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Assignment 1 (Bernoulli VAE). Let us consider a VAE with binary valued latent variables
z ∈ Z = {0, 1}n. Training such VAEs by maximising the ELBO criterion requires
computation of the gradient of the data term w.r.t. encoder parameters ϕ

∇ϕEqϕ(z |x) log pθ(x | z) = ∇ϕ

∑
z∈Z

qϕ(z |x) log pθ(x | z). (1)

Here we can not apply the re-parametrisation trick as in the case of Gaussian latent vari-
ables.

a) We can explicitly sum over z ∈ Z if the dimension of the latent space is small. This is
however not possible for high dimensional latent spaces.

b) (Score function, log-trick) Prove the following equality

∇ϕ

∑
z∈Z

qϕ(z |x) log pθ(x | z) =
∑
z∈Z

qϕ(z |x) log pθ(x | z)∇ϕ log qϕ(z |x)

Conclude that the following procedure implements an unbiased stochastic estimator of
the required gradient (1):

Sample z ∼ qϕ(z |x) and compute log pθ(x | z)∇ϕ log qϕ(z |x)

Assignment 2 (VAE: Sticked Landing). When learning VAEs by maximising the ELBO
criterion, we must compute the gradient of the KL-divergence term, i.e.

∇ϕ

∑
z∈Z

qϕ(z |x)
[
log qϕ(z |x)− log p(z)

]
,

where p(z) denotes the prior distribution on the latent space.

a) Usually, this KL-divergence can be computed in closed form. In case of a Bernoulli
VAE discussed in the previous assignment, this amounts to compute the KL-divergence
for pairs of Bernoulli distributions. Give a formula it.

b) Let us now consider the gradient of the first term in the formula above.

∇ϕ

∑
z∈Z

qϕ(z |x) log qϕ(z |x) =
∑
z∈Z

log qϕ(z |x)∇ϕqϕ(z |x)+
∑
z∈Z

qϕ(z |x)∇ϕ log qϕ(z |x)

Prove that the second sum is always zero.

1



Assignment 3 (Score function). The score function approach discussed in the first as-
signment provides an unbiased gradient estimator. However, its key drawback is its high
variance. Let us study this on a simple example. Consider the derivative

d

dβ
Eβ[z] =

d

dβ

∑
z

qβ(z)z,

where qβ(z) = βz(1− β)(1−z) is a Bernoulli distribution for a binary variable z = 0, 1.

a) Show that this derivative equals 1.

b) Let us now consider the score function approach for this derivative.

d

dβ
Eβ[z] =

∑
z

qβ(z)z
d

dβ
log qβ(z)

Show that z d
dβ

log qβ(z) = z
β

. Compute the variance of estimating this random variable
on an i.i.d. sample {zi | i = 1, . . . ,m} generated from qβ . How is it depending on β?
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