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Gene expression profiles

« we’ll assume we have a 2D matrix of gene expression
measurements

— rows represent genes

— columns represent different experiments, time points,
individuals etc.

« we’ll refer to individual rows or columns as profiles
— arow is a profile for a gene
— a column is a profile for an experiment, time point, etc.




Expression profile example
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Task definition: clustering gene
expression profiles

» given: expression profiles for a set of genes or
experiments/individuals/time points (whatever
columns represent)

» do: organize profiles into clusters such that

— profiles in the same cluster are highly similar to
each other

— profiles from different clusters have low similarity
to each other

" Clustering example
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figure from: Hack et al. Genome Biology 6(13), 2005




Motivation for clustering

» exploratory data analysis
— understanding general characteristics of data
— visualizing data

« generalization

— infer something about an object (e.g. a gene)
based on how it relates to other objects in the
cluster

« everyone else is doing it

The clustering landscape

» there are many different clustering algorithms

 they differ along several dimensions
— hierarchical vs. flat

— hard (no uncertainty about which profiles belong to
a cluster) vs. soft clusters

— non-partitional (a profile can belong to multiple
clusters) vs. partitional

— deterministic (same clusters produced every time
for a given data set) vs. stochastic

— distance (similarity) measure used




Distance/similarity measures

* many clustering methods employ a distance
(similarity) measure to assess the distance between

— a pair of profiles
— a cluster and a profile
— a pair of clusters

« given a distance value, it is straightforward to convert
it into a similarity value
1

1+ dist(x,y)

* not necessarily straightforward to go the other way

sim(x,y) =

dist(x,y) =exp(-a x sim(x,y))

» we’ll describe our algorithms in terms of distances

Distance metrics

» properties of metrics
dist(x;,x;) =0
dist(x;,x;) =0
dist(x;, x,) = dist(x,, x;)

dist(x;, x,) = dist(x;, x, ) + dist(x,, x,)

 some distance metrics

xi,e - xj,e

Manhattan dist(x;,x;) = E

Euclidean dist(x,,x,) = \/E (xi,e X )2

e ranges over the individual measurements for x; and x;




K-means clustering

assume our profiles are represented by vectors of real values
put k cluster centers in same space as profiles

each cluster is represented by a vector u j

consider an example in which our vectors have 2 dimensions

profile — |

K-means clustering

» each iteration involves two steps
— assignment of profiles to clusters
— re-computation of the means
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K-means clustering: updating the means

 for a set of profiles that have been assigned to a
cluster c;,we re-compute the mean of the cluster as

follows
Ex

xEc

K-means clustering

given:k, a set X ={x,..x, } of profiles

select k initial cluster means g, ... i,

while stopping criterion not met do
for all clusters ¢ ; do

/I determine which profiles are assigned to this cluster
c; ={ % 1V, dist(¥,.@,) < dist(%,, @) |
for all means f, do

// update the cluster center

hep 2

X Ec




K-means objective function

residual sum of squares (RSS): measure of how well
cluster means represent their members

RSS=Y »

k Xx; Ec,

)
‘xi_tuk‘

when Euclidean distance used, k-means locally
minimizes this quantity

local optimum depends on starting positions for cluster
means

K-means stopping criteria

standard stopping criterion: assignment of profiles to
clusters does not change (equivalently, cluster means do
not change)

for faster runtimes, can stop
 after a fixed number of iterations
* when RSS (or change in RSS) falls below a threshold




K-means clustering example

Given the following 4 profiles and 2 clusters initialized as shown.

Assume the distance function is dist(x,,x ) = 2
27y
e

e
Ky

dist(x,,w) =2, dist(x;,u,) =4
dist(x,,u) =10, dist(x,,u,)=4

'xi,e - 'xj,e
),4° lc
dist(x;,w) =2, dist(x;,u,) =5 / 4+41+3
. . / W= )T <4 2>
dist(x,,u) =2, dist(x,,u,)=3 f 2 2
u, dist(x,,u) =3, dist(x;,u,)=2 b= <6 +8 ,2 + 8> =(1.5)
dist(x,,u) =11, dist(x,,u,)=6 7/ /" 2 2
N
L] /‘
dist(x, ) =1, dist(x,u,) =7 /
dist(x,,u) =1, dist(x,,u,)=5 ‘ -

K-means clustering example (continued)
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/
!‘1=<4+4+6’1+:33+2>=<4-67a2>

assignments remain the same,
so the procedure has converged




EM clustering

* in k-means as just described, profiles are assigned to one and
only one cluster

« we can do “soft” k-means clustering via an Expectation
Maximization (EM) algorithm
— each cluster represented by a distribution (e.g. a Gaussian)
— E step: determine how likely is it that each cluster
“generated” each profile
— M step: adjust cluster parameters to maximize likelihood of
profiles

Representation of clusters

* in the EM approach, we’'ll represent each cluster
using an m-dimensional multivariate Gaussian

q I Lo e -
fj(xi)= exp[__(xi_;uj) Zj (xi_iuj)
Jeo iz L2

where

ﬁj is the mean of the Gaussian

2, s the covariance matrix

this is a representation of a
Gaussian in a 2-D space




EM clustering

» the parameters of the model include the means, the
covariance matrix and sometimes prior weights for
each Gaussian

O ={l,e Uy Zeees 2.}

* here, we’ll assume that the covariance matrix and the

prior weights are fixed; we’ll focus just on setting the
means

EM clustering

« the EM algorithm tries to set the parameters of the
Gaussians, ® , to maximize the log likelihood of the data, X

® = argmax, logHP(ic'i 1©)
i=1
= argmax, ElogP()_c’i 1©)
i=1

n k
= argmaxg Elongj(?ci)
i=1 j=1




EM clustering: hidden variables

on each iteration of k-means clustering, we had to
assign each profile to a cluster

in the EM approach, we’ll use hidden variables to
represent this idea

for each profile X; we have a set of hidden variables

Zil,..l,Zl‘k

we can think of Z_ as being 1if X, is a member of
cluster j and O otherwise

EM clustering: the E-step

recall that Z . is a hidden variable which is 1if f;
generated X, and 0 otherwise

in the E-step, we compute the expected value of this
hidden variable

_ G
Y fi(E)

h;=P(Z;=11%,)

assignment




EM clustering: the M-step

« given the expected values, we re-estimate the means

of the Gaussians
E hl.jxl.

e can also re-estimate the covariance matrix and prior
weights, if we’re varying them

EM clustering example

Consider a one-dimensional clustering problem in which the data given
are:

x,=-4
X2 '3
x;=-1
x,;=3
X5 =

The initial mean of the first Gaussian is 0 and the initial mean of the
second is 2. The Gaussians have fixed width; their density function is:

fx) = ﬁeb(;)

where u denotes the mean (center) of the Gaussian.




EM clustering example
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EM clustering example: M-step

X x h
_2 CT T 4% 924+ -3x 8814 -1x.732+3x 268 +5x.119
H Y h, 924 + 881+ .732+ 268 +.119

=-1.94

Exi x h,
e _ =4x.076+-3x.119+-1x.268 +3x.732+5x .881
LTS, 076+ 119+ 268+ 732+ 881

=3.39

EM clustering example

* here we've shown just one step of the EM procedure

0.2
0.18
0.16-
0.14
0.121

0.1+
0.08-
0.06
0.04
0.02

« we would continue the E- and M-steps until convergence




Computational complexity

e k-means and EM have time complexity O(kn) for
each iteration

— reassignment step: compute k x n distances

— recomputation step: loop through n profiles
updating k means

EM and k-Means clustering

both will converge to a local optimum

both are sensitive to initial positions (means) of clusters,
thus it's often beneficial to run multiple times with different
starting positions

have to choose value of & for both




Choosing the value of £
« we can run k-means/EM multiple times with different

values of k

« Can we pick the best clustering by seeing which run
results in the best value of the objective function?

k = argmax, Elog P(X,1k,©) forEM
i=1

>l fork
xi_Mk‘ or k-means

k =argmin, g E E

k Xx; Ec,

* No — the objective function will generally improve as k
increases. The best value will be with k= n.

Choosing the value of k

« an alternative is to add a penalty for complexity

k =argmin, g E E X, - ﬁk‘z + Ak

k Xx; Ecy
A determines how much weight

is put on complexity

» e.g. the Akaike Information Criterion sets A = 2M where M
is the number of elements in each profile




Cross validation to select k

* using cross validation, we can use held-aside data to
assess the objective function for different values of k

+ Data set

/ * \ Training set
& Testset
|||!’| Iy [ |||!!| g
/\_\ / )_\ compute objective function

I clustering on held'aS|de data
to evaluate clustering

clustering

clustering

» then run method on all data once we’ve picked k

Hierarchical clustering
example

 clustering of related cancers and an

| | |1|__I inflammatory disorder

el [T ' i | TGCT: Tenosynovial giant-cell tumor
O et U e e PVNS: pigmented villonodular synovitis
2220222020000 L
Biaraaacarherboggssoonnnon  SFT: solitary fibrous tumor
SEISSSISSISSSSECecssrrents  DTF desmoid-type fibromatosis
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figure from: West et al. PNAS 103, 2006




Hierarchical clustering:
a dendogram

height of bar indicates
degree of distance
within cluster

distance scale

i

leaves represent profiles (e.g. genes)

Hierarchical clustering

* can do top-down (divisive) or bottom-up (agglomerative)

* in either case, we maintain a matrix of distance (or similarity)
scores for all pairs of

— expression profiles
— clusters (formed so far)
— profiles and clusters




Bottom-up hierarchical clustering

given:a set X = {x,...x, } of instances

fori:= 1tondo
C, = {Xi} /I each instance is initially its own cluster, and a leaf in tree
C:= {c..c}
Jji=n
while |C|>1
Ji=Jj+1
(c,,c,) := argmin dist(c,,c,) // find least distant pair in C
(cy>cy)
¢, =c, Uc, /I create a new cluster for pair

add a new node j to the tree joining a and b
C:= C-ic,c,}Ufc))

return tree with root node j

Haven't we seen this already?

« this algorithm is very similar to UPGMA and neighbor
joining; there are some differences

» what tree represents

— phylogenetic inference: tree represents hypothesized
sequence of evolutionary events; internal nodes represent
hypothetical ancestors

— clustering: inferred tree represents similarity of instances;
internal nodes don’t represent ancestors

« form of tree
— UPGMA: rooted tree
— neighbor joining: unrooted
— hierarchical clustering: rooted tree
* how distances among clusters are calculated
— UPGMA: average link
— neighbor joining: based on additivity
— hierarchical clustering: various




Distance between two clusters

* the distance between two clusters can be determined in
several ways

— single link: distance of two most similar profiles
dist(c, ,c,) = min{dist(a,b) |aEc,,bEc, }

— complete link: distance of two least similar profiles

dist(c,,c,) = max {dist(a, b)lagc,,bE cv}

— average link: average distance between profiles
dist(c,,c,) = avg{dist(a,b) |aEc,,bEc, }

Complete-link vs. single-link distances

complete link single link




Updating distances efficiently

- if we just merged C, and C, into C; , we can determine
distance to each other cluster ¢, as follows

— single link:
dist(c,,c,) = min{dist(c,,c, ).dist(c, ,c, )}

— complete link:
dist(c;,c,) = max{dist(c, ,c,).dist(c, ¢, )}

— average link:

|c, | xdist(c,,c,)+|c, |xdist(c,,c,)

dist(c,,c,) =
[e. [+]c, |

Computational complexity

+ the naive implementation of hierarchical clustering has O(n3)
time complexity, where n is the number of instances

— computing the initial distance matrix takes O(n°) time

— there are O(n) merging steps

— on each step, we have to update the distance matrix O(n)
and select the next pair of clusters to merge O(nz)




Computational complexity

* using more sophisticated data structures to maintain the
pairwise distance data we improve the time complexity

— for single-link clustering, we can update and pick the
next pair in O(n) time, resulting in an o(n*)
algorithm

— for complete-link and average-link we can do these
steps in O(nlogn) time resulting in an O(n” logn)
method

Flat clustering from a hierarchical clustering

* we can always generate a flat clustering from a hierarchical
clustering by “cutting” the tree at some distance threshold

cutting here results
in2clusters = - - - o e e e | e e e e e e e e e e e e - - -

cutting here results
in 4 clusters




Evaluating clustering results

« given random data without any “structure”, clustering
algorithms will still return clusters

« the gold standard: do clusters correspond to natural
categories?

» do clusters correspond to categories we care about?
(there are lots of ways to partition the world)

Evaluating clustering results

» external validation
— E.g. do genes clustered together have some common function?

* internal validation

— How well does clustering optimize intra-cluster similarity and inter-
cluster dissimilarity?

* relative validation
— How does it compare to other clusterings using these criteria?

— E.g. with a probabilistic method (such as EM) we can ask: how
probable does held-aside data look as we vary the number of
clusters.




Internal validation

» there are many different measures for assessing internal validation
* one such measure is the Silhouette index

l 1 E b(x,) - a(X,)
k“\lc,| 2 max[b(x,),a(X,)]

x; Ecy

a(x,) average distance from 551- to other instances in same cluster

b(x,-) average distance from X; to instances in next closest cluster

External validation

« can determine if a cluster seems to be correlated with other
relevant information

« e.g. do the genes have Gene Ontology
— binding sites for common regulators terms associated
, _ with the genes
— shared functional annotations

regulators associated

one cluster _
\ with genes ﬁ 2
55
i

cell surface receptor linked signal transduction

cell wall organization and blogenesis

figure from: Maere et al. BMC Systems Biology 2, 2008




The Gene Ontology

» a controlled vocabulary of more than 30K concepts describing
molecular functions, biological processes, and ceIIuIar components

GO:0032991
‘macromolecular complex

GO:0030312
external encapsulating structure

GO:0030313 GO:0044462
cell envelope il

4 ‘ G0:0005622 |

2/ .

G0:0030288 G0:0043229 G0:0043228 G0:0043227 GO:0044422 |
intracellular organelle. br br organelle part |

outer membrane-bounded periplasmic space

G0:0005737 GO:0044446 G0:0043232 G0:0043231 \
cytoplasm intracellular organelle part. | | intracellular non-membrane-bound organelle | | intracellular membrane-bound organelle i

G0:0005634 |
mucleus |

G0:0043234 GO:0043202 G0:0044427 X GO:0015630

protein complex Dnlmcu.le fiber chromosomal part ioskelsion microtubule cytoskeleton

GO:0030016 GO:0044449 GO:0042611 GO:0000775 GO:0016459 GO:0005874 GO:0005819 K 3 Y
myofibril contractile fiber part, | | MHC protein complex i X microtubule spindle | - .

GO:0030017

G0:0042613 GO:0042612 ‘ l GO:0016460 l l GO:0005813 ‘ y

‘ MHC class II protein complex ‘ | MHC class I protein complex

sarcomere myosin Il complex | ) | centrosome.
G0:0031672 GO:0005859 G0:0032982
Aband muscle myosin complex myosin filament

G0:0005863
striated muscle thick filament

GO:0000119
mediator complex

Comments on clustering

» there many different ways to do clustering; we've
discussed just a few methods

 hierarchical clusters may be more informative, but
they’re more expensive to compute

 clusterings are hard to evaluate in many cases




