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A simple HMM 
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•! given say a T in our input sequence, which state 

emitted it? 



The hidden part of the problem 

•! we’ll distinguish between the observed parts of a 

problem and the hidden parts 

•! in the Markov models we’ve considered previously, it 

is clear which state accounts for each part of the 

observed sequence 

•! in the model above, there are multiple states that 

could account for each part of the observed 

sequence – this is the hidden part of the problem 

Simple HMM for gene finding 

Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences 
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The parameters of an HMM 

•! since we’ve decoupled states and characters, we 

might also have emission probabilities 
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probability of emitting character b in state k 

probability of a transition from state k to l 

       represents a path (sequence of states) 
through the model 

•! as in Markov chain models, we have transition 

probabilities 
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A simple HMM with emission 

parameters 
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probability of emitting character A in state 2 

probability of a transition from state 1 to state 3 
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Three important questions 

•! How likely is a given sequence? 

the Forward algorithm 

•! What is the most probable “path” for generating a 
given sequence? 

the Viterbi algorithm 

•! How can we learn the HMM parameters given a set 
of sequences? 

the Forward-Backward (Baum-Welch) algorithm 

Path notation 
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•! let      be a vector representing a path through the HMM 
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How likely is a given sequence? 

•! the probability that the path                 is taken and 

the sequence                is generated: 

(assuming begin/end are the only silent states on path) 
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How likely is a given sequence? 
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P(AAC," ) = a01 # e1(A) # a11 # e1(A) # a13 # e3(C) # a35

                     = 0.5 # 0.4 # 0.2 # 0.4 # 0.8 # 0.3# 0.6
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How likely is a given sequence? 

•! the probability over all paths is: 
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Number of paths 
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•! for a sequence of length L, how many possible paths 

through this HMM are there? 

2L!

•! the Forward algorithm enables us to compute            

efficiently 
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How likely is a given sequence: the 

Forward algorithm 

•! define              to be the probability of being in state k  

having observed the first i characters of x!

)(ifk

•! we want to compute              , the probability of being 

in the end state having observed all of x!

•! can define this recursively 

)(LfN

The Forward algorithm 

•! because of the Markov property, don’t have to explicitly 

enumerate every path – use dynamic programming instead 

)(4 if )1(  ),1( 42 !! ifif•! e.g. compute            using  
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The Forward algorithm 

initialization: 

1)0(0 =f

statessilent not  are that for     ,0)0( kfk =

probability that we’re in start state and 

have observed 0 characters from the sequence  

The Forward algorithm 
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recursion for silent states: 
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recursion for emitting states (i =1…L): 



The Forward algorithm 

termination: 
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P(x) = P(x
1
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probability that we’re in the end state and 

have observed the entire sequence  

Forward algorithm example 
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•! given the sequence x = TAGA 



Forward algorithm example 

1)0(0 =f 0)0(    0)0( 51 == ff …

•! given the sequence x = TAGA 

•! initialization 

•! computing other values 
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f1(1) = e1(T) " ( f0(0)a01 + f1(0)a11) =

            0.3" 1" 0.5 + 0 " 0.2( ) = 0.15

...! 

f2(1) = 0.4 " 1" 0.5 + 0 " 0.8( )

  

! 

f1(2) = e1(A) " ( f0(1)a01 + f1(1)a11) =

            0.4 " 0 " 0.5 + 0.15 " 0.2( )

! 

P(TAGA) = f5(4) = ( f3(4)a35 + f4 (4)a45)

Forward algorithm note 

•! in some cases, we can make the algorithm more efficient 

by taking into account the minimum number of steps that 

must be taken to reach a state  
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•! e.g. for this HMM, we 

don’t need to initialize or 

compute the values 
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Three important questions 

•! How  likely is a given sequence? 

•! What is the most probable “path” for generating a 

given sequence? 

•! How can we learn the HMM parameters given a set 

of sequences? 

Finding the most probable path:  

the Viterbi algorithm 

•! define           to be the probability of the most 

probable path accounting for the first i characters of x 

and ending in state k!

)(iv
k

•! we want to compute             , the probability of the most 

probable path accounting for all of the sequence and 

ending in the end state 

•! can define recursively, use DP to find             efficiently 
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Finding the most probable path:  

the Viterbi algorithm 

•! initialization: 

1)0(0 =v

statessilent not  are that for     ,0)0( kv
k

=

The Viterbi algorithm 

•! recursion for emitting states (i =1…L): 
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The Viterbi algorithm 

•! traceback: follow pointers back starting at 

•! termination: 
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Three important questions 

•! How  likely is a given sequence? 

•! What is the most probable “path” for generating a 

given sequence? 

•! How can we learn the HMM parameters given a set 

of sequences? 


