
Deep Learning (BEV033DLE)
Lecture 13 Recurrent Neural Networks & Transformer

Networks
Czech Technical University in Prague

■ Recurrent models

■ Gated recurrent units, GRU and LSTM networks

■ Transformer networks & GPT language models



2/12
Recurrent networks

Recurrent models in a nutshell

■ input sequence x= (x1, . . . ,xt, . . . ,xT ), xt ∈ Rn, output sequence y = (y1, . . . ,yT ),
yt ∈ Y and sequence of hidden states h= (h1, . . . ,hT ), ht ∈ Rd.

■ recurrent (dynamic) system with outputs

ht = f(xt,ht−1,w)

yt = g(ht,v)

where w and v are parameters. The model defines sequence-to-sequence mappings
h= Fw(x) and y =Gv(h).

■ loss function ℓ(y,y′), often locally additive ℓ(y,y′) =
∑

t ℓt(yt,y
′
t)

Training goal: given training data T =
{
(xj,yj) | j = 1, . . . ,m

}
, learn the model parameters

w, v by solving
1

m

∑
(x,y)∈T

ℓ
(
y,(Gv ◦Fw)(x)

)
→ min

w,v

http://cmp.felk.cvut.cz


3/12
Recurrent networks

Incarnations of recurrent models and related tasks
■ Deep neural network for classification with additional feedback connections: xt -

constant input, yt - output of the network, ht -states of all hidden layers. The loss
function depends on the last output yT only.

■ “infinite state automata”: the output space is sufficient for keeping the history, thus h
and y can be identified, i.e. yt = f(xt,yt−1,w).
Example: Earth observation, land-cover type monitoring xt - sequence of spectral
satellite measurements, yt - sequence of states (e.g. coniferous forest, broadleaf forest,
clearcut, bark beetle degradation etc.)

■ general sequence-to-sequence segmentation: hidden states ht are needed for keeping
track of longer past and are latent.
Example: NLP translation:

http://cmp.felk.cvut.cz


4/12
Learning RNNs special case: infinite state automata

Learning RNNs is particularly simple in the case that

■ h and y can be identified, i.e. yt = f(xt,yt−1,w) and

■ the loss is locally additive
∑

t ℓ(yt,y
′
t)

Split each sequence (x,y) ∈ T m into triplets (yt−1,xt,yt) and train f from

1

m

∑
(x,y)∈T

∑
t

ℓ
(
yt,f(xt,yt−1,w)

)
→ min

w

Neither forward nor backward propagation through the sequence are needed.

http://cmp.felk.cvut.cz


5/12
Learning RNNs general case: backpropagation through time

Assumptions:

ht = f(xt,ht−1,w)

yt = g(ht,v)

The mappings f and g are implemented by neural networks and are differentiable w.r.t. their
inputs and parameters. The loss function ℓ(y,y′) is differentiable.
Example 1. Both mappings f and g are implemented by one layer networks

at =Wht−1+Uxt+ b ht = tanh(at)

ot = V ht+ c yt = softmax(ot)

http://cmp.felk.cvut.cz


6/12
Learning RNNs general case: backpropagation through time

Computing the gradients: Unroll the network in time and apply backpropagation

Let us consider the loss for a single example (x,y∗) from the training data.

Computing the gradient w.r.t. v is easy (see Slide 4.). Let us consider the gradient w.r.t. w

∂wℓ(y,y
∗) =

T∑
t=1

∂wℓ(yt,y
∗
t ) =

T∑
t=1

∂ytℓ(yt,y
∗
t )∂htg(ht,v)∂wht

The first two derivatives are simple. For the last one we have the recurrent expression

∂wht = ∂wf(xt,ht−1,w)+∂ht−1f(xt,ht−1,w)∂wht−1

This gives

∂wht = ∂wf(xt,ht−1,w)+

t−1∑
i=1

[ t∏
j=i+1

∂hj−1
f(xj,hj−1,w)

]
∂wf(xi,hi−1,w)

http://cmp.felk.cvut.cz


7/12
Learning RNNs general case: backpropagation through time

Problems:

■ backpropagation through time is computationally expensive

■ Exploding/vanishing gradients: consider for simplicity the linear recurrence ht =Wht−1.
For τ steps we get hτ =W τh0. Suppose that we can write W = U−1ΛU , where Λ is
diagonal. We get

hτ = U−1ΛτUh0.

Eigenvalues with magnitude less than one will decay and eigenvalues with magnitude
greater than one will explode.

■ We can not apply batch normalisation as simple remedy.

■ We want the following model ability: events long in the past can trigger changes in
conjunction with current measurements.

Possible solutions: skip connections? designate special nodes in ht for keeping record of
events long in the past?

http://cmp.felk.cvut.cz


8/12
RNNs with gated recurrent units

■ Long short term memory, Schmidhuber, 1997

■ Gated recurrent unit, Cho et al., 2014

Gated recurrent unit (simplified):

A cell consisting of a recurrent unit ht and a gate unit ut ∈ [0,1]

ht = ut−1ht−1+[1−ut−1]f(xt,ht−1,w)

ut = S(xt,ht,v)

The gate unit ut has sigmoid nonlinearity and “decides” whether to copy ht from ht−1 or to
apply the recurrence with f .

http://cmp.felk.cvut.cz


9/12
RNNs with gated recurrent units

Gated recurrent unit (general):

■ h is a state vector

■ u is a vector of “update” gates

■ r is a vector of “reset” gates

The update equations are

ht = ut−1 ⊙ht−1+[1−ut−1]⊙S
(
Uxt−1+Wrt−1 ⊙ht−1

)
where ⊙ denotes the element-wise product of vectors. The gate unit outputs are given by

ut = S
(
Uuxt+W

uht

)
rt = S

(
Urxt+W

rht

)
LSTM cells are more complicated – they have separate “forget” and “update” gates.

Main weakness of LSTM & GRU: No explicit modelling of long and short range
dependencies

http://cmp.felk.cvut.cz


10/12
Transformer Networks

Let us consider the task of next token prediction for NLP

Task: Given a corpus of tokens X = (x1,x2, . . . ,xn), train a network for predicting the next
token xi given the context window Xi = (xi−k, . . . ,xi−1).

L(X ,θ) =
∑

i

logp(xi |xi−k, . . . ,xi−1 ; θ) → max
θ

Language Model: Generative Pre-trained Transformer (GPT)

1. Vector embedding of tokens with position information and trainable parameter W :
yi = Γ (xi, i,W ) ∈ Rm

2. For each i: h0 = Yi

3. Apply transformer blocks: hl = transformer block(hl−1)

4. Predict xi by: p(x |Xi) = softmax(V hL) with trainable parameter V .

http://cmp.felk.cvut.cz


11/12
Transformer Networks

Transformer (decoder):

1. Self-Attention with learnable parameters W k, W q, W v

■ Key: ϕ(yi,W
k) ∈ Rm

■ Query: ψ(yi,W
q) ∈ Rm

■ Value: χ(yi,W
v) ∈ Rm

Output: weighted sum of value vectors + layer normalisation (not shown)

zi =

i∑
j=i−k

softmax
(
ψT (yi)ϕ(yj)

)
χ(yi)

2. Feed forward network: hi = F (zi,W ) + layer normalisation (not shown)

■ The attention sub-layer usually consists of several parallel attention heads

■ Both sub-layers have residual skip connections.

■ Transformer outputs are differentiable in all parameters

http://cmp.felk.cvut.cz


12/12
Transformer Networks

A GPT model can be used for various downstream tasks like

■ natural language inference

■ question answering

■ semantic similarity

This can be achieved by adding a linear layer and fine tuning or, even simpler, with zero-shot
or few-shot inference.

The downstream task performance of the model improves with the size of the training
corpus and with the number of epochs in pre-training.

http://cmp.felk.cvut.cz

	First page
	cmporange Recurrent networks
	cmporange Recurrent networks
	cmporange Learning RNNs special case: infinite state automata
	cmporange Learning RNNs general case: backpropagation through time
	cmporange Learning RNNs general case: backpropagation through time
	cmporange Learning RNNs general case: backpropagation through time
	cmporange RNNs with gated recurrent units
	cmporange RNNs with gated recurrent units
	cmporange Transformer Networks
	cmporange Transformer Networks
	cmporange Transformer Networks
	Last page

