) Insert Interval H(v) <b<e
Y A . . ? ?
Insert the new interval to secondary lists @s 4<6"
o ” """" e 24567
8 o /‘/. / \
. L = @
°" /12 53 /]
> (L i6 (D
4 - // \\ // \\
3 i // \\ / \
7 8
@03 @ @
1 I I
0 g 0 1 2 3 4 5 6 7/ 8
)
|:| Active rectangle 2 &l d > >
(O current node . b .
@ Active node — >
[Drtina]

” DCGI

Felkel: Computational geometry

(88 /96)

Insert [4,0] b) insert interval

YT Insert the new interval to secondary lists 3<4<67?
o /”' ''''' "\-\\ 74 < _': E_ 67
8 - K 7~
7 l»"l o’/—/o \B—o e
6 a i 1’2 5’3 / \\‘
9 1 s (2
4 6
4 - // \\
3 foo
7 8
@@ @ @
1 I I
g 0 1 2 3 4 5 6 7/ 8
0
)
|:| Active rectangle < a AMESEER d o< >
(O current node . b .
@ Active node ——F >
[Drtina]

” DCGI

Felkel: Computational geometry

(88 /96)

Insert [4,0] b) insert interval

YA

)
|:| Active rectangle
O Current node
@ Active node

” DCGI

v

Insert the new interval to secondary lists

ST "'\-\ 74 < j E_ 67

! / \

! ,/ \\
il ‘ Py * P
" 1,2 5,3

A

A 4
A
A 4
A

A

A 4
4
A 4

\ 4

A

Felkel: Computational geometry

(88 / 96)

e >
[Drtlna] %

Delete [1 ,9] Delete Interval b < H(v) <e

Y1 Delete the interval [1,5] from secondary lists 21 < 57
o ST "'“-\\.\ T

8-] ! Do AN
7 ”I.I. ./_//. \\H e _______ ~~ |
6 | 12 53 /) :
1 s6 (7
2 | (o 2(2) (&) (&)
g P

|:| Active rectangle
O Current node
@ Active node

” DCGI

Felkel: Computational geometry

(89/96)

g 0 1 2 3 4 5 6 7 8
<1 d i<t C i d » P>
’ b R
< S >
[Drtina]

Delete [1 ,9] Delete Interval b < H(v) <e
Y1 Delete the interval [1,5] from secondary lists 21 < 57
® /./"" —————— 'h\'\'\\

N : |

y - I."/ /, \\\ e _______ -

6 :) 3 I .

5 N /

4t 4 6 7

3 -t /// \\\ \
7 8

2 | (0o 2(2) (4 (&

g P

|:| Active rectangle
O Current node
@ Active node

” DCGI

Felkel: Computational geometry

(89/96)

g 0 1 2 3 4 5 6 7 8
< d > C Pl d Pl >
’ b R
< S >
[Drtina]

Delete [0,2] pelete Interval 1/2 b <e < H(v)
I Search for node with interval [0,2] ?0<2 s@)

_____ R .—.
® Y e~
/ ~.
! \'\

|:| Active rectangle d SHERS d PR
(O current node b
@ Active node

€ >
: [Drtina]
- DC GI Felkel: Computational geometry
(90/96)

A
A 4
A
A 4

A 4

A
A 4

A

Delete [0,2] pelete Interval 1/2 b <e < H(V)

|:| Active rectangle d SHERS d PR
(O current node b
@ Active node

€ >
: [Drtina]
- DC GI Felkel: Computational geometry
(90/96)

A
A 4
A
A 4

A 4

A
A 4

A

Delete [0,2] Delete Interval 1/2 b <e < H(v)

|:| Active rectangle d SHERS d PR
(O current node b
@ Active node

: [Drtina]
- DC GI Felkel: Computational geometry
(90/96)

A
A 4
A
A 4

A 4

A
A 4

7'y
(D

Delete [0,2] Delete Interval 2/2 b < H(v) <e

Y1 Delete the interval [0,2] from secondary lists of node 1 20 s@s 27

______ o
/ ~.
! \'\

N
W

|:| Active rectangle d SHERS d PR
(O current node b
@ Active node

Drti
—-~ DCGI Felkel: Computational geometry [Drtina] %
(91/96)

A
A 4
A
A 4

A 4

A
A 4

7'y
(D

Delete [0,2] Delete Interval 2/2 b < H(v) <e

Y1 Delete the interval [0,2] from secondary lists of node 1 20 s@s 27

______ o
/ ~.
! \'\

|:| Active rectangle d SHERS d PR
(O current node b
@ Active node

Drti
—-~ DCGI Felkel: Computational geometry [Drtina] %
(91/96)

A
A 4
A
A 4

A 4

A
A 4

7'y
(D

Delete [/,8] Delete Interval

b <H(v)=<e

|:| Active rectangle
O Current node
@ Active node

” DCGI

Search for and delete node with interval [7,8]

—
~.
~.
~.
\A
\.
\

Felkel: Computational geometry

(92 /96)

0 1 2 3 4 5 6 7/ 8
J a L C d | -
’ b ,
< € >
[Drtina]

Delete [/,8] Delete Interval

b <H(v)=<e

|:| Active rectangle
O Current node
@ Active node

” DCGI

Search for and delete node with interval [7,8]

—
~.
~.
~.
\A
\.
\

Felkel: Computational geometry

(92 /96)

0 1 2 3 4 5 6 7/ 8
J a L C d | -
’ b ,
< € >
[Drtina]

Delete [/,8] Delete Interval

|:| Active rectangle
O Current node
@ Active node

” DCGI

Search for and delete node with interval [7,8]

—
~.
~.
~.
\A
\.
\

Felkel: Computational geometry

(92 /96)

0 1 2 3 4 5 6 7/ 8
J a L C d | -
’ b ,
< € >
[Drtina]

Delete [/,8] Delete Interval

|:| Active rectangle
O Current node
@ Active node

” DCGI

Search for and delete node with interval [7,8]

'~~-\\\ ASk/<8:

A

A 4
A
A 4
4

A 4
A
\ 4

A

A

A 4

Felkel: Computational geometry

(92 /96)

e >
[Drtlna] %

Delete [7,8] pelete Interval b < H(v) <e
I Search for and delete node with interval [7,8] ?3<7<87?
?5<7<87?
pas, o 2747)<87

2 3

|:| Active rectangle
O Current node
@ Active node

” DCGI

Felkel: Computational geometry

(92 /96)

[Drtina]

0 1 2 3 4 5 6 / 8
< a > s »ie d > >
< b >
< S >

Delete [/,8] Delete Interval

|:| Active rectangle
O Current node
@ Active node

” DCGI

Search for and delete node with interval [7,8]

—
~.
~.
~.
\A
\.
\

A

A 4
A
A 4
4

A

A 4

»|

A

Ll

Felkel: Computational geometry

(92 /96)

[Drtina]

A 4
4

Delete [2,3] Delete Interval b <H(v) <e
I Search for and delete node with interval [2,3] ?2 37

|:| Active rectangle
O Current node
@ Active node

” DCGI

X

—
~.
~.
~.
\A
\.
\

Felkel: Computational geometry

(93/96)

[Drtina]

0 1 2 3 4 5 6 / 8
< > ¢ >« d > >
< b >
< S >

Delete [2,3] Delete Interval b <H(v) <e
I Search for and delete node with interval [2,3] ?2 37

|:| Active rectangle
O Current node
@ Active node

” DCGI

X

—
~.
~.
~.
\A
\.
\

Felkel: Computational geometry

(93/96)

[Drtina]

0 1 2 3 4 5 6 / 8
< > ¢ >« d > >
< b >
< S >

Delete [2,3] Delete Interval b <H(v) <e
I Search for and delete node with interval [2,3] ?2 37

X

|:| Active rectangle
O Current node
@ Active node

—
~.
~.
~.
\A
\.
\

” DCGI

Felkel: Computational geometry

(93/96)

[Drtina]

0 1 2 3 4 5 6 / 8
< a > ¢ >« d > >
< b >
< S >

Delete [2,3] Delete Interval b <H(v) <e
I Search for and delete node with interval [2,3] ?2 37

\4
\.
\

X
[
D ACt|Ve reCtangle < a < C >« d > >
O Current node . b ;
@ Active node . e]
. DCGI Felkel: Computational geometry [Drtina]

(93 / 96)

Delete [2,3] Delete Interval b <H(v) <e
I Search for and delete node with interval [2,3] ?2 37

\A
\.
\A

X
[
D ACt|Ve reCtangle < a < C >« d > >
O Current node . b ;
@ Active node . e]
. DCGI Felkel: Computational geometry [Drtina]

(93 / 96)

Delete [2,3] Delete Interval

X

|:| Active rectangle
O Current node
@ Active node

Search for and delete node with interval [2,3]

A

A 4
A
A 4

A

A 4

A

S N

Ll

” DCGI

Felkel: Computational geometry

(93/96)

[Drtina]

A 4
A

Delete [4,6] Delete Interval b <H(v) <e

Search for and delete node with interval [4,6] .

\.
. e \.‘A

X

|:| Active rectangle
O Current node b >
@ Active node

e >
Drti
-+ DC I Felkel: Computational geometry o
‘ ; (94 /1 96) |

A
A 4
A
A 4

A

A

Delete [4,6] Delete Interval b <H(v) <e
I Search for and delete node with interval [4,6] \. 24 5)<67?

X

|:| Active rectangle
O Current node b >
@ Active node

S >
) [Drtina]
e o DC GI Felkel: Computational geometry
(94 /96)

A
A 4
A
A 4

A 4
A

A

A

Delete [4,6] Delete Interval b <H(v) <e
I Search for and delete node with interval [4,6] \. 24 5)<67?

X

|:| Active rectangle
O Current node b >
@ Active node

S >
) [Drtina]
e o DC GI Felkel: Computational geometry
(94 /96)

A
A 4
A
A 4

A 4
A

A

A

Delete [4,6] Delete Interval b <H(v) <e
I Search for and delete node with interval [4,6] \. 24 5)<67?

X

|:| Active rectangle
O Current node b >
@ Active node

S >
) [Drtina]
e o DC GI Felkel: Computational geometry
(94 /96)

A
A 4
A
A 4

A 4
A

A

A

Delete [4,6] Delete Interval b <H(v) <e
I Search for and delete node with interval [4,6] 24 5)<67?

X

|:| Active rectangle
O Current node b >
@ Active node

S >
) [Drtina]
e o DC GI Felkel: Computational geometry
(94 /96)

A
A 4
A
A 4

A 4
A

A

A

Empty tree

Search for and delete node with interval [4,6]

X

|:| Active rectangle
O Current node b >
@ Active node

e >
Drti
-+ DC I Felkel: Computational geometry o
‘ ; (95/96) |

A
A 4
A
A 4

4
A 4

A

A

Complexities of rectangle intersections

= n rectangles, s intersected pairs found

= O(nlogn) preprocessing time to separately sort
— X-coordinates of the rectangles for the plane sweep
— the y-coordinates for initializing the interval tree.

= The plane sweep itself takes O(nlogn + s) time,
so the overall time is O(nlogn + s)

= 0O(n) space

= This time is optimal for a decision-tree algorithm
(i.e., one that only makes comparisons between
rectangle coordinates).

- : -+
P e fm e —f—
-+ —4
I Felkel: Computational geometry
I)(:(; (96 / 96)

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/

[Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016,
University of Maryland, Lecture 5.
http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

[Rourke] Joseph O’Rourke: .: Computational Geometry in C, Cambridge
University Press, 1993, ISBN 0-521- 44592-2
http://maven.smith.edu/~orourke/books/compgeom.html

[Drtina] Tomas Drtina: Intersection of rectangles. Semestral Assignment.
Computational Geometry course, FEL CTU Prague, 2006

[Kukral] Petr Kukral: Intersection of rectangles. Semestral Assignment.
Computational Geometry course, FEL CTU Prague, 2006

[Vigneron] Segment trees and interval trees, presentation, INRA, France,
http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html

—

- —~ =
e o o~ == =
-+ -~ 4
+
-~ D C GI Felkel: Computational geometry
+ 1 +
(97 / 96)

+ + + 4+ 4+ o+ o+ o+

http://www.cs.uu.nl/geobook/
http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
http://maven.smith.edu/~orourke/books/compgeom.html
http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html

	Výchozí oddíl
	Snímek 1: INTERSECTIONS OF LINE SEGMENTS AND AXIS ALIGNED RECTANGLES, OVERLAY OF SUBDIVISIONS
	Snímek 2: Talk overview
	Snímek 3: Geometric intersections – what are they for?

	Line segments
	Snímek 4
	Snímek 5: Line segment intersection
	Snímek 6: Plane sweep line algorithm
	Snímek 7: Plane sweep line algorithm recapitulation
	Snímek 8: Line segment intersections
	Snímek 9: Line segment intersection - Sweep line alg.
	Snímek 10: Detecting intersections
	Snímek 11: Data structures
	Snímek 12: Data structures
	Snímek 13: Data structures
	Snímek 14: Data structures
	Snímek 15: Problem with duplicities of intersections
	Snímek 16: Problem with duplicities of intersections
	Snímek 17: Problem with duplicities of intersections
	Snímek 18: Problem with duplicities of intersections
	Snímek 19: Problem with duplicities of intersections
	Snímek 20: Problem with duplicities of intersections
	Snímek 21: Problem with duplicities of intersections
	Snímek 22: Problem with duplicities of intersections
	Snímek 23: Problem with duplicities of intersections
	Snímek 24: Problem with duplicities of intersections
	Snímek 25: Problem with duplicities of intersections
	Snímek 26: Problem with duplicities of intersections
	Snímek 27: Problem with duplicities of intersections
	Snímek 28: Data structures
	Snímek 29: Line segment intersection algorithm
	Snímek 30: Line segment intersection algorithm
	Snímek 31: handleEventPoint() principle
	Snímek 32: More than two segments incident
	Snímek 33: Handle Events [modified Berg, page 25]
	Snímek 34: Handle Events [modified Berg, page 25]
	Snímek 35: Handle Events [modified Berg, page 25]
	Snímek 36: Handle Events [modified Berg, page 25]
	Snímek 37: Handle Events [modified Berg, page 25]
	Snímek 38: Handle Events [modified Berg, page 25]
	Snímek 39: Detection of new intersections
	Snímek 40: Line segment intersections

	Two subdivisions
	Snímek 41
	Snímek 42: Overlay of two subdivisions
	Snímek 43: Overlay of two subdivisions
	Snímek 44: Overlay is a new planar subdivision
	Snímek 45: Sweep line overlay algorithm
	Snímek 46: Sweep line overlay algorithm
	Snímek 47: Sweep line overlay algorithm
	Snímek 48: Sweep line overlay algorithm
	Snímek 49: Sweep line overlay algorithm
	Snímek 50: Sweep line overlay algorithm
	Snímek 51: Sweep line overlay algorithm
	Snímek 52: The algorithm principle
	Snímek 53: At an Event point
	Snímek 54: Three types of intersections
	Snímek 55: Three types of intersections
	Snímek 56: vertex – edge update – the principle
	Snímek 57: Pointers around the end-points of edge e
	Snímek 58: Pointers around the end-points of edge e
	Snímek 59: Pointers around the end-points of edge e
	Snímek 60: Pointers around the end-points of edge e
	Snímek 61: Pointers around the end-points of edge e
	Snímek 62: Pointers around the end-points of edge e
	Snímek 63: Pointers around intersection bold italic v
	Snímek 64: Pointers around intersection bold italic v
	Snímek 65: Pointers around intersection bold italic v
	Snímek 66: Pointers around intersection bold italic v
	Snímek 67: Pointers around intersection bold italic v
	Snímek 68: Pointers around intersection bold italic v
	Snímek 69: Pointers around intersection bold italic v
	Snímek 70: Pointers around intersection bold italic v
	Snímek 71: Pointers around intersection bold italic v
	Snímek 72: Pointers around intersection bold italic v
	Snímek 73: Pointers around intersection bold italic v
	Snímek 74: Pointers around intersection bold italic v
	Snímek 75: Pointers around intersection bold italic v
	Snímek 76: Pointers around intersection bold italic v
	Snímek 77: Pointers around intersection bold italic v
	Snímek 78: Pointers around intersection bold italic v
	Snímek 79: Pointers around intersection bold italic v
	Snímek 80: Pointers around intersection bold italic v
	Snímek 81: Time cost for updating half-edge records
	Snímek 82: Face records for the overlay subdivision
	Snímek 83: Extraction of faces
	Snímek 84: Which boundary cycles bound same face?
	Snímek 85: Graph script cap G of faces and their relations
	Snímek 86: Graph script cap G construction
	Snímek 87: Face label determination
	Snímek 88: Map overlay algorithm
	Snímek 89: Map overlay algorithm
	Snímek 90: Map overlay algorithm
	Snímek 91: Map overlay algorithm
	Snímek 92: Map overlay algorithm
	Snímek 93: Map overlay algorithm
	Snímek 94: Map overlay algorithm
	Snímek 95: Running time

	Axis parallel rectangles
	Snímek 96
	Snímek 97: Intersection of axis parallel rectangles
	Snímek 98: Brute force intersection
	Snímek 99: Plane sweep intersection algorithm
	Snímek 100: Plane sweep intersection algorithm
	Snímek 101: Interval tree as sweep line status structure
	Snímek 102: Intersection test – between pair of intervals
	Snímek 103: Intersection test – between pair of intervals
	Snímek 104: Intersection test – between pair of intervals
	Snímek 105: Intersection test – between pair of intervals
	Snímek 106: Static interval tree – stores all end point y sub bold italic s
	Snímek 107: Static interval tree – stores all end point y sub bold italic s
	Snímek 108: Static interval tree – Example
	Snímek 109: Static interval tree [Edelsbrunner80]
	Snímek 110: Primary structure – static tree for endpoints
	Snímek 111: Secondary lists of incident interval end-pts.
	Snímek 112: Active nodes – intersected by the sweep line
	Snímek 113: Entries in the event queue
	Snímek 114: Query = sweep and report intersections
	Snímek 115: Preprocessing
	Snímek 116: Interval tree – primary structure construction
	Snímek 117: Interval tree – search the intersections
	Snímek 118: Interval tree – search the intersections
	Snímek 119: Interval tree – search the intersections
	Snímek 120: Interval tree – search the intersections
	Snímek 121: Interval tree – search the intersections
	Snímek 122: Interval tree – search the intersections
	Snímek 123: Interval tree – search the intersections
	Snímek 124: Interval tree – search the intersections
	Snímek 125: Interval tree – search the intersections
	Snímek 126: Interval tree – search the intersections
	Snímek 127: Interval tree – search the intersections
	Snímek 128: Interval tree – search the intersections
	Snímek 129: Interval tree - interval insertion

	 Example 1
	Snímek 130
	Snímek 131: Example 1 – static tree on endpoints
	Snímek 132: Interval insertion [1,3] a) Query Interval
	Snímek 133: Interval insertion [1,3] b) Insert Interval
	Snímek 134: Interval insertion [1,3] b) Insert Interval
	Snímek 135: Interval insertion [2,4] a) Query Interval
	Snímek 136: Interval insertion [2,4] b) Insert Interval
	Snímek 137: Interval delete [1,3]
	Snímek 138: Interval delete [1,3]
	Snímek 139: Interval delete [2,4]
	Snímek 140: Interval delete [2,4]

	 Example 2
	Snímek 141
	Snímek 142: Query = sweep and report intersections
	Snímek 143: Example 2 – tree created by PrimaryTree(S)
	Snímek 144: Example 2 – tree created by PrimaryTree(S)
	Snímek 145: Example 2 – tree created by PrimaryTree(S)
	Snímek 146: Example 2 – tree created by PrimaryTree(S)
	Snímek 147: Example 2 – tree created by PrimaryTree(S)
	Snímek 148: Example 2 – tree created by PrimaryTree(S)
	Snímek 149: Example 2 – tree created by PrimaryTree(S)
	Snímek 150: Example 2 – tree created by PrimaryTree(S)
	Snímek 151: Example 2 – tree created by PrimaryTree(S)
	Snímek 152: Example 2 – tree created by PrimaryTree(S)
	Snímek 153: Example 2 – tree created by PrimaryTree(S)
	Snímek 154: Example 2 – tree created by PrimaryTree(S)
	Snímek 155: Example 2 – tree created by PrimaryTree(S)
	Snímek 156: Example 2 – tree created by PrimaryTree(S)
	Snímek 157: Example 2 – tree created by PrimaryTree(S)
	Snímek 158: Example 2 – tree created by PrimaryTree(S)
	Snímek 159: Example 2 – tree created by PrimaryTree(S)
	Snímek 160: Example 2 – tree created by PrimaryTree(S)
	Snímek 161: Example 2 – tree created by PrimaryTree(S)
	Snímek 162: Example 2 – tree created by PrimaryTree(S)
	Snímek 163: Example 2 – tree created by PrimaryTree(S)
	Snímek 164: Example 2 – tree created by PrimaryTree(S)
	Snímek 165: Example 2 – tree created by PrimaryTree(S)
	Snímek 166: Example 2 – tree created by PrimaryTree(S)
	Snímek 167: Example 2 – tree created by PrimaryTree(S)
	Snímek 168: Example 2 – tree created by PrimaryTree(S)
	Snímek 169: Example 2 – tree created by PrimaryTree(S)
	Snímek 170: Example 2 – tree created by PrimaryTree(S)
	Snímek 171: Example 2 – tree created by PrimaryTree(S)
	Snímek 172: Example 2 – tree created by PrimaryTree(S)
	Snímek 173: Example 2 – tree created by PrimaryTree(S)
	Snímek 174: Example 2 – tree created by PrimaryTree(S)
	Snímek 175: Example 2 – tree created by PrimaryTree(S)
	Snímek 176: Example 2 – tree created by PrimaryTree(S)
	Snímek 177: Example 2 – slightly unbalanced tree
	Snímek 178: Insert [2,3] – empty => b) Insert Interval
	Snímek 179: Insert [2,3] – empty => b) Insert Interval
	Snímek 180: Insert [2,3] – empty => b) Insert Interval
	Snímek 181: Insert [2,3] – empty => b) Insert Interval
	Snímek 182: Insert [2,3] – empty => b) Insert Interval
	Snímek 183: Insert [2,3] – empty => b) Insert Interval
	Snímek 184: Insert [2,3] – empty => b) Insert Interval
	Snímek 185: Insert [2,3] – empty => b) Insert Interval
	Snímek 186: Insert [3,7] a) Query Interval
	Snímek 187: Insert [3,7] a) Query Interval
	Snímek 188: Insert [3,7] a) Query Interval
	Snímek 189: Insert [3,7] a) Query Interval
	Snímek 190: Insert [3,7] b) Insert Interval
	Snímek 191: Insert [3,7] b) Insert Interval
	Snímek 192: Insert [0,2] a) Query Interval
	Snímek 193: Insert [0,2] a) Query Interval
	Snímek 194: Insert [0,2] b) Insert Interval 1/2
	Snímek 195: Insert [0,2] b) Insert Interval 2/2
	Snímek 196: Insert [1,5] a) Query Interval 1/2
	Snímek 197: Insert [1,5] a) Query Interval 1/2
	Snímek 198: Insert [1,5] a) Query Interval 1/2
	Snímek 199: Insert [1,5] a) Query Interval 1/2
	Snímek 200: Insert [1,5] a) Query Interval 1/2
	Snímek 201: Insert [1,5] a) Query Interval 2/2
	Snímek 202: Insert [1,5] a) Query Interval 2/2
	Snímek 203: Insert [1,5] b) Insert Interval
	Snímek 204: Insert [7,8] a) Query Interval
	Snímek 205: Insert [7,8] a) Query Interval
	Snímek 206: Insert [7,8] a) Query Interval
	Snímek 207: Insert [7,8] a) Query Interval
	Snímek 208: Insert [7,8] b) Insert Interval
	Snímek 209: Insert [7,8] b) Insert Interval
	Snímek 210: Insert [7,8] b) Insert Interval
	Snímek 211: Insert [7,8] b) Insert Interval
	Snímek 212: Insert [7,8] b) Insert Interval
	Snímek 213: Insert [7,8] b) Insert Interval
	Snímek 214: Insert [7,8] b) Insert Interval
	Snímek 215: Insert [7,8] b) Insert Interval
	Snímek 216: Delete [3,7] Delete Interval
	Snímek 217: Insert [4,6] a) Query Interval
	Snímek 218: Insert [4,6] a) Query Interval
	Snímek 219: Insert [4,6] a) Query Interval
	Snímek 220: Insert [4,6] a) Query Interval
	Snímek 221: Insert [4,6] a) Query Interval
	Snímek 222: Insert [4,6] a) Query Interval
	Snímek 223: Insert [4,6] a) Query Interval
	Snímek 224: Insert [4,6] a) Query Interval
	Snímek 225: Insert [4,6] a) Query Interval
	Snímek 226: Insert [4,6] a) Query Interval
	Snímek 227: Insert [4,6] b) Insert Interval
	Snímek 228: Insert [4,6] b) Insert Interval
	Snímek 229: Insert [4,6] b) Insert Interval
	Snímek 230: Insert [4,6] b) Insert Interval
	Snímek 231: Insert [4,6] b) Insert Interval
	Snímek 232: Insert [4,6] b) Insert Interval
	Snímek 233: Insert [4,6] b) Insert Interval
	Snímek 234: Insert [4,6] b) Insert Interval
	Snímek 235: Insert [4,6] b) Insert Interval
	Snímek 236: Delete [1,5] Delete Interval
	Snímek 237: Delete [1,5] Delete Interval
	Snímek 238: Delete [0,2] Delete Interval 1/2
	Snímek 239: Delete [0,2] Delete Interval 1/2
	Snímek 240: Delete [0,2] Delete Interval 1/2
	Snímek 241: Delete [0,2] Delete Interval 2/2
	Snímek 242: Delete [0,2] Delete Interval 2/2
	Snímek 243: Delete [7,8] Delete Interval
	Snímek 244: Delete [7,8] Delete Interval
	Snímek 245: Delete [7,8] Delete Interval
	Snímek 246: Delete [7,8] Delete Interval
	Snímek 247: Delete [7,8] Delete Interval
	Snímek 248: Delete [7,8] Delete Interval
	Snímek 249: Delete [2,3] Delete Interval
	Snímek 250: Delete [2,3] Delete Interval
	Snímek 251: Delete [2,3] Delete Interval
	Snímek 252: Delete [2,3] Delete Interval
	Snímek 253: Delete [2,3] Delete Interval
	Snímek 254: Delete [2,3] Delete Interval
	Snímek 255: Delete [4,6] Delete Interval
	Snímek 256: Delete [4,6] Delete Interval
	Snímek 257: Delete [4,6] Delete Interval
	Snímek 258: Delete [4,6] Delete Interval
	Snímek 259: Delete [4,6] Delete Interval
	Snímek 260: Empty tree

	 Complexity
	Snímek 261: Complexities of rectangle intersections

	Reference
	Snímek 262: References

