Hidden Markov Models (Part 1)

BMI/CS 576 www.biostat.wisc.edu/bmi576.html Mark Craven craven@biostat.wisc.edu Fall 2011

The hidden part of the problem

- we'll distinguish between the observed parts of a problem and the hidden parts
- in the Markov models we've considered previously, it is clear which state accounts for each part of the observed sequence
- in the model above, there are multiple states that could account for each part of the observed sequence – this is the hidden part of the problem

A simple HMM with emission parameters

 a_{13} probability of a transition from state 1 to state 3

 $e_2(A)$ probability of emitting character A in state 2

How likely is a given sequence?

• the probability that the path $\pi_0 \dots \pi_N$ is taken and the sequence $x_1 \dots x_L$ is generated:

$$P(x_1...x_L, \pi_0....\pi_N) = a_{0\pi_1} \prod_{i=1}^L e_{\pi_i}(x_i) a_{\pi_i \pi_{i+1}}$$

(assuming begin/end are the only silent states on path)

How likely is a given sequence: the Forward algorithm

- define $f_k(i)$ to be the probability of being in state k having observed the first i characters of x
- we want to compute $f_N(L)$, the probability of being in the end state having observed all of x
- · can define this recursively

The Forward algorithm

 because of the Markov property, don't have to explicitly enumerate every path – use dynamic programming instead

• e.g. compute $f_4(i)$ using $f_2(i-1)$, $f_4(i-1)$

The Forward algorithm

initialization:

$f_0(0) = 1$	probability that we're in start state and
	have observed 0 characters from the sequence

 $f_k(0) = 0$, for k that are not silent states

The Forward algorithm

recursion for emitting states (i = 1...L):

$$f_{l}(i) = e_{l}(i) \sum_{k} f_{k}(i-1)a_{kl}$$

recursion for silent states:

$$f_l(i) = \sum_k f_k(i) a_{kl}$$

The Forward algorithm

termination:

$$P(x) = P(x_1...x_L) = f_N(L) = \sum_k f_k(L)a_{kN}$$

probability that we're in the end state and have observed the entire sequence

Forward algorithm example

- given the sequence *x* = TAGA
- initialization

$$f_0(0) = 1$$
 $f_1(0) = 0$... $f_5(0) = 0$

• computing other values $f_{1}(1) = e_{1}(T) \times (f_{0}(0)a_{01} + f_{1}(0)a_{11}) = 0.3 \times (1 \times 0.5 + 0 \times 0.2) = 0.15$ $f_{2}(1) = 0.4 \times (1 \times 0.5 + 0 \times 0.8)$ $f_{1}(2) = e_{1}(A) \times (f_{0}(1)a_{01} + f_{1}(1)a_{11}) = 0.4 \times (0 \times 0.5 + 0.15 \times 0.2)$ $\bullet \bullet \bullet$ $P(TAGA) = f_{5}(4) = (f_{3}(4)a_{35} + f_{4}(4)a_{45})$

Forward algorithm note

 in some cases, we can make the algorithm more efficient by taking into account the minimum number of steps that must be taken to reach a state

Three important questions

- How likely is a given sequence?
- What is the most probable "path" for generating a given sequence?
- How can we learn the HMM parameters given a set of sequences?

Finding the most probable path: the Viterbi algorithm

- define v_k(i) to be the probability of the most probable path accounting for the first i characters of x and ending in state k
- we want to compute $v_N(L)$, the probability of the most probable path accounting for all of the sequence and ending in the end state
- can define recursively, use DP to find $v_N(L)$ efficiently

Finding the most probable path: the Viterbi algorithm

initialization: •

 $v_0(0) = 1$

 $v_k(0) = 0$, for k that are not silent states

The Viterbi algorithm

recursion for emitting states (*i* =1...*L*):

 $v_l(i) = e_l(x_i) \max_k \left[v_k(i-1)a_{kl} \right]$ $ptr_l(i) = arg \max_k [v_k(i-1)a_{kl}]$ keep track of most probable path

recursion for silent states:

$$v_{l}(i) = \max_{k} \left[v_{k}(i)a_{kl} \right]$$
$$ptr_{l}(i) = \arg\max_{k} \left[v_{k}(i)a_{kl} \right]$$

The Viterbi algorithm

• termination:

$$P(x,\pi) = \max_{k} \left(v_{k}(L)a_{kN} \right)$$
$$\pi_{L} = \arg\max_{k} \left(v_{k}(L)a_{kN} \right)$$

- traceback: follow pointers back starting at $\, \pi_{
m L} \,$

