Pairwise Sequence Alignment

BMI/CS 576
www.biostat.wisc.edu/bmi576/
Mark Craven
craven@biostat.wisc.edu
Fall 2011

Pairwise alignment: task definition

Given

- a pair of sequences (DNA or protein)
- a method for scoring a candidate alignment

Do

 determine the correspondences between substrings in the sequences such that the similarity score is maximized

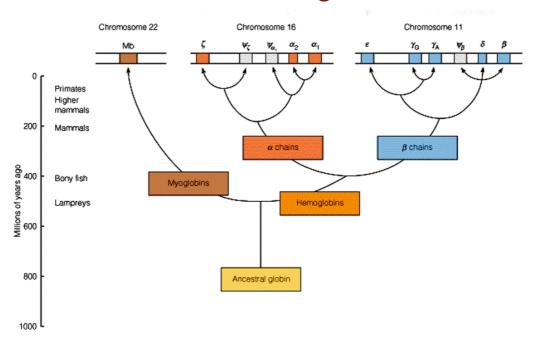
000000001 >>>>>> 000340701	CAGACTGCAAGATTCCCTGCATTACGGGGAGCCCTAAGCAGGCACCTTTAACCTTGAGCC	000000060 <<<<<< 000340642	
000000061 >>>>>> 000340641	TGCTCGCTAGCGACCTCCAGAGGGCCAGGATGGTTTGGGACCGGTGTGATAGAGCACTTT	000000120 <<<<<< 000340582	
000000121 >>>>>> 000340581	TCTAGTTTTAACGACTCTATTTGCATAACGGAGACCAAGCGTCCTCCCGCCGGTCTGCCG	000000180 <<<<<< 000340522	
000000181 >>>>>> 000340521	TGCTTTCTTCCCTCCTCCCGGTCCTCTGTACCCTCatctg-tgctccctctctgcttc	000000239 <<<<<< 000340462	
000000240 >>>>>> 000340461	ccagaagatccgttctcaaggggactcactcggagcttgagtcccgggctcttctccctc	000000299 <<<<<< 000340402	
000000300 >>>>>> 000340401	ggcccggcaagatccagaggcacctgggggagtggagttgagccagcc	000000359 <<<<<< 000340342	
000000360 >>>>>> 000340341	agccgcctggcactgcccqaccctaacaaagggaatcggactgcgccgtgcgagcgc	000000419 <<<<<< 000340282	
000000420 >>>>>> 000340281	tcgqtgggctcagcgcagccgccttcccgattgagagagctgcaagtgaGTAGGGG	000000479 <<<<<< 000340222	
000000480 >>>>>> 000340221	CGAGGCGGCCACGGTCTGAAGAAGGAGTCCAGGGCTGCGCTGAGAGCCACCCTAG	000000539 <<<<<< 000340164	
000000540 >>>>>> 000340163	CTGCGGGAGTAGGAGCCGCCGCCCGGGCTGGGGATGTCTGTC	000000599 <<<<<< 000340104	
000000600 >>>>>> 000340103	ACCGCCTTGGCCTCCCTCATCCCCACCCCACCCCCACCCCCGGCAGGCA	000000659 <<<<<< 000340075	
000000660 >>>>>> 000340074	CTGCGCACCCATAACAAACCCACGTGTGCGGGGACGCAGGAACCTACACTGCAGCGTCTG	000000719 <<<<<< 000340015	
000000720 >>>>>> 000340014	TATTGTGTAAGGCGTTGACTCGCGGAGTGAGGGTCTCTTTAGATCTTGCCCACTTTGGTA	000000779 <<<<<< 000339955	
000000780 >>>>>> 000339954	ACAGAGCAGGAAAACAAGCCCGGTGGAAGGAGAGGGGGGGG	000000839 <<<<<< 000339897	
000000840 >>>>>> 000339896	CACGTGTGCCCCGGCTGAACCTCTTTTGGTCAGG	000000873 <<<<<< 000339837	
000000874 >>>>>> 000339836	TTATTGTTCCAGCCAAACCAACGGTGCGCGCGTTTGGAGCCACCTACTACTGCTGGAGA TTATTGTTCCAACGGGTGCGCGCTTGGAGGCCACCTACTGCTGGGTG	000000933 <<<<<< 000339789	

DNA alignment example

genomic sequence for part of the 6T6Gal gene in mouse and rat

Maksimovic et al., Glycobiology 21:467-48, 2011

Protein alignment example


OprD	MKVMKWSAIALAVSAGSTQFAVADAFVSDQAEAKGFIEDSSLDLLLR	47
PhaK	MSGKTTTMNRTHFMSAACLATLALPVPAMADFIGDSHARLELR	43
	.* *.** * **	
OprD	NYYFNRDGKSGSGDRVDWTQGFLTTYESGFTQGTVGFGVDAFGYLGL	94
PhaK	NHYINRDFRQSNAPQAKAEEWGQGFTAKLESGFTEGPVGFGVDAMGQLGI	93
	..***	
OprD	KLDGTSDKTGTGNLPVMNDGK-PRDDYSRAGGAVKVRISKTMLKWGEMQP	143
PhaK	KLDSSRDRRNTGLLPFGPNSHEPVDDYSELGLTGKIRVSKSTLRLGTLQP	143
	****** ** * **** * . *.**. *.	
OprD	TAPVFAAGGSRLFPQTATGFQLQSSEFEGLDLEAGHFTEGKEPTTVKSRG	193
PhaK	ILPVVVYNDTRLLASTFQGGLLTSQDVDGLTFNAGRLTKANLRDS-SGRD	192
	. **** * * * *******.	
OprD	ELYATYAGETAKSADFIGGRYAITDNLSASLYGAELEDIYRQYYLNSNYT	243
PhaK	DIGYGAASSDHLDFGGGSYAITPQTSVSYYYAKLEDIYRQQFVGLIDT	240
	* ** **.**** . *.* * *,****** *	
OprD	IPLASDQSLGFDFNIYRTNDEGKAKAGDISNTTWSLAAAYTLDAHTFT	291
PhaK	RPLSEGVSLRSDLRYFDSRNDGAERAGNIDNRNFNAMFTLGVRAHKFT	288
	** ** ****.*.** .**. **.*	
OprD	LAYQKVHGDQPFDYIGFGRNGSGAGGDSIFLANSVQYSDFNGPGEKSWQA	341
PhaK	ATWQQMSGDSAFPFVNGGDP-FTVNLVTYNTFTRAGLDSWQV	329
	* ** .* ***. * * * *** .*	
OprD	RYDLNLASYGVPGLTFMVRYINGKDIDGTKMSDNNVGYKNYGYGEDGKHH	391
PhaK	RYDYDFVAMGIPGLSFMTRYTDGRHAETATVSNGRER	366
	*** *.***.*** *	
OprD	ETNLEAKYVVQSGPAKDLSFRIRQAWHRANADQGEGDQNEFRLIVDYPLS	441
PhaK	ERDTDITYVIQSGPFKDVSLRWRNVTFRSGNGLTNAVDEN-RLIIGYTLA	415
	. **.*.* * *	
OprD	IL 443	
PhaK	LW 417	

Alignment of the PhaK protein from Pseudomonas putida and OprD protein from Pseudomonas aeruginos

The role of homology in alignment

- homology: similarity due to descent from a common ancestor
- often we can infer homology from similarity
- thus we can sometimes infer structure/function from sequence similarity

Homology example: evolution of the globins

Homology

- homologous sequences can be divided into two groups
 - *orthologous sequences*: sequences that differ because they are found in different species (e.g. human α -globin and mouse α -globin)
 - paralogous sequences: sequences that differ because of a gene duplication event (e.g. human α -globin and human β -globin, various versions of both)

DNA sequence edits

substitutions: ACGA → AGGA

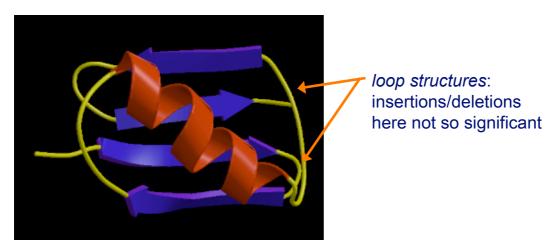
insertions: ACGA → ACCGGAGA

deletions: ACGGAGA → AGA

transpositions: ACGGAGA → AAGCGGA

inversions: ACGGAGA → ACTCCGA

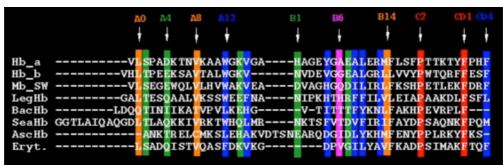
Mismatches and gaps


- substitutions in *homologous* sequences result in mismatches in an alignment
- insertions/deletions in *homologous* sequences result in mismatches in an alignment

Alignment scales

- for short DNA sequences (gene scale) we will generally only consider
 - substitutions
 - insertions/deletions
- for longer DNA sequences (genome scale) we will consider additional events
 - transpositions
 - inversions
- in this course we will focus on the case of short sequences

Insertions/deletions and protein structure


- Why is it that two "similar" sequences may have large insertions/deletions?
 - some insertions and deletions may not significantly affect the structure of a protein

Example alignment: globins

- figure at right shows prototypical structure of globins
- figure below shows part of alignment for 8 globins

Issues in sequence alignment

- the sequences we're comparing typically differ in length
- there may be only a relatively small region in the sequences that matches
- we want to allow partial matches (i.e. some amino acid pairs are more substitutable than others)
- variable length regions may have been inserted/ deleted from the common ancestral sequence

Types of alignment

- global: find best match of both sequences in their entirety
- local: find best subsequence match
- semi-global: find best match without penalizing gaps on the ends of the alignment

Scoring an alignment: what is needed?

- · substitution matrix
 - s(a,b) indicates score of aligning character a with character b
- · gap penalty function
 - -w(g) indicates cost of a gap of length g

Blosum 62 substitution matrix

```
BLOSUM62

N -2 0 6
D -2 -2 1 6
C 0 -3 -3 -3 9
Q -1 1 0 0 0 -3
E -1 0 0 0 2 -4 2 5
G 0 -2 0 -1 -3 -2 -2 6
H -2 0 1 -1 -3 0 0 -2 8
I -1 -3 -3 -3 -1 -3 -3 -4 -1 2 -3 -3 -4 -3 2 4
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5
M -1 -1 -2 -3 -4 -1 -2 -3 -4 -1 2 -2 -3 -2 1 2 -1 5
F -2 -3 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7
S 1 -1 1 0 -1 0 0 0 0 -1 -2 -2 0 -1 -2 -1 4
T 0 -1 0 -1 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -1 -2 -1 1 5
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -2 -3 -3 -1 1 -4 -3 -2 (11)
Y -2 -2 -2 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4
X 0 -1 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 0 -2 -1 -1 -1
A R N D C Q E G H I L K M F P S T W Y V X
```

Linear gap penalty function

- different gap penalty functions require somewhat different dynamic programming algorithms
- the simplest case is when a linear gap function is used

$$w(g) = -g \times d$$

where d is a constant

· we'll start by considering this case

Scoring an alignment

- the score of an alignment is the sum of the scores for pairs of aligned characters plus the scores for gaps
- · example: given the following alignment

• we would score it by $s(\mathbf{V}, \mathbf{A}) + s(\mathbf{A}, \mathbf{I}) + s(\mathbf{H}, \mathbf{Q}) + s(\mathbf{V}, \mathbf{L}) - 3d + s(\mathbf{D}, \mathbf{G}) - 2d$

The space of global alignments

some possible global alignments for ELV and VIS

 Can we find the highest scoring alignment by enumerating all possible alignments and picking the best?

Number of possible alignments

- given sequences of length m and n
- assume we don't count as distinct $^{C-}_{-G}$ and $^{-C}_{G-}$
- we can have as few as 0 and as many as min{m, n} aligned pairs
- therefore the number of possible alignments is given by

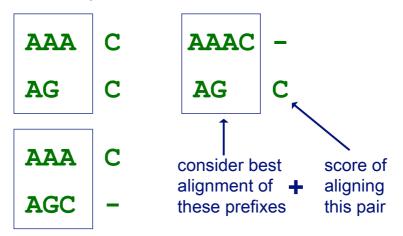
$$\sum_{k=0}^{\min\{m,n\}} \binom{n}{k} \binom{m}{k} = \binom{n+m}{n}$$

Number of possible alignments

there are

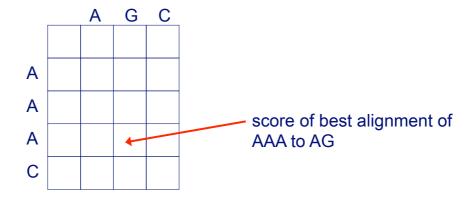
$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \approx \frac{2^{2n}}{\sqrt{\pi n}}$$

possible global alignments for 2 sequences of length *n*


- e.g. two sequences of length 100 have $\approx 10^{77}$ possible alignments
- but we can use dynamic programming to find an optimal alignment efficiently

Pairwise alignment via dynamic programming

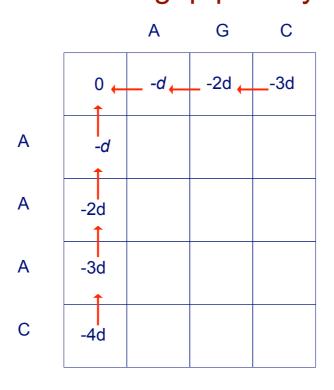
- first algorithm by Needleman & Wunsch, *Journal of Molecular Biology*, 1970
- dynamic programming: solve an instance of a problem by taking advantage of computed solutions for smaller subparts of the problem
- determine best alignment of two sequences by determining best alignment of all prefixes of the sequences


Dynamic programming idea

- consider last step in computing alignment of AAAC with AGC
- three possible options; in each we'll choose a different pairing for end of alignment, and add this to best alignment of previous characters

Dynamic programming idea

- given an *n*-character sequence *x*, and an *m*-character sequence *y*
- construct an (n+1) × (m+1) matrix F
- F(i, j) = score of the best alignment of x[1...i] with y[1...j]



DP algorithm for global alignment with linear gap penalty

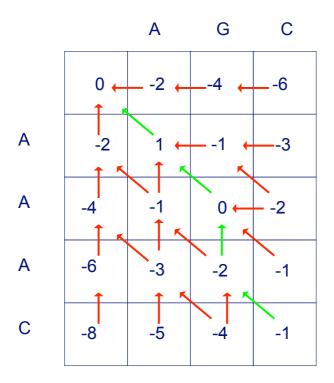
 one way to specify the DP is in terms of its recurrence relation:

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i, y_j) \\ F(i-1,j) - d \\ F(i,j-1) - d \end{cases}$$

Initializing matrix: global alignment with linear gap penalty

DP algorithm sketch: global alignment

- initialize first row and column of matrix
- fill in rest of matrix from top to bottom, left to right
- for each F (i, j), save pointer(s) to cell(s) that resulted in best score
- F (m, n) holds the optimal alignment score; trace pointers back from F (m, n) to F (0, 0) to recover alignment


Global alignment example

suppose we choose the following scoring scheme:

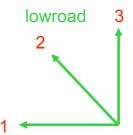
$$s(x_i, y_i) =$$
+1 when $x_i = y_i$
-1 when $x_i \neq y_i$

d (penalty for aligning with a gap) = 2

Global alignment example

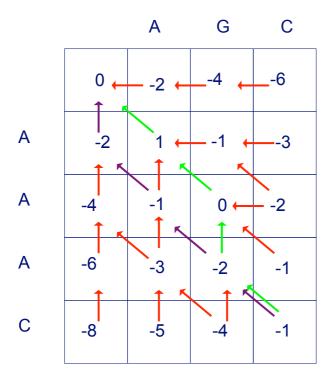
one optimal alignment

x: A A A C y: A G - C


DP comments

- works for either DNA or protein sequences, although the substitution matrices used differ
- finds an optimal alignment
- the exact algorithm (and computational complexity) depends on gap penalty function (we'll come back to this issue)

Equally optimal alignments


- many optimal alignments may exist for a given pair of sequences
- can use preference ordering over paths when doing traceback

 highroad and lowroad alignments show the two most different optimal alignments

Highroad & lowroad alignments

highroad alignment

x: A A A C y: A G - C

lowroad alignment

x: A A A C y: - A G C

Dynamic programming analysis

· recall, there are

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \approx \frac{2^{2n}}{\sqrt{\pi n}}$$

possible global alignments for 2 sequences of length *n*

but the DP approach finds an optimal alignment efficiently

Computational complexity

- initialization: O(m), O(n) where sequence lengths are m, n
- filling in rest of matrix: O(mn)
- traceback: O(m + n)
- hence, if sequences have nearly same length, the computational complexity is

$$O(n^2)$$