
Pairwise Sequence Alignment

(Continued)

BMI/CS 576

www.biostat.wisc.edu/bmi576/

Mark Craven

craven@biostat.wisc.edu

Fall 2011

Local alignment

•! so far we have discussed global alignment, where we

are looking for best match between sequences from

one end to the other

•! often we want a local alignment, the best match

between subsequences of x and y

Example local alignment

•! aligning my name against the sequence for

dTDP-4-dehydrorhamnose reductase from the

bacterium opitutus terrae

…LSGAYHLAASGHTSWHGFASAIIDLMPLDARKCRAVEAIT… !
MARKCRAVEN !

Local alignment motivation

•! useful for comparing protein sequences that share a

common motif (conserved pattern) or domain

(independently folded unit) but differ elsewhere

•! useful for comparing DNA sequences that share a

similar motif but differ elsewhere

•! useful for comparing protein sequences against

genomic DNA sequences (long stretches of

uncharacterized sequence)

•! more sensitive when comparing highly diverged

sequences

Local alignment DP algorithm

•! original formulation: Smith & Waterman, Journal of

Molecular Biology, 1981

•! interpretation of array values is somewhat different:

F (i, j) = score of the best alignment of a suffix of

x[1…i] and a suffix of y[1…j]

Local alignment DP algorithm

!

F(i, j) =max

F(i "1, j "1) +s(xi,y j)

F(i "1, j) " d

F(i, j "1) " d

0

$

%
%

&

%
%

•! the recurrence relation is slightly different than for

global algorithm

Local alignment DP algorithm

•! initialization: first row and first column initialized with 0’s

•! traceback:

–! find maximum value of F(i, j); can be anywhere in

matrix

–! stop when we get to a cell with value 0

Local alignment example

0

0

0 0 0 0

0 0 0 0

0

T

T

A

A

G

0

0

0

0

0

0 0

G

0

A

0

A

0

A

1

0

1

1 2

3

1

1

x:

y:

G

G

A

A

A

A

1

More on gap penalty functions

•! a gap of length k is more probable than k gaps of
length 1

–! a gap may be due to a single mutational event that
inserted/deleted a stretch of characters

–! separated gaps are probably due to distinct
mutational events

•! a linear gap penalty function treats these cases the
same

•! it is more common to use gap penalty functions
involving two terms

–! a penalty d associated with opening a gap

–! a smaller penalty e for extending the gap

Gap penalty functions

linear

affine

!

w(g) = "g # d

!

w(g) =
"d " (g "1)e, g #1

0, g = 0

$
%
&

Dynamic programming for the

affine gap penalty case

•! to do in time, need 3 matrices instead of 1

),(jiM

),(jiI x

),(jiI y best score given that y[j] is

aligned to a gap

best score given that x[i] is

aligned to a gap

best score given that x[i] is

aligned to y[j]

)(2
nO

Global alignment DP for the

affine gap penalty case

!
"

!
#

$

+%%

+%%

+%%

=

),()1,1(

),()1,1(

),()1,1(

max),(

jiy

jix

ji

yxsjiI

yxsjiI

yxsjiM

jiM

!

Ix (i, j) =max
M(i "1, j) " d

Ix (i "1, j) " e

$
%

!

Iy (i, j) =max
M(i, j "1) " d

Iy (i, j "1) " e

$
%

Global alignment DP for the

affine gap penalty case

!

M(0,0) = 0

Ix (i, 0) = "d " (i "1)e for i > 0

Iy (0, j) = "d " (j "1)e for j > 0

other cells in top row and leftmost column = "#

•! initialization

•! traceback

–! start at largest of

–! stop at

–! note that pointers may traverse all three matrices

),(),,(),,(nmInmInmM yx

!

M(0,0)

Global alignment example
(affine gap penalty)

M : 0

Ix : -!

Iy : -!

-!

-!

-!

-!

-5

-!

-!

-7

-!

-!

-6

-!

-!

-8

-!

-4

-!

-!

-5

-!

-!

-6

-!

-4

1

-!

-!

-3

-3

-!

-6

-4

-!

-4

-4

-10

-4

-!

-4

-7

-!

-5

-8

-!

-6

-5

-!

-3

0

-9

-7

-2

-8

-4

-1

-6

-8

-5

-11

-5

-3

-9

-5

-6

-12

-6

-4

-10

-6

A C A C T

A

A

T

d = 4, e = 1

Global alignment example (continued)

M : 0

Ix : -!

Iy : -!

-!

-!

-4

-!

-!

-5

-!

-!

-7

-!

-!

-6

-!

-!

-8

1

-!

-!

-5

-!

-3

-7

-!

-5

-4

-!

-4

-8

-!

-6

-!

-4

-!

-3

-3

-!

0

-9

-7

-5

-11

-5

-2

-8

-4

-6

-12

-6

-!

-5

-!

-6

-4

-!

-4

-4

-10

-3

-9

-5

-1

-6

-8

-4

-10

-6

-!

-6

-!

A C A C T

A

A

T

ACACT

--AAT

ACACT

A--AT

ACACT

AA--T
three optimal alignments:

Why three matrices are needed

W F P

F

W

0 -5 -6 -7

-5 1 1 -4

-6 6 2 0

s(F, W) = 1 s(W, W) = 11

s(F, F) = 6 s(W, P) = -4

s(F, P) = -4

•! consider aligning the sequences WFP and FW using d = 5, e = 1 and

the following values from the BLOSUM-62 substitution matrix:

•! the matrix shows the highest-scoring partial alignment for each pair

of prefixes

-WFP

FW--
optimal alignment

best alignment of these prefixes;

to get optimal alignment,
need to also remember

WF

FW

-WF

FW-

Local alignment DP for the

affine gap penalty case

!
!

"

!
!

#

$

+%%

+%%

+%%

=

0

),()1,1(

),()1,1(

),()1,1(

max),(
jiy

jix

ji

yxsjiI

yxsjiI

yxsjiM

jiM

!

Ix (i, j) =max
M(i "1, j) " d

Ix (i "1, j) " e

$
%

!

Iy (i, j) =max
M(i, j "1) " d

Iy (i, j "1) " e

$
%

Local alignment DP for the

affine gap penalty case

!"=

=

=

=

 , ofcolumn leftmost and row in top cells

0),0(

0)0,(

0)0,0(

yx II

jM

iM

M

•! initialization

•! traceback

–! start at largest

–! stop at

),(jiM
0),(=jiM

Gap penalty functions

•! linear:

•! affine:

•! convex: as gap length increases, magnitude of

penalty for each additional character decreases

e.g.

!

w(g) = "g # d

!

w(g) =
"d " (g "1)e, g #1

0, g = 0

$
%
&

!

w(g) = "d " log(g) # e

Computational complexity and gap

penalty functions

linear:

)(2
nO

)(3
nO

)(2
nO

affine:

general:

convex:)log(2
nnO

* assuming two sequences of length n

Alignment (global) with general gap

penalty function

!
"

!
#

$

%+

%+

+%%

=

)(),(

)(),(

),()1,1(

max),(

kjkiF

kijkF

yxsjiF

jiF

ji

&

&

consider every previous

element in the row

consider every previous

element in the column

why the general case has time complexity O(n3)

k ranges over previous

coordinates

Pairwise alignment summary

•! the number of possible alignments is exponential in

the length of sequences being aligned

•! dynamic programming can find optimal-scoring

alignments in polynomial time

•! the specifics of the DP depend on

–! local vs. global alignment

–! gap penalty function

•! affine penalty functions are most commonly used

